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Abstract: In a global context of scarcity of water resources, accurate prediction of soil moisture is important for its 
rational use and management.  Soil moisture is included in the list of Essential Climate Variables. Because of 
the complex soil structure, meteorological parameters and the diversity of vegetation cover, it is not easy to 
establish a predictive relationship of soil moisture.  In this paper, using the large amounts of data obtained in 
West Africa, we set up a deep neural network to establish an estimation of soil moisture for the two first layers 
and its prediction temporally and spatially.  We construct deep neural network model which predicts soil 
moisture layer 1 and layer 2 multiple days in the future. Results obtained for accuracy training and test are 
greater than 93 %. The mean absolute errors are very low and vary between 0,01 to 0,03 m3/m3. 

1 INTRODUCTION 

The most important resource for the survival and 
development of the earth's population is water 
(Schlesinger, 2014). The soil moisture is the amount 
of water level present in the top layers of the soil. The 
soil moisture interacts and affects with atmosphere by 
evaporation and transpiration (Kaleita et al., 2014; 
Seneviratne et al., 2010). Temperature variability and 
heatwaves have large dependence on soil moisture 
feedback on evapotranspiration (Miralles et al., 2014; 
Mueller and Seneviratne, 2012). 

Many instruments and procedures can be used to 
measure the soil moisture. Then, when the soil 
moisture measurements are done by using 
gravitimetric and volumetric procedures, it is called 
direct method. Indirect method involves using 
instrument like tensiometers, gypsum blocks, and 
neutron probes.  

The high correlation between soil moisture and 
reflection spectrum of soil involve that many 
researchers used remote sensing data to infer soil 
moisture. The reflectance of soil in visible and 
infrared bands is highly related to the soil colour, 
texture, surface roughness and crusting, composition 
and organic matter.  

Reanalysis, that combines model data with 
observations from across the world into a globally 

complete and consistent dataset using the laws of 
physics, offers spatial and temporal coverage 
(Balsamo et al., 2015). 

A good knowledge of soil moisture prediction can 
be helpful in irrigation water management.  It 
involves better estimation of fertilizers and other 
input, and better assessment of need and availability 
of soil water level for crop cultivation. Thus, it is 
necessary to be able to accurately predict soil 
moisture in order to be able to save water, especially 
for farmers.  

Empirical formulas, linear regression, and neural 
networks are currently the most widely used methods 
for predicting soil moisture. 

By the use of daily meteorological records, soil 
physical properties, basic crop characteristics and 
topographical data, Vahedberdi et al., (2009) 
developed the Bridge Event And Continuous 
Hydrological (BEACH) modelling to provide timely 
information on the spatially distributed soil moisture 
content over a given area without the need for 
repeated field visits. 

Using a soil moisture, precipitation and drought 
prediction model, it was possible to predict drought 
in a soil several days into the future (Chen et al, 
2014). 

Cai et al., (2019) use a deep learning regression 
network, built with a two-layer hidden layer, to 
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establish a predictive model between meteorological 
parameters and soil moisture at a depth of 20 cm in 
the Yanqing area (Beijing, China) with accuracy of 
98%. 

The objective of this work is to accurately predict 
the soil moisture level multiple hours in advance by 
using deep neural network regression. With few 
parameters easy to measure and easy to access, the 
challenge in this work is to successfully predict the 
evolution in time and space of soil moisture.  

The reason for choosing deep learning is that with 
these methods it was possible to improve the accuracy 
of soil prediction due to its non-linearity and structure 
complexity (Veres et al., 2015; Cai et al., 2019).  

2 DATASET 

We use ERA5-Land hourly dataset with ~9km grid 
spacing. ERA5-Land has been produced by replaying 
the land component of the ECMWF ERA5 climate 
reanalysis. Thus, ERA5-Land is forced by the 
atmospheric analysis of ERA5 and hence 
observations indirectly influence the simulations. 

This dataset is taken in an area of the West Africa, 
between 6°N and 24°N and -17°W and 34°W.  

West Africa's climate is characterized by a strong 
latitudinal rainfall gradient that determines 
production systems. It is also characterized by 
dramatic fluctuations in rainfall patterns on multi-
decadal time scales, amplifying the already 
substantial annual rainfall variability. These include 
sub-humid, semi-arid and arid zones. 

The climatology of the average annual 
precipitation cycle can be summarized in a few main 
phases. The first rains appear on the coasts of the Gulf 
of Guinea (5°N) in March; they then increase in 
intensity during the months of April and May; during 
the month of June, the zone of heavy rainfall moves 
rapidly towards latitudes close to 10°N (Sultan and 
Janicot, 2000), remaining almost stationary at this 
position until the end of August, a period which 
corresponds to the short dry season in the Guinean 
zone. Rainfall decreases in August, linked to the 
relative atmospheric stability on the coasts of the Gulf 
of Guinea resulting from the drop-in ocean 
temperatures and a divergence in specific humidity 
(Philippon and Fontaine, 2002). Finally, there is a 
gradual withdrawal of the rainy zone towards the 
coasts between September and November, a period 
that corresponds to the beginning of the second 
passage of the ITCZ along the coasts (second rainy 
season). 

The learning dataset describes eight (08) variables 

and two (02) moisture soil layer. These 08 features 
are noted by x and the volumetric soil moisture. 
Volumetric soil moisture is expressed in m3.m−3.  

Features x are composed of five meteorological 
data such as 2 metre temperature (t2m), 2 metre  
dewpoint temperature (d2m), total precipitation (tp), 
10m u-component of wind (u10) and 10m v-
component of wind (v10); two parameters related to 
soil properties such as evaporation from bare soil 
(evabs) and surface sensible heat flux (sshf); and the 
initial soil moisture (smli). 

Soil moisture is localized in ERA5-Land in 4 
layers with depths of 0.07 (0–0.07), 0.21 (0.07–0.28), 
0.72 (0.28–1.00) and 1.89 (1.00–2.89) m. The first 
two layers are of interest to us in this study. 

For each ERA5-Land day, we take measurements 
at 00 h and 12 h. These measurements concern the 
years from 2012 to 2013 for the months from July to 
November. This gives a matrix with a dimension of 
10 x130000.  

For validation dataset, we used combined various 
single-sensor active and passive microwave soil 
moisture from Climate Change Initiative (CCI) of the 
European Space Agency (ESA). These level 3 (super-
collated: L3S) dataset are observations combined 
from multiple instruments into a space-time grid. The 
soil moisture data for the combined product are 
provided in volumetric units [m3.m-3]. The products 
come, among others, from sensor as Scanning 
Multichannel Microwave Radiometer (SMMR) 
onboard Nimbus-7, Tropical Rainfall Measuring 
Mission (TRMM), the Advanced Scatterometer 
(ASCAT) onboard the Meteorological Operational 
satellite program (MetOp), the Special Sensor 
Microwave Imager (SSM/I), the Advanced 
Microwave Scanning Radiometer — Earth Observing 
System (AMSR-E) on-board the Aqua satellite. 

3 METHODS 

The main objective of machine learning is to estimate 
the unknown relationship between input and target 
parameters using known examples. For numerical 
targets, the tasks become a supervised learning. The 
objective of supervised learning is to build 
relationships and dependencies model between the 
target prediction output and the input features such 
that we can later predict the output values for new 
data based on the model. 

Suppose  N

nnn yx 1,   to be the training dataset 

with X being the input space and Y being the output 
space. The objective at the moment is to seek a 
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function f: X →  Y from a hypothesis space that 
minimizes the loss associated. The best fit to the 
underlying function can be chosen by minimizing a 
cost function.  

Consider iŷ the predicted value, iy the true 

value, and the average value, the performance of a 
model can be measured by: 

Mean Absolute Error (MAE):  
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To build supervised learning model, several 
algorithms, which are developed in different 
mathematical backgrounds, exist.  We can denote, 
linear regression, ridge regression, decision trees, K-
Neighbors regression, Support vector regression, 
neural networks (Diouf and Seck, 2019).  

For this study, we are taken a neural network 
method. A neural network is a mathematical model 
used as nonlinear statistical tools in modeling 
complex relationships between inputs and outputs. 

We opt to a two-hidden layer regression neural 
network. The output of the previous layer is the input 
of the next layer. It is a deep neural network 
regression and its mathematical structure is composed 
by: 
- An input layer for which the number of nodes is 
equal to the number of input parameters. 
- Hidden layers node composed of neurons. 
- The regression model output layer. The output of the 
previous hidden layer is multiplied by the weight and 
is added to a bias on the output node to obtain the 
regression prediction value. 

We use a single model to predict soil moisture for 
layer 1 and layer 2, so-called 2NNL2. This model is a 
succession of two networks to form a unique model. 
The first network has as input the eight parameters 
and as output the soil moisture of layer 1.  The second 
network have as input the same inputs of the previous 
network plus the output of network 1. The output is 
the soil moisture of layer 2.   

We use five models to predict the soils moisture 
level multiple days in advance. 

Model 1: The output data of network 1 (sml1) is 
measured two (02) days after the input data. The 
output data of network 2 (sml2) is measured three (03) 

days after the input data and one (01) day after the 
sml1.  
Model 2: The output data of network 1 (sml1) is 
measured three (03) days after the input data. The 
output data of network 2 (sml2) is measured four (04) 
days after the input data and one (01) day after the 
sml1.  
Model 3: The output data of network 1 (sml1) is 
measured four (04) days after the input data. The 
output data of network 2 (sml2) is measured five (05) 
days after the input data and one (01) day after the 
sml1.  
Model 4: The output data of network 1 (sml1) is 
measured five (05) days after the input data. The 
output data of network 2 (sml2) is measured six (06) 
days after the input data and one (01) day after the 
sml1.  
Model 5: The output data of network 1 (sml1) is 
measured six (06) days after the input data. The 
output data of network 2 (sml2) is measured seven 
(07) days after the input data and one (01) day after 
the sml1.  

This means that for each model, the inputs of network 
2 are the same inputs of network 1 plus output of 
network 1 (sml1). 

After many attempts, all these models’ structure 
was determined to be 8-150-80-1 followed by 8-100-
50-1 respectively for network 1 and network 2.  

We train and optimize Model 1, Model 2, Model 
3, Model 4 and Model 5.   

Several algorithms can be used for optimization. 
Here we choose Adaptive Gradient Algorithm 
(AdaGrad) as an optimization algorithm (Duchi et al., 
2011). AdaGrad is an optimization algorithm for 
gradient-based optimization. AdaGrad performs 
gradient descent with a variable learning rate. 
Parameters associated with infrequent features are 
adapted with large gradients and parameters 
associated with frequently occurring features perform 
small gradients. Adagrad thus improves on SGD, or 
stochastic gradient descent, with a per-node learning 
rate scheduler built into the algorithm.   

To optimize gradient descent at time-step t, tg , 

an objective function  J  is minimized by updating 

a parameter  . The equation of the parameter is:  

t

t
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where t   is the parameter to be updated at time-step 

t, η  is the learning rate, ε is some small quantity that 
used to avoid the division of zero, I is the identity 
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matrix,  )( tGdiag is a diagonal matrix containing the 

squares of all previous gradients, tg is the vector of 

gradients for the current time-step and can be 

expressed, for each training example ix  and label 
iy , by:  
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The accuracy on the learning set is 93.8% and the 
validation accuracy is 92.5% for all models. The 
mean absolute error turn around 0.015 m3/m3 for 
training phase and 0.02 m3/m3 for validation phase. 
Table 1 summarizes performances measures for all 
models. We notice that the soil moisture retrieved 
from training features and its real values are quite 
good for layer 1 and layer 2.  This figure gives us an 
idea of the accuracy of the model in reproducing the 
training dataset.   

 

Figure 1: A two connected two-hidden layer regression neural network (2NNL2). 

Table 1: Performance measures of 2NNL2 models. 

 Train mae Test mae Train loss Test loss Train R2 Test R2 

 
Model 1 

Output 1 0.010 0.013 0.0002 0.0005 98.37% 98.43% 
Output 2 0.023 0.026 0.0010 0.0013 93.8% 93.7% 

 
Model 2 

Output 1 0.013 0.015 0.0004 0.0006 97.7% 97.2% 
Output 2 0.023 0.026 0.0011 0.0014 93.8% 92.7% 

 
Model 3 

Output 1 0.015 0.018 0.0005 0.0007 97.1% 97.1% 
Output 2 0.023 0.027 0.0010 0.0015 93.8% 92.5% 

 
Model 4 

Output 1 0.017 0.020 0.0006 0.0009 96.8% 96.5% 
Output 2 0.024 0.027 0.0011 0.0013 93.9% 92.7% 

 
Model 5 

Output 1 0.018 0.021 0.0006 0.0010 96.4% 96.4% 
Output 2 0.024 0.027 0.0011 0.0014 93.6% 92.5% 
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Figure 2: Scatter plot (left) and relative error (right) between predicted and measured values for sml1 in 12 July, 2012. 

 

Figure 3: Scatter plot (left) and relative error (right) between predicted and measured values for sml2 in 13 July, 2012. 

4 RESULTS 

In the training phase, the dataset selected concern 
sample less than 20% of all measured values from 
July to December 2012. We compared two data sets 
of soil moisture that did not participate in training 
phase to the measure from ERA5-Land at the same 
date.  

Using July 10, 2012 input parameters, we predict 
sml1 and sml2 two days and three days in the future, 
respectively, i.e. on dates of 12 and 13 July, 2012. 
Figure 2 and figure 3 show comparisons of soil 
moisture layer predicted and measured. We can 
notice that the prediction model was able to retrieve 
the soil moisture very faithfully. The accuracies of 
scatter diagrams are 95.6% and 94.4% respectively 
for sml1 and sml2.  

The global mean absolute error between the two 
data sets is quite small: 0.03 m3/m3. Then, the sml1 
retrieval from the Era5-Land features by using neural 
network are obtained with good accuracy. In the 
construction of the model, the output sml1 of the first 

stage is part of the input of the second stage which 
models the sml2. This means that a good estimate of 
the output of stage 1 will lead to a good estimate of 
stage 2. The contrary will also cause the opposite 
effect. These comparisons on dataset that not 
participate to the training phase between observed 
and estimated show the generalization capability of 
the built model. 

Soil moisture obtained from Climate Change 
Initiative of the European Space Agency (CCI-ESA), 
which are combination of measurements from various 
single-sensor active and passive microwave, is used 
to validate mainly our model and occasionally the 
ERA5-Land data. 

Comparison between the sml1 predicted two days 
in the future from model with using the ERA5-Land 
parameters reanalysis (a) and the measured ESA-CCI 
sml1 (b) on July 10, 2012 can be seen in figure 4. The 
soil moisture prediction two days in the future was 
compared with measurements from ESA-CCI data.  A 
correlation of 87% and a mean absolute error of 0.05 
m3/m3 were obtained. For the prediction made two 
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days in the future for layer 1 in figure 5 (date of  July 
12, 2012), we also note good results with a correlation 
coefficient of 85% and a mean absolute error of  0.06 
m3/m3. For the two figures shown below, we note that 

the trends are the same in part (a) and part (b). 
However, the intensities of soil moisture predicted 
from Era5-Land features are on average 0.05 m3.m-3 
higher than those measured from CCI-ESA.

 

Figure 4: Map of the soil moisture layer 1 predicted from ERA5-Land features with 2NNL2 (a) and CCI-ESA observations 
data (b) in 10 July, 2012. 

 

Figure 5: Map of the soil moisture layer 1 predicted from ERA5-Land features with 2NNL2 (a) and CCI-ESA observations 
data (b) in 12 July, 2012. 
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5 CONCLUSIONS 

In this study, dataset from ERA5-Land were used to 
build a prediction model by using a deep neural 
network able to evaluate further soil moisture in the 
first two layers. The built model, so-called 2NNL2, 
which is a succession of two-hidden layers, retrieved 
successfully soil moisture layer 1 and layer 2 for two 
to seven days in the future. We have analyzed the 
performance of the model by comparing soil moisture 
estimated from ERA5-Land features to CCI-ESA soil 
moisture. We denoted that results are satisfying with 
low mean absolute error and high correlation. 
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