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This paper introduces a novel approach to induce Fuzzy Pattern Trees (FPT) using Grammatical Evolution
(GE), FGE, and applies to a set of benchmark classification problems. While conventionally a set of FPTs
are needed for classifiers, one for each class, FGE needs just a single tree. This is the case for both binary
and multi-classification problems. Experimental results show that FGE achieves competitive and frequently
better results against state of the art FPT related methods, such as FPTs evolved using Cartesian Genetic
Programming (FCGP), on a set of benchmark problems. While FCGP produces smaller trees, FGE reaches
a better classification performance. FGE also benefits from a reduction in the number of necessary user-
selectable parameters. Furthermore, in order to tackle bloat or solutions growing too large, another version
of FGE using parsimony pressure was tested. The experimental results show that FGE with this addition
is able to produce smaller trees than those using FCGP, frequently without compromising the classification

performance.

1 INTRODUCTION

Machine learning (ML) has great potential to solve
real-world problems and to contribute to the improve-
ment of processes, products, and research. In the
last two decades, the number of applications of ma-
chine learning has been increasing due to the avail-
ability of vast collections of data and massive com-
puter power thanks to the development of new train-
ing algorithms, the emergence of new hardware plat-
forms based on graphics cards with GPUs and the
availability of open-source libraries (Dosilovi¢ et al.,
2018). Such conditions provide ML systems with the
ability to solve highly complex problems with per-
formance superior to those obtained by techniques
that, until then, represented state of the art. More-
over, in some specific fields of application, such as
image classification, ML systems have surpassed hu-
man performance (He et al., 2015).

(1 https://orcid.org/0000-0002-6209-4642
5@ https://orcid.org/0000-0002-7223-5322
¢ https://orcid.org/0000-0002-1783-6352
d

https://orcid.org/0000-0001-6580-5668
https://orcid.org/0000-0001-9818-911X
f© https://orcid.org/0000-0002-7002-5815

o

Murphy, A., Ali, M., Dias, D., Amaral, J., Naredo, E. and Ryan, C.
Grammar-based Fuzzy Pattern Trees for Classification Problems.
DOI: 10.5220/0010111900710080

Although ML algorithms are successful in terms
of results and predictions, they have their short-
comings. The most compelling is the absence of
transparency, which identifies the so-called black-box
models. In such models, it is very difficult or even
impossible to understand how the ML system makes
its decision or to extract the knowledge of how the de-
cision is made. As a result, it does not allow a human
being, expert, or not to check, interpret, and under-
stand how the model reaches its conclusions.

In order to address these issues, Explainable Ar-
tificial Intelligence (XAI) (Adadi and Berrada, 2018;
Arrieta et al., 2020) has appeared as a field of research
focused on the interpretability of ML. The main pur-
pose is to create a set of models and interpretable
methods that are more explainable while preserving
high levels of predictive performance (Carvalho et al.,
2019).

Fuzzy Set theory has provided a framework to
develop interpretable models (Cordén, 2011) (Her-
rera, 2008) because it allows the knowledge acquired
from data to be expressed in a comprehensible form,
close to natural language, which gives the model a
higher degree of interpretability (Hiillermeier, 2005).
Most developed fuzzy models are rule-based fuzzy
systems (FBRS) that can represent both classification
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and regression functions and for which there are many
strategies developed for the synthesis of these models
(Cordén, 2011). Obtaining fuzzy models based on
easily interpretable rules may not be an easy task, be-
cause depending on the application, many rules may
be necessary with many antecedents that make it dif-
ficult to understand the model.

On the other hand, a system with relatively few
rules can be easily interpreted, but have its predic-
tive accuracy compromised. In this work, a novel
approach to automatically induce models applied
on classification problems is introduced. It uses a
method based on the theory of fuzzy sets, Fuzzy Pat-
tern Trees (FPT), which is not based on rules, but on
a hierarchical method. This work replaces the FPT
learning method with Grammatical Evolution (GE).

GE is flexible enough to derive feasible models
such as FPTs, and it can efficiently address different
problems by changing the grammar and the evaluation
function. As a result, it is possible to obtain models
that can solve a classification problem and to get ex-
plainable solutions at the same time. Moreover, the
combination of GE and Fuzzy Logic gives a valuable
opportunity to address the new research lines in XAl
Experimental results show that GE can evolve fuzzy
pattern trees to solve benchmark classification prob-
lems with competitive results against state of the art
methods with better results in three of them.

The remainder of this paper is organized as fol-
lows: Section 2 reviews the main background con-
cepts, including FPTs, Genetic Programming (GP),
Cartesian GP (CGP) and GE. Section 3 explains the
proposal and contributions of this work in more de-
tail. Next, Section 4 presents the experimental set-
up, outlining all of the considered variants and perfor-
mance measures. Section 5 presents and discusses the
main experimental results of the described research.
Finally, Section 6 presents the conclusions and future
work derived from this research.

2 BACKGROUND

2.1 Fuzzy Pattern Trees

FPTs have independently been introduced by Huang
et al. (Huang et al., 2008), and Yi et al. (Yi et al.,
2009) who called this type of model Fuzzy Opera-
tor Trees. The FPT model class is related to several
other model classes including fuzzy rule-based sys-
tems (FRBS), and fuzzy decision trees (FDT).

A FPT is a hierarchical, tree-like structure, whose
inner nodes are marked with generalized (fuzzy) logi-
cal and arithmetic operators, and whose leaf nodes are
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associated with fuzzy predicates on input variables. It
propagates information from the bottom to the top: A
node takes the values of its descendants as input, ag-
gregates them using the respective operator, and sub-
mits the result to its predecessor. Thus, an FPT im-
plements a recursive mapping producing outputs in
the [0,1] interval.

The following operators are used, where a and b
are the inputs to the operator:

WTA =IF{}()..EISE() (1)

MAX = max(a,b)  (2)

MIN = min(a,b)  (3)

WA(K) =ka+(1—k)b  (4)

OWA(k) = k-max(a,b) + (1 —k)min(a,b)  (5)
CONCENTRATE =a*  (6)

DILATE =az  (7)
COMPLEMENT =1—a  (8)

where WTA, WA & OWA denote Winner takes
all, Weighted Average and Ordered Weighted Aver-
age, respectivly.

Figure 1 shows an example of an FPT, which was
trained from a (wine) quality dataset. It represents the
fuzzy concept — a fuzzy criterion for — wine with a

high quality.
3
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Figure 1: Tree representing the interpretable class "Good
Quality Wine”, showing each variable with different color.

The node labels of the tree illustrate their inter-
pretation and not yet their implementation. In order
to interpret the whole tree and grasp the fuzzy pattern
it depicts, we start at the root node. It represents the
final aggregation (a simple average in this case) and
outputs the overall evaluation of the tree for a given
instance (a wine). Then, we proceed to its children
and so forth. The interpretation could be like this:

A high quality wine fulfills two criteria. We call
these two criteria — the left and right subtrees of the
root node — criterion I and criterion Il. Criterion I
is fulfilled if the alcohol concentration of the wine is
high or its density is high. Criterion II is fulfilled,
if the wine has a high concentration of sulfates or a



third criterion (Ill) is met. This is the case, if both
alcohol concentration and the wines acidity is low.

The FPTs were created focusing on the represen-
tation of knowledge through a tree-shaped expression
rather than representing it in the form of rules. The
first FPT induction method was created by Huang,
Gedeon and Nikravesh (Huang et al., 2008), and re-
fined in (Senge and Hiillermeier, 2011).

Hierarchical representation minimizes existing
problems in rule-based systems, such as exponential
increase in the number of rules with increasing entries
and loss of interpretability when a large number of
rules are required to achieve accuracy requirements.
The tree is represented as a graph, favoring the hu-
man ability to recognize visual patterns, allowing the
discovery of connections between the input variables
and a class. These connections can be complicated to
make when using models with a fixed set of rules.

To obtain a classifier one tree is created for each
class, the classifier decision occurs in favor of the tree
(class) that has the highest output value. Also, since
each tree is considered a “logical description” of the
class, it allows a more specific interpretation of the
learning problem (Senge and Hiillermeier, 2011).

The FPT provides an alternative for the construc-
tion of accurate and interpretable fuzzy models.

2.2 Cartesian GP

GP concerns the automatic generation of programs in-
spired on the evolution theory. John Koza pioneered
a tree-based GP form to represent computer programs
using at that time LISP, an artificial intelligence com-
puter language (Koza, 1992). CGP (Miller, 1999) is
a flavor of GP with approximately 20 years of inter-
esting and varied research works addressing a wide
range of problem domains.

CGP uses graphs to represent solutions, and its
key feature is the ability to encoding computational
structures as directed graphs using redundant genes.
This redundancy serves CGP to get a very adaptable
representation by allowing the outputs nodes to either
connect or disconnect to nodes from previous nodes
in the directed graph.

The synthesis of FPTs by CGP was proposed in
(dos Santos and do Amaral, 2015). The authors re-
placed the learning strategy proposed in (Senge and
Hiillermeier, 2011) called Beam Search by CGP. The
former learning strategy has a “greedy” characteris-
tic which prevents a better exploration of the search
space, increasing the possibility of the algorithm of
being trapped in a sub-optimal solution. Also it suf-
fered from the “curse of dimensionality”. If the num-
ber of input features and the width of the beam are
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large, the algorithm will take a long time to evalu-
ate all the possibilities; as a result, there will be an
explosion in the number of possible combinations.
The results reported in (dos Santos and do Ama-
ral, 2015) indicated that FPTs synthesized by CGP
are competitive with other classifier algorithms, and
they are smaller than those obtained in (Senge and
Hiillermeier, 2011).

Another example of the synthesis of FPTs by CGP
can be found in (dos Santos et al., 2018). In that pa-
per, the authors implement the improvements in CGP
suggested by (Goldman and Punch, 2014) and imple-
mented an NSGA-II strategy to deal with two con-
flicting objectives: the accuracy and the size of the
tree.

Authors in (Wilson and Banzhaf, 2008) investi-
gated the fundamental difference between traditional
forms of Linear GP (LGP) and CGP, and their restric-
tions in connectivity.

The difference between graph-based LGP and
CGP is the means with which they restrict the feed-
forward connectivity of their directed acyclic graphs.
In particular, CGP restricts connectivity based on the
levels-back parameter while LGP’s connectivity is
implicit and is under evolutionary control as a com-
ponent of the genotype.

Experimental results show that CGP does not ex-
hibit program bloat (Turner and Miller, 2014). How-
ever, using CGP to evolve programs in an arbitrary
language can be tricky.

2.3 Grammatical Evolution

GE is a variant of GP, which differs in that the
space of legal programs it can explore is described
by a Backus-Naur Form (BNF) grammar (Ryan et al.,
1998; O’Neill and Ryan, 2001) or Attribute Gram-
mar (AG) (Patten and Ryan, 2015; Karim and Ryan,
2014; Karim and Ryan, 2011b; Karim and Ryan,
2011a), and it can evolve computer programs or ar-
bitrary structures that can be defined in this way.

SEARCH

engine

SOLUTION

LANGUAGE GE

specification system

specification

PROBLEM

specification

Figure 2: The GE system uses a search engine (typically a
GA) to generate solutions for a given problem, by recom-
bining the genetic material (genotype) and mapped onto
programs (phenotype) according to a language specification
(interpreter/compiler).
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The modular design behind GE, as shown in Fig-
ure 2, means that any search engine can be used, al-
though typically a variable-length Genetic Algorithm
(GA) is employed to evolve a population of binary
strings. After mapping each individual onto a pro-
gram using GE, any program/algorithm can be used
to evaluate those individuals.

Genotype Binary String
1101110001010001001011101011110100001111001000000100111100111010

Transcription

Integer String
220 81 46 189 15 32 79 58

I

BNF-Grammar

<exp> ::= max(<exp>,<exp>) [0] <digit> ::=
| min(<exp>,<exp>) [1]
| WA(<const>,<exp>,<exp>) [2]
| OWA(<const>,<exp>,<exp>) [3]

0

|1 ]

| 2 ]

|3 ]

| concentrate(<exp>) [4] | 4 [4]

| dilation(<exp>) [5] | 5 [5]

| complement(<exp>) [6] | 6 [6]

| x[<digit>] [71 17 [7]

| 8 [8]

<const> ::= 0.<digit><digit><digit> [0] | 9 [9]1

I

Translation

Phenotype

Start --> <exp>
220% 8= 4 concentrate(<exp>)
81% 8=1 concentrate(min(<exp>,<exp>))
46 % 8= 6 concentrate(min(complement(<exp>),<exp>))

1899 8=5 concentrate(min(complement(dilation(<exp>)),<exp>))
159 8=7 concentrate(min(complement(dilation(x[<digit>1)),<exp>1))
329%10=2 concentrate(min(complement(dilation(x[2])),<exp>]))

79% 8 =7 concentrate(min(complement(dilation(x[2])),x[<digit>1))
58%10=8 concentrate(min(complement(dilation(x[2])),x[81))

Figure 3: Example of a GE genotype-phenotype mapping
process for the Iris dataset, where the binary genotype is
grouped into codons (e.g. 8 bits; red & blue), transcribed
into an integer string, then used to select production rules
from a predefined grammar (BNF-Grammar), and finally
translated into a sequence of rules to build a classifier (phe-
notype).

The linear representation of the genome allows
the application of genetic operators such as crossover
and mutation in the manner of a typical GA, unlike
tree-based GP. Starting with the start symbol of the
grammar, each individual’s chromosome contains in
its codons (typically groups of 8 bits) the information
necessary to select and apply the grammar production
rules, in this way constructing the final program. The
mapping process is illustrated with an example in Fig-
ure 3.

Production rules for each non-terminal are in-
dexed starting from O and, when selecting a produc-
tion rule (starting with the left-most non-terminal of
the developing program) the next codon value in the
genome is read and interpreted using the formula:
p = c % r, where c represents the current codon value,
% represents the modulus operator, and r is the num-
ber of production rules for the left-most non-terminal.
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If, while reading codons, the algorithm reaches the
end of the genome, a wrapping operator is invoked
and the process continues reading from the beginning
of the genome. The process stops when all of the non-
terminal symbols have been replaced, resulting in a
valid program. If it fails to replace all of the non-
terminal symbols after a maximum number of itera-
tions, it is considered invalid and penalized with the
lowest possible fitness.

3 FUZZY GE

This section introduces Fuzzy GE, an evolutionary
approach to generate classifiers with linguistic labels.
The aim is to create meaningful models applied to
multi-classification problems.

The schematic of a fuzzy system is shown in Fig-
ure 4. The acquisition of a fuzzy rule base and
the associated fuzzy set parameters from a set of in-
put/output data is important in the development of
fuzzy expert systems (Zadeh, 1965) with or without
the aid of human expertise. Several automated tech-
niques have been proposed for the solution of this
knowledge acquisition problem. An advantage of us-
ing GE in the context of evolving structures for fuzzy
rule base is the flexibility it gives in defining different
partitioning geometries based on a chosen grammar
(Wilson and Kaur, 2006).

Fuzzy Rule base
Input " Fuzzy Inference . Qutput
Vari%mesliblﬁmli) Defuzzifier l'—_:)Vanables

Figure 4: Fuzzy system.

3.1 Fuzzy Classification

There are many approaches to using evolve GP to
classifiers (Espejo et al., 2009) and GE has been
shown to be well suited for such a task (Nyathi and
Pillay, 2018). One of the most popular methods for
evolving a GP binary classifier is Static Range Selec-
tion, described by Zhang and Smart, who later pro-
posed Centred Dynamic Class Boundary Determina-
tion (CDCBD) for multi-class classification (Zhang
and Smart, 2004).

In binary classification, an input x € R”" has to be
classified as belonging to one of the either two classes,
®; or 0. In this method, the goal is to evolve a map-
ping g(x) : R" — R. The classification rule & states
that pattern x is labelled as belonging to class ®; if
g(x) > r, and belongs to m, otherwise, where r is the
decision boundary value.



Degree of membership

X Input variables

Figure 5: Fuzzy sets.

The fitness function is defined to maximize the to-
tal classification accuracy after &_is applied, normally
setting the decision boundary to r = 0. A data sam-
ple is passed to the tree which yields a score. If the
score is below the boundary it is labelled a particu-
lar class, and likewise it is labelled the other class if
it is above the boundary. The process for CDCBD is
similar, with n-1 boundaries existing, which can dy-
namically change to class each individual.

Both approaches only evolve one tree (or map-
ping) regardless of the number of classes and attempt
to classify the individual based on its output from that
tree. There are drawbacks to this approach as much
effort need to be expended into designing or hand
crafting class boundaries or creating systems to op-
timise them for each individual (Fitzgerald and Ryan,
2012), which becomes increasingly more difficult as
the number of classes increases.

A FPT classifier requires that one FPT be evolved
per class in the problem. Evolving multiple trees si-
multaneously adds a great deal of complexity to the
problem. In general, care must be taken and special
operators, particularly when using crossover, must be
created (Ain et al., 2018; Lee et al., 2015). However,
due to the separation between the search space and
program space in GE, it is not necessary to create any
special operators in FGE.

The novel method involves evolving only one
large solution. This solution comprises of FPTs, with
each class having its own FPT, and a decision node
at its root. Each FPT can therefore be thought of as
a subtree of a larger classifier tree, as seen in Figure
6, with the root node assigning the label to each indi-
vidual. More formally, / mappings f;(x) : R" — [0,1],
where i is the number of classes in the problem are
evolved. The FPT, or subtree, (fi(x)...f;(x)) which
confers the largest score to the individual is deemed
the winner and the individual is labeled with the class
that FPT represents.

For example, if fj(x) yielded the largest score
the individual would be assigned to class 1. This is
highlighted further in Figure 7, where the second tree
yields the better score, S, the hollow star. The indi-
vidual is therefore assigned class c. This is in contrast
to the methods described above which only produce 1
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score per individual and assign it a label based on the
scores position relative to a boundary(s).

FGE does not require the use of any protected
operators when evolving multiple trees due to the
unique separation between genotype and phenotype
and only needs grammar augmentation to address dif-
ferent problem types.

Figure 6: Pictorial representation of a multi-classifier
evolved by FGE, where FT, is the fuzzy tree for each avail-
able class, and at the root the winner take all (WTA).

y
o rr

S Sc
imensional space ([0,1])(RR)

Feature space (R%)

Figure 7: Graphical depiction of the mapping process from
the feature space to a 1-dimensional space [0,1] using a set
of fuzzy trees FT; to FT,.

3.2 Fuzzy Representation

In order to give a better interpretability to the evolved
models, fuzzy logic is used to build more meaningful
trees. To this end it uses the following five linguistic
terms for fuzzy labels: low, medium-low, medium,
medium-high, and high (see Figure 5). An uniform
distribution of the input variables was considered for
these fuzzy terms to have partitioning of the space.

The Fuzzy operators used are described in Section
2.1. The values of the inputs of the operated nodes
are a and b. In the case of the Weighted Average
(WA) and Ordered Weighted Average (OWA) oper-
ators, k will be a value created randomly within the
range [0,1]. Only one input will be provided in the
case of the concentration, dilation, and complement.
Winner Takes All (WTA) will be the root node of ev-
ery fuzzy tree. This function receives the score from
each FPT and labels the individual corresponding to
the highest scoring tree.

The genotype represents all the operators and
fuzzy terms and different trees can be obtained de-
pending on the grammar used on GE.
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3.3 Lexicographic Parsimony Pressure

Accuracy, efficiency in training, and interpretability
are often the dominant considerations when evolving
a classifier. Maximising accuracy, or similarly min-
imising error, has traditionally been the main focus
of research but interpretability has continued to grow
in significance, with many papers and conferences
now dedicated to the area (Adadi and Berrada, 2018).
For a FPT to be interpretable or comprehensible, and
therefore serve as a class descriptor, it is important
the evolved solutions remain as small as possible and
bloat is mitigated (Espejo et al., 2009). While GP’s
ability to find high-dimensional, non-linear solutions
is lauded, it can result in a significant loss of inter-
pretability. Indeed, one of CGPs main advantages
over standard GP and GP variants is its inherent lack
of bloat (Turner and Miller, 2014).

Parsimony pressure is not GP-specific and has
been used whenever arbitrarily-sized representations
tended to get out of control. Such usage to date can
be divided into two broad categories: parametric and
Pareto parsimony pressure.

Parametric parsimony pressure uses size has a di-
rect numerical factor in fitness, while pareto parsi-
mony pressure, uses size as a separate objective in a
pareto-optimization procedure.

In this work two sets of experiments were run. The
first uses standard GE and the second is identical to
the first, but implements a slightly modified lexico-
graphic parsimony pressure (Luke and Panait, 2002)
to bias the selection to prefer smaller solution size.
The size is defined as the maximum depth of any of
the n FPTs GE evolves for a particular solution.

4 EXPERIMENTAL SETUP

This section presents the experimental setup used.
The approach is compared with several state of the
art classification algorithms and one other FPT related
method, FPT evolved using CGP (FCGP) (dos Santos
et al., 2018; dos Santos, 2014). The same benchmark
classification problems are used as previous for a fair
comparison between the two approaches. The full ex-
perimental setup for CGP and each of the other bench-
mark classification techniques which FGE is com-
pared against can be found in (dos Santos et al., 2018).
The results are seen in Table 3

4.1 Datasets

The experiments are run on eight benchmark datasets,
all of which can be found online in the UCI and
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CMU repositories (Dua and Graff, 2017; StatLib,
2020). They include six binary classification prob-
lems and two multi-class problems. The size of the
eight datasets, in addition to the number of classes
and variables for each, are shown in Table 1.

Table 1: Benchmark datasets for binary and multiclass clas-
sification problems, taken from the UCI repository’ and and
the CMU repository?®.

Datasets Short Class Vars Instances
Binary
Lupus® Lupus 2 3 87
Haberman?  Haber 2 3 306
Lawsuit® Law 2 4 264
Transfusion’ Transf 2 4 748
Pima® Pima 2 8 768
Australiant  Austr 2 14 690
Multiclass
Iris" Iris 3 4 150
Wine® Wine 3 13 178

4.2 GE Parameters

The experiments were run for 50 generations with a
population size of 500. Sensible Initialisation and ef-
fective crossover were used (Ryan and Azad, 2003).
5-fold cross-validation was used. This was repeated 5
times for a total of 25 runs.

Table 2: List of the main parameters used to run GE.

Parameter Value

Folds 5

Runs 25 (5 per fold)
Total Generations 50

Population 500
Replacement Tournament
Crossover 0.9 (Effective)
Mutation 0.01
Initialisation Sensible

These values result in a higher computational
cost than those of the CGP experiments (dos Santos,
2014). The full experimental setup can be seen in Ta-
ble 2.

The grammar used for binary classification can
be seen in Figure 8. The WTA node contains two
< exp > non-terminals which need to be expanded.
When fully expanded, these will be the FPT for
each class. For binary classification two FPTs are
required. For multi-class classification the gram-
mar simply needs to be augmented by adding more
< exp > symbols in the expression. Three classes re-



quire three < exp > symbols and so on. Constants
were created using the standard GE approach of digit
concatenation (Azad and Ryan, 2014).
< start >:=WTA(< exp >,< exp >)
< exp >i=max(< exp >, < exp >) |
min(< exp >, < exp >) |
WA(< const >, < exp >, <exp>) |
OWA(< const >, < exp >, <exp>)|
concentrate(< exp >) |
dilation(< exp >) |
complement (< exp >) |
x| x| x3 ...
< const >::=0. < digit >< digit >< digit >
<digit >:=0|1]|2]....
Figure 8: Grammar used to evolve a Fuzzy Pattern Tree
for a binary dataset. The WTA node can be augmented by

adding extra < exp > to include as many subtrees as neces-
sary, making it a multi-class grammar.

4.3 Fitness Function

The fitness function used for FGE, shown in Eq. 10,
seeks to minimise the RMSE for each individual. The
benchmark datasets used are reasonably balanced and
therefore a non standard fitness function, such as cross
entropy, was deemed not to be needed. However, fu-
ture experiments run on very unbalanced data may
need to modify this.

n A2
RMSE = Z M )
="
F =1—RMSE (10)

The fitness function for FGE with lexicographic
parsimony pressure, seeking interpretability in solu-
tions, is calculated by penalising the solution by its
size. It is computed as follows;

Fr. =1—RMSE x0.99 — MaxDepth x 0.01 (11)

Experiments using fitness function F are denoted
as FGE in the results section, while experiments us-
ing Fy are identified by FGE — L

The mean depth of a solution is the average max
depth of each FPT evolved. For a binary classifier C
with FPT; and F PT,, the mean depth would be:

MeanDepth(C) =

3 [MaxDepth(FPTl )+ MaxDepth(FPTz)} (12

Grammar-based Fuzzy Pattern Trees for Classification Problems

5 RESULTS

The experimental results are summarized in Table 3
showing the best performance from 25 runs of FGE.
Other methods performances are taken from (dos San-
tos et al., 2018). The best result across each prob-
lem are highlighted in bold. Datasets are sorted to
first show the binary problems (1-6), followed by the
multi-classification problems (7-8).

The first two columns show the results for FGE
and FGE with lexicographic pressure applied, re-
spectively. The third column shows the results for
CGP, the fourth Support Vector Machine with Linear
Kernel (SVM-L) and fifth Random Forest (RF). The
sixth column shows Support Vector Machine with Ra-
dial Basis Function Kernel (SVM-R) and lastly col-
umn seven shows the Pattern Tree Top-Down Epsilon
(PTTDE), the original technique for creating FPTs
(Senge and Hiillermeier, 2011). In this paper epsilon
is set to 0.25%, where epsilon controls the amount of
improvement required to continue to grow the tree.

A Friedman test was carried out on the data to
compare the performance of the classifiers. This test
showed no evidence there was one classifier that was
statistically significantly better than all others.

FGE achieves very competitive results with the
previous experiments, only being glaringly outper-
formed in one benchmark, Wine, in which it was the
worst performing classifier. FGE attained best perfor-
mance of 83% on this benchmark, compared to 98%
found by SVM, RF and PTTDE. It was also notice-
ably worse than the result achieved by CGP, which
reached 90%.

FGE accomplished the best performance in 3
problems: (i) Haberman - FGE achieves 74%, outper-
forming all and equalling PTTDE as the best result;
(ii) Australian - FGE and FGE-L score 86% for a tie
in best performing classifier; and (iii) Iris - FGE and
FGE-L again match the best performing classifier at-
taining 96%. Interestingly, FGE-L achieves best in
class performance, 77%, on the Transfusion problem.

As well as these results, FGE and FGE-L attain
competitive results on the rest of the classification
problems with the exception of the Lupus dataset.
FGE reaches similar performance as FCGP, 73% and
74% respectively, but PTTDE produced the best accu-
racy, 77%. FGE-L performs identically, finding 73%
accuracy.

FGE-L can be seen to find substantially smaller
solutions than those found by FGE as shown in 4,
where SizeReduc denotes the reduction on the aver-
aged tree size achieved by FGE-L against FGE. Note
that an FPT containing just a leaf node would have
depth of 0.
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Table 3: Classification performance comparison of FGE versions against previous related work results, showing the classifi-

cation error on the test data for the best solution found. Bold indicates the best performance.

Dataset FGE FGE-L FCGP SVM-L RF SVM-R PTTDE
Lupus 0.73 0.73 0.74 0.74 0.62 0.73 0.77
Haber 0.74 0.72 073 0.72 0.65 0.71 0.74
Law 0.96 0.94 093  0.99 0.97 0.96 0.94
Transf 0.76 0.77 0.76  0.76 0.70 0.73 0.77
Pima 0.74 0.74 072 0.77 0.77 0.71 0.76
Austr  0.86 0.86 0.85 0.86 0.79 0.85 0.85
Iris 0.96 0.96 095  0.96 095 0.95 0.95
Wine  0.83 0.83 090 0.98 0.98 0.98 0.98

Across all problems tested remarkably smaller
trees were found by FGE-L. In particular, the Haber,
Pima and Australian problems were all seen to reduce
in size by over 80%. Parsimony pressure does not
appear to affect the performance, however, with only
a decrease in accuracy seen in two problems: Haber
and Lawsuit. Strikingly, there was an increase in the
performance on the Transfusion problem by 1% . The
major reduction seen in the size of the final solutions
found in every experiment may hint at bloat being a
problem in FGE. A pressure of 1% of size was applied
in these experiments but tuning the pressure applied
is an avenue for future research. FGE-L was the best
performing classifier on the Transfusion, Iris and Aus-
tralian problems. On the problems studied there ap-
pears to be very little, or sometimes none, trade off in
performance associated with evolving smaller trees. It
is possibly the case that the global optimums for these
problems were smaller trees, but this requires fur-
ther study, on larger, more complicated benchmarks.
These results do seem to strongly suggest that bloat
may be an issue in FGE.

The trees found using CGP are much smaller than
those found using FGE but larger than those using
FGE-L. When the search is biased towards smaller
sized individuals FGE-L finds smaller solutions in 7
problems. Due to these small sizes, FPTs found using
FGE-L should lead to very interpretable results.

Overall the best performing method was SVM-L,
achieving best performance on 5 of the the benchmark
problems. SVM-L does not allow any interpretabil-
ity of its solutions. FGE was best performing on 3
problems, FGE-L was best performing on 3 problems
and FCGP was not best on any. FGE beat or equalled
FCGP in 6/8 problems studied and FGE-L evolved the
smallest trees in all but one problem, Lupus, and was
able to beat FCGP in 5/8 problems.

The mean size of the final trees found by FGE,
FGE-L with parsimony pressure and CGP are shown
in Table 4, best results are in bold.
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Table 4: Average size comparison in terms of the tree depth
between fuzzy pattern trees approaches; FCGP, FGE, and
FGE-L. Best results are in bold. SizeReduc is the average
size reduction seen in FGE-L vs FGE.

Dataset FCGP | FGE FGE-L SizeReduc
Lupus 1.65 |7.84 238 70%
Haber 185 [9.42 0.2 98%
Law 1.05 |[5.02 0.98 79%
Transf 2 6.76 1.54 77%
Pima 1 6.7 1 85%
Austr 1.5 5.12 0.92 82%
Iris 124 |1.8 0.64 64%
Wine 1 247 0.68 T2%

6 CONCLUSIONS

This paper proposes a new way of inducing Fuzzy
Pattern Trees using Grammatical Evolution as the
learning algorithm, FGE. FPT is a viable alternative
to the classic rules-based fuzzy models since their hi-
erarchical structure allows a more compact represen-
tation and a compromise between the accuracy and
the simplicity of the model. The experimental results
showed that FGE has a competitive performance in
the task of classification with respect to some of the
best classifiers available. Crucially it also provides
an interpretable model, that is, the knowledge ob-
tained in the learning process can be extracted from
the model and presented to a user in comprehensible
terms.

A promising aspect of the present work is that sev-
eral future lines of research can be explored. The pro-
posed algorithms should be evaluated on other ma-
chine learning problems, such as unsupervised clus-
tering.

One interesting possibility is to try different ap-
proaches to reduce the tree size, including regulariza-
tion or encapsulation (Murphy and Ryan, 2020). Fur-
thermore, the use of different sets of grammar for GE
could be explored.

A final avenue for future research is to empirically



examine if smaller tree size does offer more user in-
terpretability. It is possible that another metric, such
as the number of variables used or the presence of par-
ticular subtrees, may grant better interpretability and
must be investigated.
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