GEMO: Grammatical Evolution Memory Optimization System

Meghana Kshirsagar1a, Rushikesh Jachak2b, Purva Chaudhari2c and Conor Ryan1d

1Biocomputing Developmental Systems, University of Limerick, Ireland
2Department of Computer Science, Government College of Engineering, Aurangabad, India

Keywords: Evolutionary Computation, Memory Optimization, Grammatical Evolution, Multi-Objective Optimization, Autoregressive Time Series Forecasting.

Abstract: In Grammatical Evolution (GE) individuals occupy more space than required, that is, the Actual Length of the individuals is longer than their Effective Length. This has major implications for scaling GE to complex problems that demand larger populations and complex individuals. We show how these two lengths vary for different sizes of population, demonstrating that Effective Length is relatively independent of population size, but that the Actual Length is proportional to it. We introduce Grammatical Evolution Memory Optimization (GEMO), a two-stage evolutionary system that uses a multi-objective approach to identify the optimal, or at least, near-optimal, genome length for the problem being examined. It uses a single run with a multi-objective fitness function defined to minimize the error for the problem being tackled along with maximizing the ratio of Effective to Actual Genome Length leading to better utilization of memory and hence, computational speedup. Then, in Stage 2, standard GE runs are performed restricting the genome length to the length obtained in Stage 1. We demonstrate this technique on different problem domains and show that in all cases, GEMO produces individuals with the same fitness as standard GE but significantly improves memory usage and reduces computation time.

1 INTRODUCTION

Evolutionary Algorithms have gained a lot of popularity to automatically generate programs, especially Koza’s Genetic Programming (GP) (Ryan, 1998). Although powerful, GP has some restrictions, specifically the use of single types. This issue has been tackled by several other grammar-based flavours of GP, the most commonly used of which is Grammatical Evolution (GE) (Ryan, 1998), which employs linear binary strings to generate programs in any arbitrary language using a Backus-Naur Form (BNF) Grammar.

The computational complexity of an Evolutionary Algorithm depends to a large extent on the complexity of the fitness function. Genetic Algorithm (GA) tries to obtain optimal values for the objective function by either maximizing or minimizing a solution to the problem. However, there is also the issue of space complexity, which is typically caused by large individuals or populations, or both. This can lead to poor utilization of memory which in turn increases computational time. We address this by using a Multi-Objective Approach based system, GEMO which minimizes error and maximizes memory utilization.

Many researchers have explored the idea of multi-objective optimization using fitness, size and diversity as objectives. In a multi-objective optimization approach, the idea of non-dominated solutions along with Pareto optimal individuals is considered to achieve all the specified objectives. Pareto fronts have been used to obtain a set of individuals that can optimize multi-objective Genetic Algorithms (Deb, 2001). Efforts have also been made to improve the multi-objective optimization algorithms by redefining search and selection criteria. (Eddy, 2001) has used a distinct point metric and
cluster metrics as defined by (Wu, 2000) to optimize multi-objective problems. The distinct point indicates the number of unique individuals in the solution space whereas cluster metric measures the number of unique individuals in the cluster, which is calculated by dividing the number of individuals with the number of distinct individuals. Bleuler et al (Bleuler, 2008) considered fitness of solution and program size as two objectives and applied a bi-objective optimization using a Pareto-based method in which individuals with a smaller code size were preferred over similar performing individuals.

GE presents an extra challenge due to disconnect between Actual and Effective Lengths; individuals with short Effective Lengths don’t necessarily result in short Actual Lengths. Indeed, Section 4 demonstrates that the Actual Lengths grow at a higher rate than Effective Lengths which leads to poor memory usage.

2 GRAMMATICAL EVOLUTION

GE is a combination of a GA and GP. Programs or phenotypes are evolved through the process of mapping using a variable length genotype (also referred to as chromosome) and a formal grammar which is written in BNF (Backus, 1963) (Neill, 2003). A chromosome consists of binary strings (or genes) of certain length (number of binary digits) where each gene is a variable or parameter under consideration. The entire length of an individual is known as the Actual Length while the number of codons used to generate phenotype is referred to as the Effective Length (Nicolaou, 2012). If the Effective Length is less than the Actual Length then the remaining unused codons, the tail of the genome, are not used in deriving expressions.

However, if an individual does not have enough codons to map to a valid phenotype structure, then the mapping process terminates, and the individual is considered to be invalid. Alternatively, to mitigate this issue, GE can use the concept of wrapping, which re-uses the same genome sequence, in an attempt to completely map an individual. The number of times an individual is wrapped is referred to as the Wrapping Factor (WF).

To demonstrate this concept, consider the following grammar. As with all BNF grammars, it can be defined as the tuple \(<S, N, T, P>\), where \(T\) is the set of terminals, i.e., items that can appear in syntactically valid programs. \(N\) is a set of non-terminals, i.e., intermediate constructs that don’t appear in syntactically valid programs and \(P\) is a set of production rules that maps the non-terminals into terminals. \(S\) is the start symbol, from which all individuals grow from; in this case, it is the non-terminal \(<\text{algo}>\).

\[
\begin{align*}
\text{<algo>} &::= \text{<var>><op><algo>} | \text{<var>} \\
\text{<op>} &::= + | - | * | / \\
\text{<var>} &::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
\end{align*}
\]

Grammar 1: Simple Arithmetic Calculator.

The above grammar consists of 3 non-terminals (\(<\text{algo}>, <\text{op}>\) and \(<\text{var}>\)) which are used to map fourteen terminal symbols (0, 1, ... 9, +, -, *, /).

The Effective and Actual Length required in four different scenarios of mapping in GE are shown in Table 1. Memory utilization can be defined as the ratio of Effective Length to Actual Length. In all the scenarios, the maximum length of the genome needs to be defined carefully, as too large an Actual Length results in a waste of memory (Scenario 1) while too short of an Actual Length results in genomes that are unable to map program structures completely (Scenario 2). Although wrapping can be applied (Scenario 3) to address this issue, the process of mapping becomes trapped in infinite loops failing to evolve an individual completely (Scenario 4).

Table 1: Actual Length and Effective Length under different scenarios of mapping using Grammar 1.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Input Genome</th>
<th>String generated</th>
<th>Actual Length</th>
<th>Effective Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sufficient Genome Length</td>
<td>(4, 13, 8, 4, 14, 23, 20, 5)</td>
<td>3 + 4</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Insufficient Genome Length</td>
<td>(6, 13, 9, 4, 27, 15, 20, 12)</td>
<td>Invalid Phenotype</td>
<td>8</td>
<td>n/a</td>
</tr>
<tr>
<td>Insufficient Genome Length with Wrapping</td>
<td>(6, 13, 9, 4, 27, 15, 20, 12)</td>
<td>3 - 7 * 2 - 9</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>Infinite loop problem in Wrapping</td>
<td>(4, 14, 5, 2, 19, 23)</td>
<td>Invalid Phenotype</td>
<td>6</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Inappropriate definition of genome lengths can lead to poor memory usage and computational overhead; for example, some of the experiments in Section 6 demonstrate that for some problems less than 15% of the Actual Length is used for mapping.
in standard GE. To make matters even worse, this usage degrades over time, so the longer a run is, the worse the situation gets.

3 PROBLEM DOMAINS

We examine three different problem domains: Time Series Analysis (Ryan, 2020), Symbolic Regression and a Boolean Logic Problem.

3.1 Autoregression

Autoregressive Time Series Forecasting is a type of regression model, linear for this case, which is used to predict a variable based on a linear combination of input values. The general form of the equation is described as:

\[Y = A_0 + A_1 * X_1 + A_2 * X_2 \] \hspace{1cm} (1)

This method is employed on the time series data where a number of input variables are taken as observations from previous time steps called lagged variables. To predict the value for the next time step \((t+1)\), the problem can be formulated by considering the values of previous time steps as:

\[X_{t+1} = B_0 + B_1 * X_{t-1} + ... + B_n * X_{t-n} \] \hspace{1cm} (2)

As the regression model forecasts data from the same input variable, it is referred to as AutoRegressive Time Series Forecasting.

\[
\begin{align*}
\text{y} & = <\text{intercept}> + <\text{expr}> \\
<\text{expr}> & ::= <\text{expr} > + <\text{expr} > | <\text{expr} > - <\text{expr} > | <\text{constant}> * <\text{var}> \\
<\text{constant}> & ::= 0.<\text{num}> | -0.<\text{num}> \\
<\text{intercept}> & ::= <\text{num}>,<\text{num}> | -<\text{num} >,<\text{num}> \\
<\text{num} > & ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 \\
& <\text{num} >,<\text{num} > \\
<\text{num}1> & ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 \\
<\text{var}> & ::= X.\text{shift}(<\text{lag} > + 1) \\
<\text{lag}> & ::= <\text{num}> \\
\end{align*}
\]

Grammar 2: Grammar for AutoRegression.

Grammar 2 generates values for each of \(<\text{intercept}>, <\text{constant}> \) and \(<\text{lag}>\). The \(<\text{intercept}>\) generates a value which is not a function of time while \(<\text{constant}>\) derives smoothing coefficients for lag variables ranging between -1 to 1. The \(<\text{lag} >\) variable is the input value to the forecaster as a function of time. We examine four AutoRegressive datasets, which we term AR1 (Daily Dublin Waste), AR2 (Hourly Riders), AR3 (Daily Temperature) and AR4 (Monthly Dublin Waste). Each of these uses Root Mean Square Error as its error metric.

\[
\frac{1}{n} \sum_{i=1}^{n} (\text{observed} - \text{predicted})^2 \quad (3)
\]

3.2 Symbolic Regression

We also examine two classic GP Symbolic Regression problems, namely the Vladislavleva4 (Ryan, 1998), generally considered to be at the higher end of the difficulty range, and the infamous Quartic Polynomial problem, which we include to demonstrate the impact of GEMO even on easy problems. We have used grammar as mentioned in (Ryan, 1998) for experimentation. The error metric for these problems is defined in Table 2.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Error metric</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vladislavleva4</td>
<td>Mean Square Error</td>
<td>0.05 to 6.05</td>
</tr>
<tr>
<td>Quartic Polynomial</td>
<td>Mean Average Error</td>
<td>-1 to 1</td>
</tr>
</tbody>
</table>

Table 2: Error Metric and Domain for Symbolic Regression Problems.

3.3 Boolean Logic

The third domain we examine is Boolean Logic which takes true or false as an input. For this domain, we choose the 11-Multiplexer problem as employed by Koza (Ryan, 1998) and use their grammar for experimentation. Error metric used in this case is Hamming Error as defined in equation 4.

\[
\sum_{i=1}^{n} (\text{observed} ! = \text{predicted}) \quad (4)
\]
4 MEMORY AND RUNTIME ANALYSIS

Figure 1 shows the effect of varying population size on the Effective and Actual Genome Lengths on AR1. We noticed that in all experiments, regardless of domain, there appears to be something of a steady state value for Effective Length, which is independent of the population size, while the Actual Length increases with population size leading to higher space complexity. The computational complexity (CC) for EAs can be established in terms of evolutionary parameters as:

\[
CC = (WF \times GL \times UI \times G) \quad (5)
\]

Where WF is Wrapping Factor, GL is Genome length, UI is the number of unique individuals, and G is the number of generations. This indicates that the computational complexity is directly proportional to the length of genome as shown in equation 5. Considering WF, UI and G to be constant for an experiment, CC of GE program is upper bounded by GL shown in equation 6.

\[
CC = O(GL) \quad (6)
\]

Notice that in the plot below, both Actual and Effective Lengths drop after the first generation. This is due to the difficulty which GE often encounters with invalid individuals in the first generation, as noted by (Ryan, 2003).

Figure 1: Effect of Varying Population Size on Effective and Actual Genome Length on Problem AR1.

Memory utilization is 13%, 29% and 32% respectively; it either remains constant or degrades at later generations, as the algorithm evolves, which leads to increase in computation time. The maximum memory utilization for standard GE is less than 33%, which means more than two-thirds of the memory is wasted, which makes it difficult to scale GE platform to complex problems.

Therefore, it is essential to define an appropriate length of genome to reduce memory wastage and computational complexity of an algorithm without affecting its objective fitness.

5 GEMO

GEMO applies a multi-objective approach as shown in Figure 2 to optimize error metric and memory utilization.

1. **Fitness Function 1**: Minimize the error metric given for a specific problem as discussed in section 3.
2. **Fitness Function 2**: Maximize the memory utilization which is the ratio of effective to Actual Length as described in equation 7.

\[
\text{maximize} \left(\frac{\text{Effective Length}}{\text{Actual Length}} \right) \quad (7)
\]

Figure 2: Methodology diagram for GEMO system (FF1: Fitness Function 1, FF2: Fitness Function 2).

GEMO uses two dimensional pareto vectors, where each objective refers to the pareto variable in one of the dimensions. Since this is a multi-objective optimization problem, it tries to optimize all of the objectives which could be contradictory and hence, a trade-off needs to be considered while selecting individuals to satisfy each objective. The Pareto-
optimal individuals are calculated using the crowding distance value of a solution, which provides an estimate of the density of individuals surrounding that particular solution. The set of solutions are sorted according to each objective function, and crowding distance is calculated as the average distance of its two neighbouring solutions. To promote diversity in the set of solutions, individuals with the highest and lowest objective fitness are always selected.

Since, GEMO tries to minimize error metric and maximize memory utilization, pareto fronts are sorted in descending order in terms of given error metric and for the same error, it is sorted in ascending orders for the memory utilization. We then select individuals with the low error and maximum memory utilization as optimal solutions. The genome lengths obtained from these optimal solutions are passed as a parameter to Standard GE to restrict the length of genome.

Note that this doesn’t guarantee that we will find the absolutely minimally sized genome that can generate useful solutions but, as Section 6 demonstrates, the memory savings are still enormous. There has also been some work (Ryan, 2003) that shows that GE sometimes relies on having unused tails to aid evolution, meaning that if we restrict it too much, we might hamper its progress. The size of the genotype suggested this way is subsequently validated in Section 7.2 through statistical tests by taking the amount of wrapping into consideration.

6 EXPERIMENTAL RESULTS

The evolutionary parameters used in all experiments in this paper are

\{
Population Size: 250, 500, 1000; Maximum Number of Generations: 100; Crossover Type: Single Point; Crossover Probability: 0.95; Mutation Type: Int Flip Codon; Mutation Probability: 0.01; Selection Type: Tournament; Initialization Method: Position Independent Growth; Initial Depth: 7; Maximum Depth: 10; Number of Runs: 100. \}

Position independent growth (Fagan, 2016) is used to initialize the population with a maximum tree depth of 10, with an initial maximum depth of 7. Tournament selection (Fang, 2010), followed by single point crossover with probability of 0.95 and integer flip codon mutation with probability of 0.01 are incorporated in the framework. The above values are selected, since optimal results were achieved within Standard Runs of GE using this set of configuration and hence served as a benchmark for our framework. All the experiments are carried out using PonyGE2 (Fenton, 2017). Recall that GEMO is a two stage process. The same parameters are used in both stages; the first stage is run once, to determine the length of individual to use. The second stage is run 100 times to obtain statistically valid results. Section 7.1, contains some experiments demonstrating that the use of a single run in the first stage is reasonable.

6.1 Selection of Pareto-Optimal Solutions

Figure 4.a illustrates pareto fronts solutions for the error metric and memory utilization (ratio of Effective to Actual Length) obtained for each generation. Individuals having least regression error (X axis, to the left) and highest memory utilization (Y-axis, to the top). The individual with the lowest regression error (4410) and the highest memory utilization of 1.0 is selected as a pareto-optimal solution indicated through dark brown colour.

Figures 4.b, plot the Effective Length of pareto individuals obtained in 4.a. The Effective length of the pareto-optimal solutions is selected as optimal genome length for that particular problem. If solutions with multiple genome lengths are obtained, individuals with least effective length are preferred. We report these as (fitness, effective_length) tuples. The optimal Effective Length of 21 indicated through dark brown colour is selected from optimal pareto fronts obtained in Figure 4.a.

6.2 Fitness Performance – AR1

We look in detail at the performance of GEMO on AR1.

Figure 3: Left: Comparison of Fitness Vs Generations for unrestricted genome length and optimal solutions on AR1. Right: Comparison of the ratio of Effective to Actual Length and Fitness vs Generations for unrestricted genome length and optimal solutions.
Figure 4: Results for GEMO for AR1. Graph on the left indicate the ratio of **Effective Length to Actual Length** vs **Fitness**. The number of generations is indicated by a color map; notices that later generation are on the left of the graph; this is because of the Pareto plot which has fitter individuals closer to the origin. These individuals are then replotted using the graph on the right hand side to identify the shortest **Effective Length**. We report these as (fitness, effective_length) tuples, and obtain pareto-optimal individuals (4410, 21) for AR1.

Table 3: Results for Single and Multi-Objective Optimal solutions for AR1, AR2, AR3, AR4, Quartic Polynomial, Vladislavleva4, 11-Multiplexer averaged over 100runs (UL: Unrestricted Length, OL: Optimal Length obtained from GEMO stage 1). There is no statistically significant difference in any fitness results.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>AR1 (Kilograms)</th>
<th>AR2 (Number of Riders)</th>
<th>AR3 (Degree Celsius)</th>
<th>AR4 (Kilograms)</th>
<th>Quartic Polynomial</th>
<th>Vladislavleva4</th>
<th>11-Multiplexer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Instances</td>
<td>1,000</td>
<td>18,290</td>
<td>3,652</td>
<td>136</td>
<td>10,000</td>
<td>10,000</td>
<td>2,048</td>
</tr>
<tr>
<td>Method</td>
<td>UL</td>
<td>OL</td>
<td>UL</td>
<td>OL</td>
<td>UL</td>
<td>OL</td>
<td>UL</td>
</tr>
<tr>
<td>Effective Length</td>
<td>69</td>
<td>14.49</td>
<td>23.61</td>
<td>10.91</td>
<td>14.45</td>
<td>11.68</td>
<td>14.71</td>
</tr>
<tr>
<td>Actual Length</td>
<td>512</td>
<td>21</td>
<td>16.22</td>
<td>105.34</td>
<td>19.98</td>
<td>111.43</td>
<td>21.32</td>
</tr>
<tr>
<td>Decrease in Actual Length</td>
<td>- 24.38X</td>
<td>- 13.07X</td>
<td>- 5.27X</td>
<td>- 5.2X</td>
<td>- 9.6X</td>
<td>- 19.64X</td>
<td>- 15.3X</td>
</tr>
<tr>
<td>Memory Utilization (in percentage)</td>
<td>13.47</td>
<td>69</td>
<td>76.33</td>
<td>13.72</td>
<td>58.5</td>
<td>48.3</td>
<td>2.43</td>
</tr>
<tr>
<td>Utilization Improvement</td>
<td>- 5.12X</td>
<td>- 6.04X</td>
<td>- 4.26X</td>
<td>- 3.66X</td>
<td>- 3.37X</td>
<td>- 1.76X</td>
<td>- 1.31X</td>
</tr>
<tr>
<td>Computation Time (seconds)</td>
<td>92</td>
<td>79.32</td>
<td>21</td>
<td>50</td>
<td>104</td>
<td>80</td>
<td>103</td>
</tr>
<tr>
<td>Speedup</td>
<td>- 1.15X</td>
<td>- 1.34X</td>
<td>- 1.2X</td>
<td>- 1.31X</td>
<td>- 1.25X</td>
<td>- 1.81X</td>
<td>- 4.15X</td>
</tr>
<tr>
<td>Mean Best Fitness</td>
<td>4428</td>
<td>4447</td>
<td>28.11</td>
<td>28.11</td>
<td>0.51</td>
<td>0.52</td>
<td>0.02</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>11</td>
<td>4</td>
<td>13.67</td>
<td>11.39</td>
<td>0.54</td>
<td>0.49</td>
<td>3,024</td>
</tr>
</tbody>
</table>

Crucially, the computation time to obtain the solutions for AR1 with minimal regression error is less with genome length restricted to 21 when compared to unrestricted length genome and exhibits 69% memory utilization as compared to 13.8% for unrestricted as shown in Figure 3. Table 3 shows that the Optimal Length Genome individuals achieve similar accuracy when compared to individuals with
Unrestricted Genome Length in terms of Best, Mean and Worst Case Fitness values, but has a lower standard deviation resulting in the optimal value being achieved more consistently. In each of the other three cases the overall fitness was either the same (AR2 or AR3) or better (AR4), while the experiments employing GEMO always use significantly less memory (between 3.6 and 6 times less) and run faster as shown in Table 3.

6.3 Fitness Performance Results – Symbolic Regression and Boolean Logic

In addition to the Vladislavleva4 we also considered the simple Quartic Polynomial problem. The results are shown in Table 3; in each of the cases, GEMO performed essentially the same in terms of fitness (no statistically significant difference) but did so with substantially less memory and in less time; moreover, the memory that was used is utilized better, as noted in the Memory Utilization row.

These results show that the Quartic Polynomial problem used 9.69 times less memory and showed a speed up of 1.25, while in Vladislavleva4, the decrease in memory required was 19.64 times less, with a speed up of 1.76. Similarly, with the 11-Multiplexer experiments, the memory utilization improvement was 15.3 and the speed up 4.15. Notice that the optimal length identified by the GEMO for each of these problems is, in fact, substantially longer than the required Effective Length, since it doesn’t have 100% memory utilization while Standard GE run is being performed. This is due to the stochastic nature of GE. However, this indicates that simply imposing a reasonable constraint on GE (where reasonable in this case means long enough to accommodate the genome needed) has a large impact on memory usage. It also suggests that further optimization in GEMO could yield even better results.

7 ANALYSIS

We perform two different analyses on the GEMO. As noted above, the first stage of GEMO uses just a single run; Section 7.1, below, describes experiments to test the variance across multiple runs to ascertain how reasonable an approach this is. The following section determines if the lengths determined by Stage 1 are too short, by performing an analysis of the impact of removing wrapping.

7.1 Variability of Stage 1

Due to the heuristic nature of GE, we performed multiple runs of GEMO, and compared results of Mean Efficient Length with that of a single run of GEMO and no statistically significant difference was observed on the used datasets.

7.2 Sufficiency of Lengths Obtained

To validate whether the obtained set of genome length is sufficient or not, we ran another set of experiments in which individuals were allowed to evolve by taking the Wrapping factor into consideration. This will establish if we genuinely have discovered usable genome lengths, or if GE is simply exploiting the wrapping operator to make it appear as though we have. We conduct statistical significance tests which allow us to support or reject a claim being made at different significance levels. As all significance tests begin with a null hypothesis H0, the null hypothesis of samples from two populations with and without wrapping is formulated as shown below:

Null Hypothesis H0: There is no statistical difference between Mean Best Fitness of Datasets with wrapping and without wrapping.

Table 4: Number of times the Null Hypothesis is rejected at significance level 0.01, 0.05, 0.1 out of 100 trials.

<table>
<thead>
<tr>
<th>Problems</th>
<th>Significance Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>AR1</td>
<td>1</td>
</tr>
<tr>
<td>Vladislavleva4</td>
<td>7</td>
</tr>
<tr>
<td>Quartic Polynomial</td>
<td>7</td>
</tr>
<tr>
<td>11-Multiplexer</td>
<td>6</td>
</tr>
</tbody>
</table>

The number of times null hypothesis rejected out of 100 trials for a sample size of 30 is shown in Table 4 for a significance level (alpha) of 0.01, 0.05 and 0.10. It can be seen that on average, the fitness values evaluated without considering wrapping factor are equal to the fitness values evaluated considering wrapping factor at alpha equal to 0.01, 0.05 and 0.10 respectively.

Hence, we fail to reject the null hypothesis for all of the problems listed in Table 4. Therefore, it can be stated GEMO does not rely on wrapping and that the length it produces is optimal and does not force GE to resort to wrapping.
8 CONCLUSIONS

Optimal use of resources and low computation time is an important aspect for any framework. We have introduced Grammatical Evolution Memory Optimization, GEMO, a multi-objective based framework for memory optimization. It defines memory utilization as one of the objectives to explore individuals with genome length that maximizes memory utilization along with its low error metric. The result obtained from GEMO is used to constrain the maximum length of the genome in an otherwise standard GE run. GEMO was tested on three benchmark domains, including Time Series Forecasting, Symbolic Regression and Boolean Logic. Experimental results validated that GEMO had statistically similar fitness results, but it exhibited significant increase in memory utilization, as well as a decrease in computational overhead. The system also ruled out the possibility that wrapping is the reason for GEMO succeeding with shorter genomes by conducting experiments both with and without wrapping and no statistically significant difference was observed.

We can safely conclude that this strategy will be useful for large, multidimensional datasets where we can be sure of optimizing memory and speedup. However further experimentation needs to be carried out in future to check their viability for small datasets. The results further showed that the maximum Actual Lengths suggested by GEMO were, in general, longer than they needed to be. Future work will explore this to see if it is feasible to expand the framework to produce shorter maximum genome, maximum utilization of memory and to establish the cost/benefit trade off of spending more time on this part of the search.

ACKNOWLEDGEMENTS

This work is supported in part by the Science Foundation of Ireland grant #16/IA/4605.

REFERENCES