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Abstract: Real-Time Bidding (RTB) advertising has recently experienced a massive growth in the industry of online
marketing. RTB technologies allow an Ad Exchange (AdX) to conduct online auctions in order to sell tar-
geted ad impressions by soliciting bids from potential buyers, called Demand Side Platforms (DSPs). In the
OpenRTB specifications, which is a well-known open standard protocol for RTB, the AdX sends bid requests
to all DSPs for every auction. This communication protocol is highly inefficient since for each given auction,
only a small fraction of DSPs will actually submit a competitive bid to the AdX. The exchange of bid requests
to uninterested parties waste valuable computation and communication resources. In this paper, we propose to
leverage publish/subscribe to optimize the auction protocol used in RTB. We demonstrate how RTB semantics
can be expressed using content-based subscriptions, which allows for selective dissemination of bid requests
in order to eliminate no-bid responses. We also formulate the problem of minimizing the number of bid re-
sponses per auction, and propose combining top-k scoring with regression analysis with continuous variables
as a heuristic solution to further reduce the number of irrelevant responses. We then adapt our solution by con-
sidering discrete machine learning models for a faster execution. Finally, we evaluate our proposed solutions
against the OpenRTB baseline in terms of end-to-end latency and total paid price over time efficiency.

1 INTRODUCTION

1.1 Context

Real-Time Bidding (RTB) is a type of online adver-
tising that allows websites to sell in real-time an ad
impression to the highest bidder. RTB is a form of
targeted advertising as each advertiser calculates its
bid based on characteristics such as the banner size,
the context of the web page, the user profile, etc.

OpenRTB is a specification of RTB system (IAB,
2016) which proposes open industry standards for
communication between buyers and sellers of ad im-
pressions. It is based on two main components: Ad
Exchange (AdX) and Demand Side Platform (DSP).
AdX is an intermediate agent between sellers and
buyers of ad impressions. The AdX runs an auction
for each ad request and sends corresponding bid re-
quests to all eligible DSPs. Each DSP serves mul-
tiple advertisers, which can ask the DSP to run an
ad campaign for a particular product based on tar-
get audience, predefined budget and campaign dura-
tion (Mullarkey and Hevner, 2015). Upon receipt of
a bid request by the AdX, each DSP calculates the

bid price based on the ad campaigns of its advertis-
ers. The AdX collects bid responses to the auction
and selects the winning DSP accordingly.

1.2 Problematic: Selective Auctioning

In the current OpenRTB specifications, the AdX
broadcasts every bid request to all DSPs and awaits
their bid responses. However, not every bid request
will be of interest to each DSP, which may reply
with a no-bid response (IAB, 2016). Bid responses
with non-competitive bid amounts have no realistic
chance of winning an auction, which adopts the Vick-
rey model (Section 2.3) . Finally, bid responses which
arrive slowly or late will increase the end-to-end la-
tency of the auction or be ignored completely, thereby
degrading the efficiency of the exchange. In light
of these observations, we conclude that OpenRTB
wastes significant resources due to the sending of ir-
relevant bid requests and responses.

The impact of this overhead is characterized by
two factors. First, bid request and bid response data
are exchanged using HTTP in JSON (IAB, 2016),
which is a heavy human-readable format. Second, a
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timeout value (called tmax) is fixed for each auction
by the publisher, which is set to a sufficiently high
value to collect all bid responses, including no-bid re-
sponses.

1.3 Objectives

In this paper, we propose a solution to reduce the com-
munication overhead of RTB by selecting the subset
of DSPs to be contacted for each bid request. We in-
tegrate Publish/Subscribe (Pub/Sub) semantics in the
OpenRTB implementation to allow DSPs to express
their interests as content-based subscriptions (Eugster
et al., 2003). The AdX can then act as a pub/sub bro-
ker and filter DSPs based on their subscriptions, thus
eliminating no-bid responses.

Furthermore, we can reduce the overhead by elim-
inating non-competitive and slow bids from each auc-
tion. We propose an extension which uses top-k fil-
tering and regression analysis (with continuous vari-
ables) to select a subset of DSPs who are likely to
submit competitive bids on time for a given auction.
We then adapt our model in order to substitute contin-
uous regression model with an efficient discrete one.

Since DSPs employ bidding strategies which do
not require a complete history of past auctions, our
solution can safely omit DSPs from the auction with-
out compromising their integrity for future requests.

1.4 Contributions

In this paper, we provide the following contributions:
• We propose a pub/sub solution which maps RTB

semantics, where bid requests are modeled as
publications and DSP interests are expressed as
content-based subscriptions (section 4.1),

• We formulate the problem of minimum bid re-
sponses selection for a RTB auction (section 4.2),

• We leverage top-k filtering on top of pub/sub to
further filter DSPs based on predicted bid prices
and responses time, which are computed using re-
gression analysis (section 4.3),

• We adapt our solution in order to employ discrete
machine learning models, thereby improving the
speed of the top-k filtering (section 5) and finally,

• We implement our approach with OpenRTB and
RabbitMQ and evaluate using the iPinYou dataset
against a known baseline (section 6).

1.5 Paper Plan

We start this paper with the background in section 2
where we present different concepts used in our work.

Publish/Subscribe 

Broker

Figure 1: Publish/subscribe Overview.

In section 3, we survey related works in the literature.
We continue with proposed solution in section 4, then
we propose Discrete Prediction Models in section 5.
We evaluate experimentally our solutions in section 6.
Finally, we conclude in section 7.

2 BACKGROUND

In this section, we present different notions useful
for understanding our work: Publish/Subscribe, Real-
Time Bidding, Vickrey auction and OpenRTB spec-
ifications. We also describe the iPinYou dataset that
we use to conduct our evaluation.

2.1 Publish/Subscribe

Publish/Subscribe system allows data producers (pub-
lishers) to send publications which are delivered to
matching data consumers (subscribers) according to
their interests, expressed as subscriptions.

As Figure 1 shows, (1) each subscriber can ex-
press interest in a particular publication by sending a
subscription to the intermediary service of Pub/Sub.
(2) Once the publisher produces this publication, (3)
it delivers it to its corresponding subscribers.

According to (Eugster et al., 2003), pub/sub sys-
tem is characterized by scalability, a dynamic topol-
ogy and decoupling in terms of space (publishers and
subscribers do not know each other and do not know
who sends or receives or even how many entities par-
ticipating in the interaction), time (no need for in-
teraction at the same time) and synchronization (it is
asynchronous).

Subscription types commonly supported include
topic-based, type-based and content-based (Eugster
et al., 2003). In our work, we use content-based
subscriptions, which are expressed as predicates over
key-value pairs (Canas et al., 2017). For example,
the two following subscriptions SUB1 and SUB2 have
two predicates each:

SUB1 : (x = 3),(y > 4),SUB2 : (x < 0),(y > 3)

A publisher publishes the following publication,
which is only delivered to SUB1, since it satisfies all
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Figure 2: RTB Process Overview.

of its predicates:

PUB : (x = 3),(y = 5)

In Section 4.1, we use the aforementioned model
to express DSP bidding interests as content-based
subscriptions, while bid requests are modeled as
content-based publications, carrying OpenRTB data
as key-value pairs, which can be used to match against
subscriptions by the pub/sub system.

2.2 Real-Time Bidding

Real-Time Bidding (RTB) is a form of online adver-
tising which provides buying and selling of online ad
impressions to a target audience, through real-time
auctions that are conducted while the web page is
loading (e.g., between 200 ms and 300 ms (Kumar,
2017)).

Figure 2 shows the typical RTB process (Yuan
et al., 2014), which starts when advertiser asks a DSP
to run an ad campaign for a product based on budget,
target audience and campaign duration. (1) Once a
user visits a web page, (2) the AdX generates a bid
request for each ad request and (3) sends it to all el-
igible DSPs, which takes into account their clients
interests and user information provided by the Data
Management Platform (DMP), and then calculates bid
prices based on their campaigns, and sends bid re-
sponse contains a bid price or no-bid reason for each
bid request. (4) Then, the AdX collects bid responses
received within a tmax specified by the publisher: all
bid responses sent after this timeout are rejected. Fi-
nally, (5) the AdX determines the outcome of the auc-
tion and chooses the DSP with the best bid price to (6)
display its ad to the publisher who (7) sends it to the
user. The winner pays the second-highest price since
RTB employs Vickrey auction semantics.

In our work, we focus on step (3) by modifying
how the AdX behaves. Instead of broadcasting the bid
request to all DSPs, it will performing a filtering ac-
tion, using publish/subscribe semantics, to selectively
decide which DSPs to solicit a bid response from.

2.3 Vickrey Auction

Vickrey auction is a type of sealed bid auction,
where bidders submit their bids for something with-
out knowing other participants bids. Then, the high-
est bidder wins but pays the second highest-bid, so
it encourages everyone to bid truthly. In a Vickrey
auction, the auctioneer sets a reservation price (Kalra
et al., 2019), which is a minimum price below which
the item is not sold at all.

Theorem 1. Let {b1 .... bn} be a set of bidders and R
the reserve price:

• if ∃ bi > max j=/ i b j⇒ bi is the highest bidder and
pays the second highest price.

• if bi = max j=/ i b j (which means there are two
highest bids) ⇒ the winner is selected randomly
from the highest bidders, or alphabetically or
by checking who submitted their bid first or
according to tie-breaking rule and pays his bid
price.

• if max j=/ ib j ≤ R⇒ the winner pays R.

2.4 OpenRTB Specifications

OpenRTB is a project developed by IAB Technol-
ogy Laboratory to specify open communication pro-
tocols and standards between buyers and sellers of ad
impressions in the context of RTB advertising (IAB,
2016). OpenRTB provides an API with all essential
entities (RTB Exchange and bidder) and interactions
between them (sending bid request, bid response, win
billing and loss notices). The RTB Exchange (AdX)
sends a bid request to the bidder (DSP) with details
about the site, content, user, device, location, etc. The
bidder returns bid response with a bid price if it de-
cides to participate in the auction or no–bid if not. A
possible response to the request is no-bid, which is
accompanied by a reason. After launching auction,
AdX sends win notice to the winner and loss notice
for other bidders.

In this paper, we analyse the different reasons and
identify which ones could be avoided by integrating
a publish/subscribe system to filter out DSPs using
information gathered from the bid requests and bid
responses.
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2.5 iPinYou Dataset

iPinYou dataset is a set of auction, impression, click
and conversion logs extracted from real advertising
campaigns obtained from the iPinYou DSP platform.
To the best of our knowledge, this is the only pub-
licly available dataset containing RTB auctions. The
original objective of the iPinYou dataset is to evaluate
DSP bidding algorithms submitted for a competition
in 2013 (Liao et al., 2014). In this paper, we are only
interested in the auction logs, which contains infor-
mation of bid requests and DSP responses (Zhang and
Zhang, 2014).

As we will see in Section 4.3, our top-k scoring re-
lies of the prediction of bid values and response times,
as described in Section 4.4. In order to enable this pre-
diction, we extract features from the OpenRTB speci-
fications, and train our model using the corresponding
attributes in the iPinYou dataset. Furthermore, since
the accuracy of the model is highly dependent on the
workload, we analyze the iPinYou dataset in detail
and derive the statistical distribution of important at-
tributes (using SAS JMP1). This analysis is used by
our data generator and described further in Section 6.

3 RELATED WORKS

In this section, we survey related works in the litera-
ture, divided into three categories: bidding strategies,
header bidding and publish/subscribe.

3.1 Bidding Strategies

As of today, RTB research remains limited given the
relative size of its market (Yuan et al., 2014). Most
of the research in this area is directed towards the op-
timization of DSP algorithms to calculate bid price.
In (Wang et al., 2016), the authors estimate the proba-
bility of ad clicks and conversions using linear regres-
sion models (logistic regression and Bayesian Probit
regression) and nonlinear models (factorisation ma-
chines, gradient tree models, and deep learning), then
use this metric to optimize bidding. In (Lee et al.,
2013), the authors suggest an algorithm which se-
lect high quality impressions and adjust the bid price
based on historical performance, while spreading the
ad campaign budget optimally across time. The algo-
rithm is based on the estimation of click-through rate
(CTR) and action or conversion rate (AR). In (Zhang
and Zhang, 2014), the authors integrates the concept

1https://www.jmp.com/en_ca/home.html

of budget utilization efficiency in DSP bidding strat-
egy, in order to win as many impressions as possible.
Another method proposed for bidding strategies con-
sists in predicting the winning bid price (Wu et al.,
2015). So, these approaches are complementary to
our own work, as we seek to reduce the communica-
tion overhead of conducting auctions by optimizing
how the AdX selects DSPs. Once selected, the DSPs
may then leverage the aforementioned works to de-
cide its own bid. To the best of our knowledge, the
bidding strategies found in literature do not depend of
previous auctions’ results: DSPs do not use the com-
plete auction history to calculate bid prices. There-
fore, selectively filtering DSPs and omitting them
from certain auctions will not affect the correctness
of the bidding algorithms.

These previous works may potentially reduce the
processing time required by each DSP, and thus al-
low the AdX to set a shorter timeout (tmax). Our work
is complementary to these bidding strategies since it
also selects a subset of DSPs to contact, thereby re-
ducing communication overhead. In addition, we im-
plement some of these bidding strategies in our eval-
uation in order to generate a realistic load for bid re-
sponses (cf. Section 6).

3.2 Header Bidding

Header bidding or pre-bidding is a technique for on-
line advertising that allows publishers to offer an ad
impression to several ad exchanges before launching
a RTB auction. Each AdX proposes a price to the
publisher, who chooses the highest offer and sends the
ad impression to the winning AdX (Qin et al., 2017),
who then internally forwards it to the winning DSP.
This process helps the publishers dynamically choose
the most suitable AdX for each ad impression instead
of committing to reservation contracts with each of
them (Sayedi, 2018).

Header bidding is complementary to our solution:
In order to propose a price, an AdX must conduct an
auction for its own DSPs. Thus, the AdX can employ
our solution to dynamically select the set of DSPs to
contact for such a RTB auction.

3.3 Publish/Subscribe

Several works optimize pub/sub systems such as:
Aggregation: The authors propose grouping publi-
cations within the same time window and sending
a summary to reduce traffic (Jacobsen et al., 2014).
This approach does not work for RTB because bid re-
quests cannot be aggregated.
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Parametric Subscriptions: The solution proposed
allows the pub/sub system to autonomously adapt
to the dynamic interests of the subscribers, alleviat-
ing the need to unsubscribe and resubscribe repeat-
edly (Jayaram et al., 2010). In our approach, the main
bottleneck is the publication traffic, and not the sub-
scription traffic.
Top-k Filtering: Top-k filtering is a commonly used
technique to effectively reduce the volume of publi-
cations to be disseminated by a pub/sub system while
maintaining high data relevance. In (Shraer et al.,
2014), the authors maintain top-k tweets for each so-
cial story at a news website serving high volume of
page views using a publish/subscribe system. The
tweets are ordered based on a content/recency score
function. Top-k subscriptions is defined in (Zhang
et al., 2017) to deliver a publication only to the
k best ranked subscribers using rank-covering for
large-scale applications. Top-k filtering is also used
in (Zhang et al., 2013) to reduce the amount of notifi-
cations sent in social networks. In (Chen et al., 2015),
the authors propose a new solution to handle a large
number of temporal spatial-keyword (TaSK) top-k re-
quests on a geo-text object stream.

In our work, we use top-k as a method to select
the most relevant subscribers for a given publication,
which is close to the model of top-k subscriptions pre-
sented in (Zhang et al., 2013). To the best of our
knowledge, top-k filtering was never used in the con-
text of RTB, and our solution is adapted and opti-
mized specifically according to RTB semantics.

4 PROPOSED SOLUTION

In this section, we first present our new solution which
integrates pub/sub with OpenRTB, in order to elimi-
nate no-bid responses. Then, we investigate how to
further reduce the number of irrelevant bid responses
by formulating the problem definition of minimum
bid responses selection. We show how our pub/sub
solution can be extended using top-k filtering to filter
out bid responses that are too slow or with low values.
Finally, we adapt the top-k solution by replacing the
score prediction component with a discrete machine
learning model.

4.1 Content-based Filtering of DSPs

Sending bid requests to DSPs who respond with a no-
bid message has two major consequences. First, it
generates communication overhead since 2 messages
need to be exchanged between the AdX and the DSP:
the request and the response. Second, the timeout
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Figure 3: Proposed Content-Based Solution for Selective
Auctioning.

value tmax is potentially affected if the DSP is slow
to produce the no-bid response, thus increasing the
end-to-end latency for that bid request.

Our analysis of the OpenRTB specifications, as
well as the iPinYou dataset, reveals that most no-bid
responses are related to the content of the bid request,
such as unsupported device or unmatched user (error
codes 6 and 8). Therefore, our solution allows the
DSPs to expose any constraint on they may have re-
garding these two aspects in the form of a content-
based subscription, thereby filtering DSPs at the AdX
side and eliminating no-bid responses with these error
codes. Our proposed RTB processing model is shown
in Figure 3. This is accomplished by leveraging the
attributes device and user from the OpenRTB speci-
fications. They are also called User-Agent and User-
ProfileIDs in the iPinYou dataset, respectively. Com-
pared to the original model in Figure 2, the following
steps have been modified:

(1a) Prior to receiving auctions, DSPs send to the
AdX (equipped with a publish/subscribe broker) the
following subscription:

Subscription : (device,=,val1),(user,=,val2)

where device is the desired user device (mobile, desk-
top computer, set top box, etc.), and user refers to
characteristics of the target audience (keywords, in-
terests, gender, etc.).

(2) Once a user visits a page web, the Publisher
delivers to the AdX an ad request containing the pub-
lication:

Publication : (device,val1),(user,val2)

(3) For each inbound ad request, AdX generates a
bid request as follows:

Bidrequest : (id,site,device,user)

The AdX matches the bid request publication
against stored subscriptions and forwards it to inter-
ested DSPs, which calculates bid prices based on their
campaigns. DSPs with unmatched subscriptions will
not receive the bid request.
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Note that the publish/subscribe system allows
each DSP to send multiple subscriptions if necessary.
Furthermore, subscriptions can be modified at any
time to reflect updated interests from the DSP.

4.2 Optimal Number of Bid Responses

Now we focus on the problem of filtering DSPs be-
yond those who are not interested. Intuitively, the
AdX should try to obtain a high winning price for
each auction, while waiting just long enough to col-
lect this winning price (which is the second-highest
bid in a Vickrey auction). Reducing auction time
is very important since the longer an auction takes,
the longer resources (e.g., state, RAM) are blocked,
and the more resources are required for achieving
the same throughput which may lead to a bottleneck.
Also, reducing the number of contacted DSPs opti-
mizes the RTB system when it is overloaded with bid
requests. Thus, DSPs with either low bid values or
slow responses should also be filtered by our proposed
solution. We define a general model that capture these
two parameters using a cost model. We formalize
our optimization problem which select a minimum
number of auction responses while keeping a second
best high price (for Vickrey auctions) and a minimum
waiting time, as follows:

Given a set of bid responses BR =
{(b1, t1),(b2, t2), ...,(bn, tn)} where n is the num-
ber of DSPs, ti is response time, bi bid price of DSPi
and BRc is a set of chosen bid responses:

Minimize |BRc|, where BRc ⊆ BR
Subject to U(BRc)≥U(BRd),∀BRd ⊆ BR

U(BRi) = w1× second_price(BRi)+w2× (tmax−
max_time(BRi))

second_price(BRi) = max j 6=ib j, where
bi > max j 6=ib j,∀(bi, ti),(b j, t j) ∈ BRi

max_time(BRi) = max(ti),∀(bi, ti) ∈ BRi
w1 +w2 = 1

In the above formula, U(BR) represents the util-
ity of a subset of bid responses, which is calcu-
lated by factoring in the two objective metrics: paid
price (second-highest price) and auction time (time
of the slowest response received). These two metrics
are normalized using weight parameters w1 and w2,
which can be adjusted depending on the application.
The optimal set of chosen DSP is the one that yield the
greatest utility, among all possible subsets of DSPs in
the system, with the fewest number of DSPs selected.

Given an oracle with perfect knowledge, which
can accurately return the minimum bid responses with
best bid prices and time taken by each DSP prior to
the auction, we can prove that the optimal solution
has always size two:

Theorem 2. The number of chosen DSPs is always 2
(|BRc|= 2).

Proof. (By contradiction) Suppose that the
optimal set of chosen bid responses is
BRc = (bi, ti),(bs, ts),(bw, tw). Thus, |BRc| = 3
and U((bi, ti),(bs, ts),(bw, tw)) is the maximum
among all possible sets of chosen bid responses.

Case 1: Without loss of generality, if bi <
second_price(BRc), then bi < bs < bw and ti ≤max−
time(BRc)⇒ (bi, ti) can be removed without affecting
utility, since it does not contribute to raising the win-
ning price (second highest price), nor can it increase
the response time of remaining DSPs in the set, since
each response time is independent.
Case 2: ∀b,b ≥ second_price(BRc) , then ∃bs and
bw ≥ second_price ⇒ (bi, ti) can be also removed,
since it means at least 2 of the 3 bids have the same
value, so removing one of the three will not affect the
value of the second price. Again, removing a bid can-
not increase the response time of remaining DSPs.

In both cases, U((bi, ti),(bs, ts),(bw, tw)) =
U((bs, ts),(bw, tw)), then |BRc| = |BRc − (bi, ti)| =
2 < 3.

Therefore, our problem can be represented as a se-
lection of 2 bid responses from n elements, where the
utility of the chosen subset is maximal among all sub-
sets of size 2. Thus, it is a combination problem with(n

2

)
. This combination can be solved in quadratic time

O(n2) (Oppen, 1980).

4.3 Top-k Filtering

In the previous section, we demonstrate that the AdX
should optimally select 2 DSPs for every bid request.
In practice, this is not feasible without perfect knowl-
edge of future bid values and response times. There-
fore, we propose the use of top-k filtering as a general
solution to select a subset of DSPs using a fixed size
k, according to a scoring function which models the
utility function of the previous section. In ideal cir-
cumstances, our top-k solution would yield optimal
results if k = 2 and the top-k scoring function corre-
sponds perfectly to the utility function U(BR).

Figure 4 shows our proposed solution with
pub/sub and top-k filtering. For each arriving bid
request b, the AdX compares the subscriptions of n
DSPs to obtain m ≤ n DSPs matching publication b,
and then selecting k≤ m DSPs with the highest score
to participate in the auction.

Figure 5 shows how the top-k filtering works in
details. The performance of each DSP is predicted in
order to calculate their scores. They are then sorted
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in order to select the highest k scores. The score of
a DSPi for a given request b is calculated with the
following formula:

score(DSPi,b) = w1× p(DSPi,b)−w2×won_bids(DSPi)
(1)

with p(DSPi,b) is predicted performance of DSP cal-
culated as follows:

per f (DSPi,b) =
predicted_price(DSPi,b)
predicted_time(DSPi,b)

(2)

The above formula is similar to the theoretical for-
mulation as it jointly considers both metrics of price
and time. To introduce some fairness in the sys-
tem, the score substracts wonBids, which indicates
the number of bids already won by the DSPi. This
reduces the likelihood of a DSP to always be selected
and denying the opportunity for others to bid. Finally,
w1 and w2 are adjustable parameters used to tune the
weight of each component of the score.

4.4 Score Prediction Model

To predict the performance of DSPs for any given
request, we need to estimate the bidding prices and
response times using its historical training data (e.g.,
iPinYou dataset), which consists of past bid requests
(with detailed information about their features) and
the corresponding responses from DSPs, including
their bid prices and response times. We propose the
use of regression analysis to predict price and re-
sponse time as two continuous variables in R≥0.

First, we select features of the iPinYou
dataset to use for regression, using the Filter
method (KAUSHIK, ). We build a correlation matrix
of features found in the iPinYou dataset. Then, we
remove every feature that is highly correlated with
another feature (correlation coefficient |c| > 0,5)
other than bidding price and response time. We obtain
the following remaining features: Timestamp, AdEx-
change, AdSlotHeight, CityID, AdSlotVisibility,
AdSlotFloorPrice and UserProfileIDs.

To predict bid price and response time, we com-
pare three popular regression methods: Linear regres-
sion, Regression tree and K-Nearest Neighbors (for

regression). For each DSP, we apply these algorithms
the dataset and compare the results of each algorithms
using the following metrics (Moayedi et al., 2019):
Mean Absolute Error (MAE): The average of the
differences between the predictions and the actual val-
ues. 0 is a perfect fit.
R2: An indication of goodness of fit of a set of fore-
casts compared to actual values, ranging from 0 to 1.

According to regression metrics results, we note
that linear regression performs the best for the bid
price with MAE '−3.50 and R2 ' 0.88. We also find
that KNN regression works the best for the response
time with MAE ' −6.54 and R2 ' −13.57. There-
fore, we will implement these two techniques in our
evaluation.

5 DISCRETE PREDICTION
MODELS

The proposed top-k solution requires the prediction
of two continuous variables: bid price and response
time. As we will see in the evaluation (Section 6), the
regression analysis is slow to calculate predictions,
which negatively impacts the end-to-end latency of
running each auction. In order to speed up the pre-
diction, we propose the use of discrete models.

The main insight is that the top-k filtering pur-
pose is solely to determine which DSPs to contact in
order to run a profitable and short auction: it does
not need to accurately predict the winning bid or to-
tal time taken for the auction. Therefore, the current
scoring mechanism is calculating more than needed,
which degrades performance. We propose two predic-
tion models using discrete variables: rank-based and
binary selection-based. In order to use these mod-
els, we must adapt the original top-k filtering process,
which will be described in each subsection.

5.1 Rank-based Top-k

This method is based on predicting the rank of each
interested DSP by the current bid request (6) (cf. Fig-
ure 6). First, we use the same historical data as before,
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except we calculate the score of each DSP based on
their bid value and response time, and use the scores
to establish the ranking of the DSPs for each bid re-
quest. Then, we train a linear regression algorithm to
predict the rank of each DSP given the features of the
bid request. Finally, the AdX selects k DSPs with the
highest rank.

5.2 Binary Selection-based Top-k

While the previous solution uses a discrete variable, it
still is performing more work than necessary since it
tries to accurately predict the rank of each DSP. Our
next approach is to classify each DSP in two cate-
gories: “yes” or “no”, answering solely the question
whether a DSP should be contacted or not for a given
RTB auction. We accomplish this using classification
analysis (cf. Figure 7). We tested five types of classi-
fiers: FeedForward, Bayesian, NEAT, PNN and RBF.
We opted to use FeedForward for its superior execu-
tion time compared to others. To train this model, we
use the same dataset, but convert the score into a “yes”
or “no” value based on whether this DSP belongs to
the top-k for an auction or not. Note that this method
does not guarantee top-k results with exactly k DSPs.
Furthermore, the training is done for a specific value
of k chosen in advance.

6 EVALUATION

In this section, we experimentally evaluate our solu-
tions: Pub/Sub, and Top-k against a baseline imple-
mentation of OpenRTB. Our experiments contains a
performance comparison of the three approaches with
respect to auction time and paid price. Then, we con-
duct a sensitivity analysis of the major parameters im-
pacting the solutions.

6.1 Experimental Setup

Implementation: Our work is based on the Open-
RTB 2.0 reference implementation2. We imple-
mented in J2EE our own AdX according to the Open-
RTB API specifications (version 2.5) (IAB, 2016).
We use RabbitMQ using the Header Exchanges as the
pub/sub broker (Ionescu, 2015). Finally, we add the
top-k engine to the AdX and integrate it with Rab-
bitMQ.
Bidding Strategies: We employ 100 DSPs dis-
tributed across three different types of bidding strate-
gies:

2https://github.com/openrtb/openrtb2x

• CONSTANT

• RANDOM

• Below_eCPC: (Zhang and Zhang, 2014) where
the offer price is calculated by multiplying the
maximum of eCPCs (effective cost per click for
each campaign) with the CTR (click-through rate)
predicted for the ad impression.

Default Parameters: We set the selectivity to 70%
of interested DSPs per bid request. Our default top-
k method is the scoring-based one (cf. Section 4.3),
with k = 10.
Workload: By default, we employ the iPinYou
dataset, in particular the logs containing auction data
(bid requests and responses). For the sensitivity anal-
ysis, we developed a dataset generator using iPinYou
datset distributions with adjustable parameters. We
generate 100 bid requests at a time.
Environment: We conduct our evaluation using an
Ubuntu virtual machine version 18.04.3 LTS, with
4096 MB of RAM and 2 GHz CPU.

6.2 Performance Comparison

Using four different metrics, we compare our three
approaches: OpenRTB (baseline), Pub/Sub only, and
Pub/Sub with Top-k.
Number of Messages: Figure 8 shows the number of
bid responses sent by DSPs and the rate of no-bids
responses. Compared to the baseline, the Pub/Sub
and Top-k reduce the total number of messages by
47% and 90%, respectively. In particular, 4696 no-
bid responses are received by the AdX, which are
completely eliminated by both of our solutions. The
top-k solution can further filter out an additional 4304
messages compared to only pub/sub, which are low-
scoring bid responses. Furthermore, the top-k filter-
ing increases stability, since exactly 10 responses are
received for each of the 100 bid requests.
Auction Time: Figure 9a shows the cumulative
distribution function (CDF) for the end-to-end auc-
tion time of bid requests processed by the three ap-
proaches. The auction time is measured from the
moment the AdX receives the bid request from the
publisher to the moment it contacts the winning DSP.
In the OpenRTB baseline implementation, auctions
takes between 1800ms to 3000ms, compared to 800−
2,000ms for pub/sub, and 120− 600ms for top-k.
The median for each solution is 2510ms, 1171ms and
140ms for baseline, pub/sub, and top-k respectively.
Our pub/sub and top-k solutions are therefore able to
reduce the auction time by 50% and 94%. This re-
sult demonstrates that a reduction in the number of
DSPs contacted by the AdX decreases the chance of
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Figure 6: Rank-based Top-K Overview.
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Figure 7: Binary Selection-Based Top-K Overview.

Baseline Pub/Sub Top-k

Figure 8: Baseline Comparison for the Number of Bid Re-
sponses.

encountering a slow DSP (straggler), thereby reduc-
ing the overall time.
Paid Price: Figure 9b shows the CDF for the paid
price using the same bid requests for all three ap-
proaches. Here, the baseline OpenRTB is optimal
since it contacts every DSP every time, guarantee-
ing the maximum price of each auction. The pub/sub
solution also performs optimally, since it only elimi-
nates no-bid responses which no chance of winning.
For the top-k solution, a median loss of 3.61% is in-
curred for two reasons. First, a DSP with high bid
price but slow response time might not be selected
as it will score poorly for top-k. Second, the predic-
tion model used might incorrectly underestimate the
score of a DSP, causing it not to be selected when it
would have impacted the paid price (i.e., submitted a
bid higher than the second highest price).
Efficiency: Figure 9c evaluates the efficiency of the
three solutions. This metric combines the previous
two metrics by dividing the paid price with the auction
time. Since the pub/sub solution yields the same paid
prices as OpenRTB with shorter auction times, its ef-
ficiency is superior with a median of ' 0,19 yuan/ms
against only ' 0,08 yuan/ms, a 2.375 times increase.
However, top-k is even better with a median efficiency
of ' 1.48 yuan/ms, which is 18.5 times better than
the baseline and 7.79 times better than the pub/sub
only solution. Although top-k sacrifices a small loss
in paid prices, its execution time is also substantially
shorter. The trade-off is therefore in favor of the top-k
solution.
Summary: Compared to the baseline, the pub/sub
and top-k approaches reduce the number of messages

by 47% and 90%, and the auction time by 50% and
94%, respectively. The pub/sub only approaches does
not compromise on the paid price, while the top-k ap-
proach suffers a loss of 3.61% in paid prices. How-
ever, this loss is offset by a huge speedup in auction
time, as evidenced by the superior efficiency of the
top-k approach. The top-k approach is therefore desir-
able if the application receives a near-infinite stream
of requests that must be treated efficiently. On the
other hand, if the volume of bid requests is limited,
the pub/sub only approach is desirable in order to ex-
tract the maximum price per auction.

6.3 Sensitivity Analysis

We conduct a sensitivity analysis for our solutions in
order to study the impact of three parameters: selec-
tivity of bid requests, value of k, and choice of predic-
tion model.
Selectivity: Figure 10a shows the impact of varying
the selectivity of DSPs. This parameter controls how
many DSPs are interested in each bid request. We test
3 scenarios: 30%, 50% and 70%. The baseline solu-
tion is unaffected by this parameter, since it contacts
every DSP without considering their interests. The
top-k solution is also insensitive to selectivity: if k is
sufficiently low, the change in sensitivity does not im-
pact the number of DSPs selected, which is always k
per bid request. Finally, the pub/sub only approach
is affected the selectivity: the median are 999ms,
1083ms, and 1171ms for 30%, 50%, and 70%. As
the selectivity increases, the filtering performed by
the pub/sub broker decreases, which reduces the ef-
fectiveness of the solution.
Parameter k: We test 4 different values of k: 2, 4, 8,
and 10. Figure 10b shows the paid price CDF for each
scenario, compared to the optimal price represented
by the OpenRTB baseline. As expected, the paid
price generally decreases when k decreases, since the
margin of error becomes narrower for the prediction
model to correctly identify the ideal DSPs for the auc-
tion. However, the difference is not substantial, with
a median loss of 4.1% for k = 2 compared to 3.61%
for k = 10. This indicates that the regression model
used is highly accurate.
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(a) Auction Time. (b) Paid Price. (c) Efficiency.

Figure 9: Baseline Comparison between OpenRTB, Pub/Sub, and Scoring-Based Top-K.

(a) Selectivity vs. Auction Time. (b) k vs. Paid Price. (c) k vs. Auction Time.

Figure 10: Sensitivity Analysis of the Scoring-Based Top-K Solution.
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Figure 11: Comparison of Top-K Solutions.

For the auction time, Figure 10c shows that a notice-
able improvement can be achieved by reducing the
value of k. The median value for k = 2 is 32ms com-
pared to 140ms to k = 10.
Prediction Models: We compare our three predic-
tion models: scoring-based, rank-based, and binary
selection-based, with two baselines: history-based
(average of past auctions) and random k (choose k
DSPs at random).

Figure 12a shows the CDF for paid prices. Both
baselines (history and random) are clearly inferior to
our proposed solution, with intervals of 120− 340
yuan and 100− 310 yuan. One notable exception is
the rank-based one, which obtained poor prices for
20% of the auctions and thus has a wide interval of
100-390 yuan. On the other hand, the paid prices for
scoring-based and binary selection-based are in the
range of 180−390 yuan, which is near optimal to the
OpenRTB baseline.

Figure 12b shows the CDF for auction time.
Random-k and history-based have an interval range
of 40− 300ms and 70− 450ms. The scoring-based
model is the heaviest to compute, with an interval of
100− 600ms. The rank-based model has an interval
of 40− 330ms and the binary selection-based top-k
outperforms all others with an interval of 40−220ms.

We compare also the efficiency (paid price/auction
time) in Figure 12c which clearly demonstrates that
the binary selection-based is the most efficient model
with a range of 0.9− 5 yuan/ms compared to other
models that are almost in the same interval 0.5− 4
yuan/ms.

Since the binary selection-based model does not
guaranteed a fixed k per bid request, we also measure
the variation in the size of the sets returned in Fig-
ure 11a. The results show that the set vary between
3 to 11 DSPs selected. For rank-based and scoring-
based, the results confirm that the number of DSPs
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(a) Top-K Model vs. Paid Price. (b) Top-K Model vs. Auction Time. (c) Top-K Model vs. Efficiency.

Figure 12: Comparison of Top-K Models.

Table 1: Summary of Top-k Filtering Solutions.

Top-K Models Advantages Disadvantages
Scoring-based Near-optimal prices; flexible choice of k Poor execution time; loss of efficiency

Rank-based Flexible choice of k Uneven performance
Binary selection-based Best execution time and efficiency Variable size of results; the value of k is

fixed during training

selected is always k (10).
Figure 11b shows a decomposition of the end-to-

end latency into three parts: pub/sub filtering, top-k
ranking, and the routing. The main difference be-
tween our various solutions is the time taken to run
the top-k model: it is almost 12%, 0.3% and 1%
of the overall time in scoring, rank-based and binary
selection-based models respectively. This result con-
firms that the regression analysis used by the scoring-
based solution is slow due to its usage of continuous
variables. The rank-based and binary selection-based
models have similar top-k processing times since they
are both discrete. While the rank-based model is
slightly faster in regards to the top-k processing time
than the binary selection-based one, the overall auc-
tion time is better with the latter (as seen in Fig-
ure 12b), because it contacts fewer DSPs on average
(see Figure11a) which reduces the routing time.
Summary: When compared to the baseline and the
pub/sub solution, the top-k solution stands out as be-
ing the most reliable, since it is not sensitive to the
selectivity of the bid requests. For the scoring-based
solution, k can be set to a surprisingly low number
(as low as 2), with little loss of price and substan-
tial speedup in auction time. When comparing pre-
diction models for top-k solutions, each of three pro-
posed approaches have advantages and disadvantages,
as highlighted in Table 1. For maximum efficiency,
the binary-based selection model stands out as it is
noticeably faster with minimal price loss, with the
drawback of returning uneven-sized results and being
inflexible. The scoring-based model has the worst ef-
ficiency, but can obtain better prices than other solu-
tions. The rank-based solution is a compromise be-
tween the two, as it has average efficiency and retains

flexibility. However, it suffers from uneven perfor-
mance for a minority of requests (20%).

7 CONCLUSIONS

The current standard for real-time bidding (RTB)
broadcasts bid requests to all DSP bidders, which gen-
erates massive communication and computation over-
head. We propose the use of publish/subscribe to ex-
press the interests of DSP bidders as content-based
subscriptions, in order to eliminate no-bid responses
through auctioning with selected DSPs only.

Furthermore, we explore how to further reduce the
number of DSPs contacted by avoiding bids with low
prices or slow response times. We formulate the prob-
lem of optimal number of bid responses, and demon-
strate how top-k filtering can be used to address this
problem in a online setting. Top-k filtering relies
on a prediction model in order to guess which DSPs
should participate in which auction. Our scoring-
based model uses regression analysis with continuous
variables, while our rank-based and binary selection-
based models both employ discrete analysis.

Our evaluation confirms the effectiveness of our
approach in reducing the number of messages re-
quired and the auction time, while maintaining opti-
mal or near-optimal winning prices. Our most effec-
tive solution is the OpenRTB implementation using
Pub/Sub with a binary selection-based top-k filtering
mechanism.

For our future work, we wish to test the applica-
bility of our approach across a wider range of datasets
beyond iPinYou, and to implement more sophisticated
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bidding strategies which could challenge the accuracy
of our prediction models. We will also investigate
making our solution self-adaptive, tuning its param-
eters (e.g., value of k) by monitoring the current con-
ditions.
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