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Abstract: Gaussian Process Models (GPMs) are widely regarded as a prominent tool for learning statistical data models
that enable timeseries interpolation, regression, and classification. These models are frequently instantiated
by a Gaussian Process with a zero-mean function and a radial basis covariance function. While these default
instantiations yield acceptable analytical quality in terms of model accuracy, GPM retrieval algorithms au-
tomatically search for an application-specific model fitting a particular dataset. State-of-the-art methods for
automatic retrieval of GPMs are searching the space of possible models in a rather intricate way and thus
result in super-quadratic computation time complexity for model selection and evaluation. Since these proper-
ties only enable processing small datasets with low statistical versatility, we propose the Timeseries Automatic
GPM Retrieval (TAGR) algorithm for efficient retrieval of large-scale GPMs. The resulting model is composed
of independent statistical representations for non-overlapping segments of the given data and reduces compu-
tation time by orders of magnitude. Our performance analysis indicates that our proposal is able to outperform
state-of-the-art algorithms for automatic GPM retrieval with respect to the qualities of efficiency, scalability,
and accuracy.

1 INTRODUCTION

Applying Gaussian Process Models (GPMs) for inter-
polation (Roberts et al., 2013; Li and Marlin, 2016),
regression (Titsias, 2009; Duvenaud et al., 2013), and
classification (Li and Marlin, 2016; Hensman et al.,
2013) of timeseries necessitates to instantiate the un-
derlying Gaussian Process by a covariance function
and a mean function. While the latter is typically in-
stantiated by a constant, zero-mean function, the co-
variance function is modelled either by (i) a general-
purpose kernel (Wilson and Adams, 2013), (ii) a
domain-specific kernel that is individually tailored to
a specific application by a domain expert (Wilson and
Adams, 2013; Abrahamsen and Petter, 1997; Ras-
mussen and Williams, 2006), or (iii) a composite ker-
nel that is computed automatically by means of a
GPM retrieval process (Duvenaud et al., 2013; Lloyd
et al., 2014) in order to decompose the statistical
characteristics underlying the data into multiple sub-
models. Although the first option (i) produces GPMs
of sufficiently high model accuracy, both (ii) and (iii)
encapsulate data’s peculiarities and versatilities in a

more detailed manner. Making use of domain-specific
kernels requires laborious fine-tuning and extensive
expert knowledge. Employing an automatic, domain-
agnostic GPM retrieval process on the other hand pro-
duces expressive composite kernels without requiring
any human interference.

State-of-the-art automatic GPM retrieval algo-
rithms, such as Compositional Kernel Search (CKS)
(Duvenaud et al., 2013), Automatic Bayesian Covari-
ance Discovery (ABCD) (Lloyd et al., 2014; Stein-
ruecken et al., 2019) and Scalable Kernel Compo-
sition (SKC) (Kim and Teh, 2018), apply an open-
ended greedy search in the space of all feasible com-
posite covariance functions in order to determine an
optimal, e.g. in terms of maximum likelihood, in-
stantiation of the underlying Gaussian Process. The
resulting inextricable GPM needs to account for all
different kinds of statistical peculiarities of the un-
derlying data and thus lacks expressiveness especially
with regards to local phenomena. Additionally, evalu-
ating a GPM by usual measures such as the likelihood
(Malkomes et al., 2016) function entails calculations
of cubic computation time complexity, which limits

Berns, F. and Beecks, C.
Large-scale Retrieval of Bayesian Machine Learning Models for Time Series Data via Gaussian Processes.
DOI: 10.5220/0010109700710080
In Proceedings of the 12th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2020) - Volume 1: KDIR, pages 71-80
ISBN: 978-989-758-474-9
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

71



the application of GPM retrieval algorithms to small-
to-moderate data collections (Kim and Teh, 2018).

In this paper, we aim to overcome the perfor-
mance limitations of state-of-the-art GPM retrieval al-
gorithms and propose the Timeseries Automatic GPM
Retrieval (TAGR) algorithm for large-scale statistical
data modeling based on Gaussian Processes. We aim
to limit the algorithm’s overall complexity by concur-
rently initiating multiple kernel searches on dynami-
cally partitioned data (cf. Berns and Beecks, 2020b,a;
Berns et al., 2019). In this way, TAGR describes
large-scale datasets by means of a concatenation of
independent sub-models. Our approach is able to out-
perform existing kernel search methods in terms of
expressiveness, while reducing execution time by a
factor of up to 500.

The paper is structured as follows. Section 2
presents related work and background information.
Section 3 introduces large-scale GPMs, while Section
4 proposes the corresponding TAGR algorithm. Its
performance and explanatory capacity are evaluated
in Section 5. We conclude our paper with an outlook
on future work in Section 6.

2 BACKGROUND AND RELATED
WORK

2.1 Gaussian Process

A Gaussian Process (Rasmussen and Williams,
2006) is a stochastic process over random variables
{ f (x) | x ∈ X }, indexed by a set X , where every sub-
set of random variables follows a multivariate normal
distribution. The distribution of a Gaussian Process is
the joint distribution of all of these random variables
and it is thus a probability distribution over the space
of functions { f | f : X → R}. A Gaussian Process is
formalized as follows:

f (·)∼ GP
(
m(·),k(·, ·)

)
(1)

where the mean function m : X → R and the co-
variance function k : X ×X → R are defined ∀x ∈ X
as follows:

m(x) = E [ f (x)] (2)

k(x,x′) = E
[
( f (x)−m(x)) ·

(
f (x′)−m(x′)

)]
(3)

Given a finite dataset D = {X ,Y} with X =
{xi | xi ∈ X ∧ 1 ≤ i ≤ n} representing the underlying
input data (such as timestamps) and Y = { f (xi) | xi ∈
X } representing the target data values, such as sen-
sor values or other complex measurements, the mean

and covariance functions are determined by maxi-
mizing the log marginal likelihood (Rasmussen and
Williams, 2006) of the Gaussian Process, which is de-
fined as follows:

L(m,k,θ | D) =−1
2
·
[
(y−µ)T K−1(y−µ)+

logdet(K)+n log(2π)] (4)

As can be seen in Equation 4, the marginaliza-
tion of a Gaussian Process for a given dataset D of
n records results in a finite data vector y ∈Rn, a mean
vector µ ∈ Rn, and a covariance matrix K ∈ Rn×n

which are defined as y[i] = f (xi), µ[i] = m(xi), and
K[i, j] = k(xi,x j) for 1≤ i, j≤ n, respectively. We use
the short-hand notation GP

θ
to denote a GPM whose

underlying mean function m and covariance function
k are parameterized via hyperparameters θ (cf. Cheng
and Boots, 2017; Csató and Opper, 2000).

While the covariance function is frequently used
as major data modeling entity it often lacks in de-
scribing individual statistical behaviors in a structured
way. To this end, Duvenaud et al. (2013) propose
to approximate and structure the covariance function
via multiple compositional kernel expressions in or-
der to obtain the resulting compositional kernel-based
covariance function. The corresponding algorithms
for automatically retrieving a GPM given an arbitrary
dataset D are summarized in the following section.

2.2 Retrieval Algorithms

GPM retrieval algorithms, such as CKS (Duvenaud
et al., 2013), ABCD (Lloyd et al., 2014; Steinruecken
et al., 2019), and SKC (Kim and Teh, 2018), aim to
discover the statistical structure of a dataset D by de-
termining an optimal covariance function k1. For this
purpose, the mean function of the Gaussian Process
is commonly instantiated by a constant zero function
(Duvenaud et al., 2013; Rasmussen and Williams,
2006), so as to correspond to an additional data nor-
malization step. The covariance function is algorith-
mically composed via operators implementing addi-
tion and multiplication among different (composed)
base kernels b ∈ B . Prominent base kernels include
the linear kernel, radial basis function kernel, and pe-
riodic kernel, which are able to capture for instance
smooth, jagged, and periodic behavior (Duvenaud
et al., 2013).

The algorithms mentioned above apply an open-
ended, greedy search in the space of all feasible ker-
nel combinations in order to progressively compute a
GPM fitting the entire dataset D, respectively Y ∈ D.

1In (Berns and Beecks, 2020a), we detail the problem
and definition of automatic GPM retrieval.
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The CKS algorithm (Duvenaud et al., 2013) follows
a simple iterative procedure, called Basic Kernel Ex-
pansion Strategy (BES), which aims to improve the
best kernel expressions k retrieved in one iteration
over the course of the next one. Therefore, this strat-
egy produces a set of candidate kernel expressions Ck
based on k (Duvenaud et al., 2013):

Ck = {k�b | b ∈ B ∧� ∈ {+,×}} (5)

Starting with a set of base kernels B , the candi-
dates of every following iteration are generated via
expanding upon the best candidate of the previous it-
eration. Moreover, a new candidate is also generated
for every replacement of a base kernel b with another
one b′. ABCD extends that grammar with regards to
a sigmoid change point operator | , in order to locally
restrict the effect of kernel expressions (Lloyd et al.,
2014; Steinruecken et al., 2019):

Ck = {k�b | b ∈ B ∧� ∈ {+,×, | }} (6)

The performance of those given automatic GPM
retrieval algorithms is impeded by two major bottle-
necks. Evaluating every expansion of every subex-
pression poses one of these bottlenecks. Thus, reduc-
ing the set of candidates per iteration in order to cover
just the most promising candidates improves on the
performance of the respective algorithms, presumably
without affecting model quality. Moreover, assess-
ing model quality in terms of log marginal likelihood
epitomizes another bottleneck of current algorithms,
which is intrinsic to the framework of Gaussian Pro-
cesses itself (Hensman et al., 2013). The cubic run-
time complexity of that basic measure inhibits analy-
sis of large-scale datasets (cf. Kim and Teh, 2018).

Kim and Teh (2018) present SKC as a way to
overcome at least the latter one of those bottlenecks.
The algorithm improves the efficiency of the ker-
nel search process by accelerating CKS using the
Nyström method (cf. Williams and Seeger, 2000) for
global approximations (Kim and Teh, 2018). This
low-rank matrix approximations constructs an ap-
proximate covariance matrix by means of a small sub-
set of the given data (cf. Gittens and Mahoney, 2016)
and allows to retrieve GPMs for datasets of up to
100,000 records in a reasonable amount of time ac-
cording to Kim and Teh (2018).

To summarize, state-of-the-art GPM retrieval al-
gorithms are not suited for the analysis of large-scale
datasets beyond 100,000 records due to their cubic
computation time complexity as well as due to their
large candidate sets, which need to be evaluated dur-
ing the search procedure (cf. Kim and Teh, 2018).

3 LARGE-SCALE GAUSSIAN
PROCESS MODELS

In this section, we propose the structural design of
large-scale GPMs. It is designed to reduce computa-
tional complexity of GPM evaluations as well as to
mitigate the amount of kernel expression candidates,
which need to be evaluated as part of the respective re-
trieval algorithm. Since these two issues are the main
bottlenecks of current GPM retrieval algorithms, re-
spective solution strategies are separately covered in
the following two subsections.

3.1 Reduction of Computational
Complexity

Liu et al. (2020) as well as Rivera and Burnaev
(2017) highlight local approximations as a key pos-
sibility to reduce complexity of common GPM eval-
uations based on likelihood measures. Instead of in-
fering an approximate GPM based on a data subset
(cf. global approximations), they construct a holis-
tic GPM from locally-specialized models trained on
non-overlapping segments of the data. Thus, the co-
variance matrix of the holistic GPM is composed of
the respective matrices of its local sub-models (Liu
et al., 2020). This divide-&-conquer approach accel-
erates calculation of log marginal likelihood, since the
resulting covariance matrix is a block diagonal matrix
(Rivera and Burnaev, 2017), whose inverse and deter-
minant can be computed efficiently (Park and Apley,
2018). Rivera and Burnaev (2017) emphasize that lo-
cal approximations allow to ”model rapidly-varying
functions with small correlations” in contrast to low-
rank matrix approximations.

Embedding the concept of local approximations
into GPM retrieval algorithms requires a globally
partitioning covariance function. While in principle
change point operators facilitate a global data par-
titioning, their nature of fading kernel expressions
into one another (Lloyd et al., 2014; Steinruecken
et al., 2019) does neither produce clear boundaries be-
tween sub-models nor enables independence of these
models. Therefore, we adapt the given notion of a
change point operator to utilize indicator functions
(Iliev et al., 2017) instead of sigmoid functions (cf.
Steinruecken et al., 2019) to separate kernel expres-
sions. This leads us to the definition of a parti-
tioning covariance function K for large-scale GPMs
GP

θ
(0,K ):

K (x,x′ | {kb}m
b=1,{τb}m

b=0) =
m

∑
b=1

kb(x,x′) ·1{τb−1<x≤τb}(x) ·1{τb−1<x′≤τb}(x
′) (7)
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The parameter m ∈ N defines the number of sub-
models kb : X ×X →R, where each sub-model kb can
be thought of as a local covariance function model-
ing the restricted domain [τb−1,τb] ⊆ X . In this way,
each sub-model kb is only responsible for a certain
coherent fraction of the data, which is delimited by
the change points τb−1 and τb. The specific change
points τ0 = x1 and τm = xn denote the start and end of
the data set D. The usage of indicator functions (thus
having disjoint data segments) produces a block diag-
onal covariance matrix (cf. Low et al., 2015), which
facilitates independently searching the most likely lo-
cal kernel expression (i.e. sub-model) per data seg-
ment.

In order to mathematically show the implication
of aforementioned independence, we have to inves-
tigate the internal structure of the corresponding log
marginal likelihood function L(m,k,θ | D). To this
end, we assume the inherent covariance matrix K ∈
Rn×n (cf. Equation 4) to be a block diagonal matrix.
That is, it holds that K = diag(K1, ...,Km), where each
matrix Kb ∈ Rnb×nb for 1≤ b≤ m is of individual ar-
bitrary size nb ∈ N such that ∑b nb = n. Furthermore,
let (I1, ..., Im) denote the partitioning of index set
{1, ...,n} ⊆N according to the given blocks, i.e. for a
submatrix of K over index set Ib the following holds:
KIb,Ib = Kb∀b ∈ [1,m]. Given this notation, one can
show (i) that the quadratic form (y− µ)T K−1(y− µ)
of the log marginal likelihood function L(m,k,θ | D)

is equivalent to ∑
m
b=1 (ỹb− µ̃b)

T K−1
b (ỹb− µ̃b), where

ỹb = (yi)i∈Ib ∈ Rnb and µ̃b = (µi)i∈Ib ∈ Rnb are de-
fined according to the block diagonal structure and
(ii) that the logarithmic determinant can be decom-
posed as follows: logdet(K) = log∏

m
b=1 det(Kb) =

∑
m
b=1 logdet(Kb). By making use of the aforemen-

tioned algebraic simplifications, we can simplify the
calculation of the log marginal likelihood function as
shown below:

L(m,k,θ | D)

=− 1
2
·
[
(y−µ)T K−1(y−µ)+ logdet(K)+n log(2π)

]
=− 1

2
·

[
m

∑
b=1

(ỹb− µ̃b)
T K−1

b (ỹb− µ̃b)

+
n

∑
b=1

logdet(Kb)+
m

∑
b=1

nb · log(2π)

]

=
m

∑
b=1
−1

2
·
[
(ỹb− µ̃b)

T K−1
b (ỹb− µ̃b)

+ logdet(Kb)+nb log(2π)
]

=
m

∑
b=1

L(m,kb,θ | Db)

(8)

As shown above, the equivalence L(m,k,θ | D) =
∑

m
b=1 L(m,kb,θ | Db) affects the computation of a

large-scale GPM by means of K for a given data
set D and its non-overlapping partitions Db. Instead
of jointly optimizing a holistic statistical model fit-
ting the entire data set D, we are able to indepen-
dently optimize individual sub-models kb. This will
not only increase the expressiveness of the overall
GPM, but also reduce the computation time required
for calculating such a model. Moreover, by splitting a
GPM into smaller parts, we enable a large-scale GPM
to be computed by means of the divide-&-conquer
paradigm. Before we investigate the proposed algo-
rithmic solution, we continue with describing strate-
gies for efficiently reducing the size of candidate sets
for sub-models kb.

3.2 Expansion Strategies

In contrast to the previous section, where we have
shown how to reduce the complexity of evaluating a
single GPM via a divide-&-conquer-based approach,
we investigate measures to reduce the amount of
to-be-evaluated candidates per sub-model covariance
function kb in the remainder of this section. Equation
5 and 6 illustrate the state-of-the-art strategy used by
CKS (Duvenaud et al., 2013), SKC (Kim and Teh,
2018) and ABCD (Lloyd et al., 2014). While this
strategy allows to exhaustively search the space of
possible kernel expressions for the most appropriate
one, it entails to evaluate a lot of inferior candidates
as a by-product. Since the sub-models kb of K (cf.
Equation 7) are designed to represent independent and
inseparable behavioral patterns, introducing further
change points on that layer of the covariance function
would contradict the atomicity assumption of every
sub-model kb. Furthermore, by focusing on compos-
ite covariance functions which are only derived by ad-
ditions and multiplications of base kernels, the num-
ber of candidate models can be further reduced.

Although state-of-the-art algorithms consider
every possible kernel expansion regardless of their
structure up to a certain depth (cf. Subsection
2.2), they retroactively enforce a hierarchy, i.e., the
so-called Sum-of-Products (SoP) hierarchy (Duve-
naud et al., 2013) (cf. Equation 9), among additive
operators and multiplicative operators. Thus, these
algorithms structure the resulting kernel expressions
in order to foster comprehensibility in hindsight. We
incorporate that SoP hierarchy into our kernel expan-
sion strategy to prohibit functionally redundant com-
posite kernel expressions, which result from different
expressions producing the same SoP form, and define
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the set of SoP kernel expressions S as follows:

S =

{
s

∑
i=1

p

∏
j=1

bi j |bi j ∈ B

}
(9)

Based on the mathematically formalization of the
SoP form given in the equation above, we propose the
new SoP Kernel Expansion Strategy (SES) by means
of the following candidate set:

Ck = {k�b |b ∈ B ∧� ∈ {+,×}∧ (k�b) ∈ S}
(10)

This candidate set ensures, that the resulting ker-
nel expression complies with the SoP form. As with
state-of-the-art algorithms, base kernels are consid-
ered as initial candidates of this strategy.

Orthogonal to the described improvement on ker-
nel expansion strategies, we assess the tactic of base
kernel replacement as ineffectual from a theoreti-
cal perspective, as it contradicts the greedy search
(Resende and Ribeiro, 2016) propagated by authors
of state-of-the-art methods (cf. Steinruecken et al.,
2019). Therefore, we will separately analyze the ef-
fects of this replacement tactic on GPM retrieval in
Section 5.

To sum up, our structural design for large-scale
GPMs encompasses two solutions for the major bot-
tlenecks of GPM structures used by current state-of-
the-art algorithms. On the one hand, local approxi-
mations by means of an indicator change point opera-
tor reduce computational complexity by partitioning
a GPM into several locally-specialized sub-models.
On the other hand, reducing the amount of candidate
covariance functions per sub-model kb by employ-
ing SES mitigates evaluative calculations for inferior
models.

4 AUTOMATIC GPM RETRIEVAL

In this section, we propose the Timeseries Automatic
GPM Retrieval (TAGR) algorithm for efficient re-
trieval of large-scale GPMs. To this end, we make use
of the efficiency improvements, i.e. locally approxi-
mated covariance function and SoP Kernel Expansion
Strategy (SES), described in the previous section.

In order to limit the algorithm’s overall com-
plexity and to increase model locality, i.e. to cap-
ture and describe local evolving patterns underlying
the data, the TAGR algorithm initiates multiple lo-
cal kernel searches on dynamically partitioned data.
Subsequently, TAGR concatenates the resulting sub-
models, i.e. each independent composite kernel-
based covariance function kb, into a joint large-scale

GPM by means of K (cf. Equation 7) and a zero-
mean function.

Prior to the computation of these independent sub-
models, a global partitioning needs to be determined.
As the field of change point detection mechanisms
for partitioning a dataset via their target values y ∈
Y (Truong et al., 2020; Aminikhanghahi and Cook,
2017) is a well researched domain, we assume the
set of change points T to be one of the parameters
of TAGR. Besides T , the given dataset D = {X ,Y}
(cf. Subsection 2.1) and complexity parameter cmax,
restricting sub-model size, are given as parameters.

Algorithm 1 illustrates the TAGR algorithm.
Without loss of generality we initiate the sub-models
kb ∈ K for every data partition Db bounded by change
points τb−1 and τb via a white noise kernel kWN . The
set I encompasses the indices of all non-final sub-
models kb ∈ K. The following while-loop is executed
until this set of indices is empty. During every iter-
ation the segment Ki with the lowest model quality
by means of log marginal likelihood L is selected,
candidate kernel expressions CKi for that segment are
found using the predefined kernel expansion strategy
and the best performing kernel expression k? is deter-
mined. If that kernel expression k? reaches maximum
complexity cmax in terms of number of involved base
kernels or is equal to the previous best expression Ki,
it is considered final and thus removed from I . Fi-
nally, a GPM utilizing a K -based concatenation of
sub-models kb ∈ K and zero-mean is returned.

Algorithm 1: Timeseries Automatic GPM Retrieval.

function (D, cmax, T )
K = {kWN}

|T |
i=1

I = {i}|T |i=1
while |I |> 0 do

i = argmini∈I L(0,Ki,θ |Di)
k? = argmaxk∈CKi

L(0,k,θ |Di)

if k? = Ki∨ c(k?)≥ cmax then
I = I \ i

Ki = k?

return GP
θ
(0,K (·, ·|K,T ))

Since the given algorithm is designed to enable
large-scale applications of GPM retrieval, it may be
accelerated by optimizing multiple segments in paral-
lel. The practical capabilities of the TAGR algorithm,
both in an unparallelized as well as in a parallelized
manner, are evaluated in the following chapter. Al-
though we do not explicitly name that opportunity in
Algorithm 1, a preliminary GPM K may be returned
after every iteration of the while-loop making the al-
gorithm anytime capable.
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Table 1: Used Benchmark Datasets.

Dataset Name Size Dim.
1 Airline 144 2
2 Solar Irradiance 391 2
3 Mauna Loa 702 2
4 SML (Zamora-Martı́nez et al., 2014) 4,137 242

5 Power Plant (Tüfekci, 2014) 9,568 53

6 GEFCOM (Hong et al., 2014) 38,064 214

7 Jena Weather (Max Planck Institute for Biogeochemistry, 2019) 420,551 155

8 Household Energy (Hebrail and Berard, 2012) 2,075,259 96

5 EVALUATION

In this section, we investigate the performance of the
proposed TAGR algorithm in terms of efficiency and
accuracy. At first we are solely evaluating TAGR for
different configurations of complexity parameter cmax
and different kernel expansion strategies (cf. Sec-
tion 3.2) to investigate, how they affect model qual-
ity and runtime (cf. Section 5.2). Based on the
empirically proven best parameter configuration, we
compare the TAGR algorithm against the state-of-
the-art algorithms CKS, SKC and ABCD (cf. Sec-
tion 5.3). They serve as a baseline to assess effi-
ciency and accuracy of our proposed algorithm. Fi-
nally, TAGR’s scalability and runtime performance
on large-scale datasets is demonstrated in Section 5.4,
where we omit the evaluation of ABCD, SKC and
CKS due to their computation time complexity (Ras-
mussen and Williams, 2006), which impedes analyz-
ing larger datasets (Kim and Teh, 2018) (cf. Table 2).

5.1 Setup of Experiments

In order to ensure comparability with existing and
prospective algorithms, we base our experiments on
publicly available datasets, which were also used by

2Dimension ”Carbon dioxide in ppm (room)” was used
as target Y .

3Dimension ”electrical power output (PE )” was used as
target Y .

4We chose one of the 20 utility zones (i.e. the first one)
as the informational content among zones may be consid-
ered equivalent Hong et al. (2014). Our thorough empirical
analysis indicated, that selecting this attribute over the other
zones hardly affected the results.

5Dimension ”Air Temperature” was used as target Y .
We are using the recognized intervall of this continuously
gathered dataset from 2009-01-01 to 2016-12-31 (cf. Chol-
let, 2018)

6Dimension ”Global active power” was used as target
Y .

4.2 4.4 4.6

·10−2

PELT

WindowBased
BottomUp

Binary

Model Error - MSE

460 480 500

Runtime - seconds

Figure 1: Impact of partitioning methods on average run-
time and average model error of the TAGR algorithm.

Duvenaud et al. (2013) and Lloyd et al. (2014) in
their papers proposing CKS and ABCD (datasets 1,
2, 3 in Table 1). Kim and Teh (2018) note that
datasets larger than a few thousand points are ”far
beyond the scope of [...] GP optimisation in CKS”
and consequently beyond the scope of ABCD as well.
Therefore, datasets 1 - 3 are rather small. Espe-
cially for scalability analysis, we include five addi-
tional datasets (datasets 4-8 in Table 1).

As we focus on time series data in this paper and
both algorithms CKS and ABCD have been evalu-
ated for strictly one-dimensional input X ⊆R and out-
put data Y ⊆ R (Duvenaud et al., 2013; Lloyd et al.,
2014), we will design our evaluation procedure ac-
cordingly.

In order to reflect practical circumstances, all ex-
periments are executed on a 2019 Dell Laptop hav-
ing a 1.9 GHz CPU (4 cores / 8 threads) with 16
GB of RAM. All algorithms were implemented using
Python 3 and Tensorflow 2 (no GPU acceleration en-
abled). Since Duvenaud et al. (2013) and Lloyd et al.
(2014) used L just for optimizing models and Mean
Squared Error (MSE) for assessing model quality, we
will adopt that procedure as well. For every evalua-
tion, MSE reflects the five-fold cross-validated model
error.
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Figure 2: Impact of kernel expansion strategy on average
runtime and average model error of the TAGR algorithm.
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Figure 3: Impact of complexity parameter cmax on average
runtime and average model error of the TAGR algorithm.

5.2 TAGR Configurations

In this first series of experiments, we evaluate the
influence of various change point detection mecha-
nisms to determine T , model complexity parameter
cmax ∈ [1,2,3,4] and different kernel expansion strate-
gies (i.e. BES and SES) on both efficiency of the com-
putation, measured by runtime in seconds, and qual-
ity of the statistical model by MSE. We executed the
TAGR algorithm with all possible parameter configu-
rations on the datasets mentioned above (cf. Table 1).
All experiments of the first series execute the TAGR
algorithm in a non-parallel way. The results are sum-
marized in Figures 2 and 3.

At first, we evaluate, which standard change
point detection mechanism (cf. Truong et al., 2020;
Aminikhanghahi and Cook, 2017) to use in order to
determine the set of change points T as one of the
parameters of TAGR. To do so, we compare the four
mechanisms put forward by Truong et al. (2020) con-
sidering runtime performance and model error for ex-
ecuting TAGR utilizing the resulting change points.
Figure 1 illustrates the given performance indicators
averaged over all benchmark datasets and given pa-
rameter configurations of kernel expansion strategy
and complexity cmax. Since Binary Segmentation of-
fers one of the lowest average model error and bene-
fits runtime the most, we choose this mean of change
point detection for further use of TAGR.

Figure 2 shows, how different kernel expansion
strategies impact average model error and average
runtime performance of the TAGR algorithm. In gen-
eral, BES is outperformed by SES and not using the
replacement tactic further improves on both of these
strategies. For most of the retrieved GPMs per bench-
mark dataset, the replacement tactic does not change
the resulting model and only increases runtime by in-
creasing the amount of candidate models. Still, some
GPM retrievals are negatively affected by employing
that tactic.

In addition to the different kernel expansion strate-
gies, we evaluated the complexity parameter cmax.
While model error assessed by MSE is positively in-
fluenced by increasing complexity parameter cmax,
the opposite holds true for runtime performance (cf.
Figure 3). Due to these results, we choose SES
and a model complexity of cmax = 4 as default pa-
rameter configuration for the comparison of the pro-
posed TAGR algorithm with existing state-of-the-art
approaches. The chosen TAGR configuration does
not include the replacement tactic.

5.3 Comparison with State of the Art

In the second series of experiments, we compare the
performance in terms of model quality and runtime
of the TAGR algorithm to state-of-the-art algorithms.
In order to prevent interferences between paralleliz-
ability features and bare algorithmic qualities among
the evaluated competitors, all experiments of the sec-
ond series are executed in a non-parallel way. The
runtimes are summarized in Figure 4, while the cor-
responding detailed results are listed in Table 2.

As can be seen in Figure 4, the TAGR algorithm’s
divisive approach leads to a lower growth of runtime
in relation to the data size. This property comes es-
pecially handy for larger datasets. Considering for
example the dataset PowerPlant, the SKC algorithm
has a runtime of 9:19h (∼ 33,533 seconds), while the
TAGR algorithm only needs 0:01h (∼ 68 seconds)
to finish the corresponding computations. Hence,
our proposal is approximately up to 500 times as
fast as existing state-of-the-art solutions (SKC). This
huge improvement can be traced back to TAGR’s de-
sign, which not aims at retrieving one inextricable
large model, but one consisting of small, indepen-
dent partitions representing coherent fractions of the
data. Subsequently, model evaluations by means of
log marginal likelihood L or MSE are substantially
cheaper.

Besides ensuring better runtime properties of our
approach in comparison to CKS, ABCD and SKC, we
also show that TAGR produces statistical models by
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Table 2: Comparative evaluation results for state-of-the-art algorithms.

Runtime MSE
Dataset CKS ABCD SKC TAGR CKS ABCD SKC TAGR
Airline 00:00:01 00:00:02 00:00:04 00:00:04 0.1361 0.0981 0.1175 0.0269
Solar 00:00:03 00:00:06 00:00:08 00:00:05 0.0856 0.0897 0.0845 0.0769
Mauna 00:00:15 00:00:26 00:00:24 00:00:07 0.1525 0.1519 0.1724 0.0156
SML 00:39:05 00:45:52 00:29:18 00:00:25 0.1103 0.1103 0.2259 0.0112
Power 12:27:51 14:37:15 09:18:53 00:01:08 0.0726 0.0726 0.1772 0.0046
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Figure 4: Runtime for different state-of-the-art algorithms
as a function of dataset size.

Table 3: Performance and Model Quality.

Runtime
Dataset Parallel Non-Parallel MSE
GEFCOM 0:03:44 0:13:09 0.0111
Jena 0:46:58 4:18:03 0.0109
Household 5:21:26 21:34:42 0.0024

means of kernel expressions of better quality. Table 2
illustrates the resulting model qualities per algorithm.
In general, TAGR delivers better results regarding ev-
ery dataset analyzed according to MSE measure.

5.4 Scalability of TAGR

The third and final series of experiments is only fo-
cused on evaluation of the TAGR algorithm. TAGR
clearly outperforms state-of-the-art algorithms in
terms of runtime, while still maintaining solid model
quality. Nevertheless, the largest dataset considered
comprises only approximately 10,000 records, which
is by no definition large-scale. Thus, we aim to show
the scalability features of our proposal in the remain-
der of this section, for which we employ the largest
three of the selected datasets (cf. Table 1), containing
up to two million records.

Table 3 presents the results of non-parallel and
parallel execution of the TAGR algorithm for the
given large-scale datasets. We executed it in a par-
allel as well as in a non-parallel fashion, to main-
tain comparability with given publications (cf. Lloyd

102 104 106

10−2

10−1

dataset size

ru
nt

im
e

/d
at

as
et

si
ze

Non-Parallel
Parallel

Figure 5: Runtime per Data Record.

et al., 2014; Duvenaud et al., 2013; Kim and Teh,
2018; Steinruecken et al., 2019), while still show-
ing TAGR’s scalability features. As parallelization
of TAGR does not affect the resulting models, only
one qualitative measure concerning model accuracy
is given per analyzed dataset.

Figure 5 illustrates how the ratio between runtime
and dataset size evolves along absolute dataset size.
It shows that TAGR becomes more efficient facing in-
creasing dataset sizes. Beyond that, concurrent ex-
ecution of our proposed algorithms building blocks
reduces runtime compared to non-parallel execution.
Those mentioned advances do not obstruct the accu-
racy of the derived GPM as shown in Tables 2 and
3.

To sum up, we have shown which kind of param-
eter configuration of our algorithmic approach pro-
duces the most promising results regarding model
quality and performance. Based on that, we demon-
strated how our approach produces statistical data
models by means of Gaussian Processes of supe-
rior quality with regards to state-of-the-art algo-
rithms, while outperforming these algorithms con-
cerning runtime performance in general.

6 CONCLUSION

In this paper, we have investigated a new approach for
efficient, automatic GPM retrieval for large-scale time
series datasets. While state-of-the-art GPM retrieval
algorithms lack scalability (cf. Berns and Beecks,
2020b), we propose a new structural design for large-
scale GPMs. This design allows to get around the
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two major bottlenecks of current methods by using
a divisive approach to reduce effects of Gaussian Pro-
cesses’ cubic runtime complexity as well as employ-
ing a purposive strategy to generate fewer candidate
models.

Our performance evaluation has revealed that
GPMs resulting from the proposed TAGR algorithm
deliver similar model quality in comparison to those
models produced by state-of-the-art algorithms. In
addition, runtime of the retrieval process is reduced
significantly especially for larger time series, where
we achieve a speed-up factor of approximately 500
with regards to existing methods such as CKS, ABCD
and SKC.

As for future work, we consider global approxi-
mations an opportunity for further optimizing our ap-
proach. We therefore plan to address the opportuni-
ties of low-rank approximations such as the Nyström
method (Hensman et al., 2013) in our future work.
In addition, we plan to develop GPM retrieval algo-
rithms for big data processing frameworks in order to
scale GPM retrieval to very large and even multidi-
mensional datasets.
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