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Abstract: We propose a complete practical procedure to construct a fuzzy confidence interval by the likelihood method
where the observations and the hypotheses are considered to be fuzzy. We use the bootstrap technique to
estimate the distribution of the likelihood ratio. For this step of the process, we mainly expose two algorithms:
the first one consists on simply randomly drawing the bootstrap samples, and the second one is based on
drawing observations by preserving the location and dispersion measures of the primary data set. This is
achieved in accordance with a new metric written as dθ?

SGD. It is built on the basis of the known signed distance
measure. We also provide a simulation study to measure the performance of both bootstrap algorithms and
their influence on the constructed confidence intervals. We illustrate our method via a numerical application
where we construct fuzzy confidence intervals by the traditional and the defended methods. The aim is to
highlight important differences between them.

1 INTRODUCTION AND
MOTIVATION

A typical hypothesis testing procedure can be accom-
plished by, for example, constructing confidence in-
tervals for a particular parameter. This method is
widely used in practice. However, once we consider
the data and/or the hypotheses to be fuzzy, the cor-
responding statistical methods have to be updated.
Some approaches already exist in the theory of fuzzy
sets. For instance, (Kruse and Meyer, 1987) pre-
sented a theoretical definition of fuzzy confidence
intervals. Several researchers have afterwards pro-
posed refined definitions of fuzzy confidence inter-
vals. For instance, (Viertl and Yeganeh, 2016) pro-
posed a definition of the so-called confidence regions.
Their main application was in the Bayesian context.
(Kahraman et al., 2016) described some approaches to
the construction of fuzzy confidence intervals, as well
as the concept of hesitant fuzzy confidence intervals.
(Couso and Sanchez, 2011) provided an approach that
considers the inner and outer approximations of con-
fidence intervals in the context of fuzzy observations.
Unfortunately, these various approaches are limited
because they were all conceived to test a specific
parameter with a pre-defined distribution. It would

therefore be advantageous to develop a unified gen-
eral approach to fuzzy confidence intervals.

In classical statistics, the likelihood ratio method
is considered an alternative tool for the construction
of confidence intervals. In the fuzzy environment, this
method using uncertain data has multiple advantages.
(Gil and Casals, 1988) used the likelihood ratio in a
hypothesis testing procedure where fuzziness is con-
tained in the data.

In (Berkachy and Donzé, 2019a), we proposed a
practical procedure to construct confidence intervals
by the likelihood ratio method which is seen in some
sense general. The procedure can be easily adapted to
specific cases. However, the distribution of the likeli-
hood ratio is a priori unknown and has to be estimated
or derived from strong assumptions. Under classical
assumptions, we note that this ratio is known to be
χ2-distributed with degrees of freedom correspond-
ing to the number of constraints applied to parame-
ters. In this paper, we propose to use the bootstrap
technique extended to the fuzzy environment to esti-
mate the distribution of the likelihood ratio. A main
contribution is to provide two algorithms to constitute
the bootstrapped samples mainly using the location
and dispersion characteristics calculated based on a
new version of the signed distance measure written as
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the dθ?

SGD metric and detailed in (Berkachy, 2020). We
highlight that the Expectation-Maximization (EM) al-
gorithm based on the fuzziness of data described by
(Denoeux, 2011) is used to calculate the maximum
likelihood estimators (MLEs).

The defended procedure is considered efficient
and computationally light because we do not have to
consider every single value of the support set of the
involved fuzzy numbers, as in the traditional fuzzy
method. Indeed, four conveniently chosen values are
used in the construction process. The presented calcu-
lations are done using the R package FuzzySTs shown
in (Berkachy and Donzé, 2020).

The remainder of the paper proceeds as follows.
In Section 2, we present the definition of the signed
distance measure, followed by the definition of the
dθ?

SGD metric in Section 3. Section 4 is devoted to the
construction of the traditional fuzzy confidence inter-
vals. In Section 5, we discuss our concept of fuzzy
confidence intervals constructed using the likelihood
method and detail the two bootstrap algorithms to ap-
proximate the distribution of the likelihood ratio. In
addition, a simulation study illustrates the proposed
algorithms. We end the paper with Section 6 by pre-
senting a numerical application where we estimate the
traditional and the defended fuzzy confidence inter-
vals and compare them.

2 THE SIGNED DISTANCE

The signed distance was used by (Yao and Wu, 2000)
to rank fuzzy numbers. It has served in different
contexts, such as the evaluation of linguistic ques-
tionnaires described in, for example, (Berkachy and
Donzé, 2016) or hypotheses testing (see (Berkachy
and Donzé, 2019b)). This distance has intriguated
specialists because of its simplicity in terms of cal-
culation and computation, and its directionality. The
directionality of this distance means it can be nega-
tive or positive, indicating the direction between two
fuzzy numbers. For instance, (Dubois and Prade,
1987) presented it as an expected value of a particular
fuzzy number. It is defined as follows:

Definition 2.1 (Signed distance of a real value). The
signed distance measured from the origin denoted by
d0(a,0) for a ∈ R is a itself, that is d0(a,0) = a.

Definition 2.2 (Signed distance between two real val-
ues). The signed distance between two values a and
b ∈ R is d(a,b) = a−b.

Now, let X̃ and Ỹ be two sets of the class of fuzzy
sets F(R). Their respective α-cuts are written as X̃α

and Ỹα such that their left and right α-cuts denoted

respectively by X̃L
α , X̃R

α , Ỹ L
α and Ỹ R

α are integrable for
all α ∈ [0;1]. We define the signed distance between
the fuzzy numbers X̃ and Ỹ as:

Definition 2.3 (Signed distance between two fuzzy
sets). The signed distance dSGD between X̃ and Ỹ is
the mapping

dSGD : F(R)×F(R) → R
X̃× Ỹ 7→ dSGD(X̃ ,Ỹ ),

such that

dSGD(X̃ ,Ỹ ) =
1
2

∫ 1

0

[
X̃L

α(α)+ X̃R
α (α)

− Ỹ L
α (α)− Ỹ R

α (α)
]
dα. (1)

The signed distance of a particular fuzzy number
measured from the fuzzy origin 0̃ is defined as:

Definition 2.4 (Signed distance of a fuzzy set). The
signed distance of the fuzzy set X̃ measured from the
fuzzy origin 0̃ is given by:

dSGD(X̃ , 0̃) =
1
2

∫ 1

0

[
X̃L

α(α)+ X̃R
α (α)

]
dα. (2)

3 THE dθ?

SGD METRIC

Despite the simplicity and accessibility of the previ-
ously described distance dSGD, it has some important
drawbacks. First, it coincides with a central location
measure. In other words, the effects of extreme values
on a signed distance are strongly mitigated. There-
fore, neither the shape of the fuzzy numbers nor the
inner points between the extreme values affect this
distance. Second, as detailed in (Berkachy, 2020),
the signed distance cannot be defined as a full met-
ric because it lacks topological characteristics, such
as separability and symmetry. For all these reasons,
we propose an L2 metric denoted by dθ?

SGD, seen as a
generalisation of the signed distance dSGD. The metric
dθ?

SGD depends on a weight parameter called θ?. With
this new metric, we not only take into account the de-
viation in the shapes and its possible irregularities but
also the central location measure. (Berkachy, 2020)
proves that the measure dθ?

SGD has the necessary and
sufficient conditions to constitute a metric of fuzzy
quantities.

We first define the so-called deviations of the
shape of a particular fuzzy number written in terms
of the distance dSGD in the following way:

Definition 3.1. [(Berkachy, 2020)]. Let X̃ be a fuzzy
number with its α-level set X̃α = [X̃L

α , X̃
R
α ] such that X̃
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∈ F(R). The left and right deviations of the shape of
X̃ denoted by devLX̃ and devRX̃ can be given by:

devLX̃(α) = dSGD(X̃ , 0̃)− X̃L
α , (3)

devRX̃(α) = X̃R
α −dSGD(X̃ , 0̃), (4)

where dSGD(X̃ , 0̃) is the signed distance of X̃ mea-
sured from the fuzzy origin 0̃.

Now consider the following definition of the new met-
ric dθ?

SGD as expressed in (Berkachy, 2020).

Definition 3.2 (The dθ?

SGD distance). [(Berkachy,
2020)]. Suppose two fuzzy numbers X̃ and Ỹ of the
class of non-empty compact and bounded fuzzy num-
bers. Let θ? be the weight chosen for the modelling of
the shape of these fuzzy numbers such that 0≤ θ? ≤ 1.
Based on the signed distance between X̃ and Ỹ , the L2
metric dθ?

SGD is the mapping

dθ?

SGD : F(R)×F(R) → R+

X̃× Ỹ 7→ dθ?

SGD(X̃ ,Ỹ ),

such that

dθ?

SGD(X̃ ,Ỹ ) =
((

dSGD(X̃ ,Ỹ )
)2

+ θ
?
(∫ 1

0
max

(
devRỸ (α)−devLX̃(α),

devRX̃(α)−devLỸ (α)
)
dα

)2) 1
2
. (5)

It is useful to propose the concept of the nearest
trapezoidal symmetrical fuzzy number. The intention
is to show the direct relationship between the dθ?

SGD
metric and the signed distance measure. In the follow-
ing context, the latter is considered as an optimum.
This concept is defined by:

Definition 3.3 (Nearest trapezoidal fuzzy number).
[(Berkachy, 2020)]. The nearest symmetrical trape-
zoidal fuzzy number S̃ written by the quadruple S̃ =
[s0 − 2ε,s0 − ε,s0 + ε,s0 + 2ε] to a fuzzy number X̃
with respect to the metric dθ?

SGD is given such that

s0 = dSGD
(
X̃ , 0̃

)
, (6)

ε =
9

14
dSGD

(
X̃ , 0̃

)
− 3

7

∫ 1

0
X̃L

α

(
2−α

)
dα. (7)

The proof can be found in (Berkachy, 2020). Note
that this definition will be used in the upcoming sec-
tions to randomly generate samples with respect to the
characteristics s0 and ε.

4 TRADITIONAL FUZZY
CONFIDENCE INTERVALS
FOR A PRE-DEFINED
PARAMETER

In an epistemic approach, the parameter θ for which
the confidence interval is produced, is considered to
be vague. Therefore, getting a fuzzy-type interval is
a direct consequence of the fuzziness of the param-
eter. Fuzzy confidence intervals can be defined us-
ing, for example, the (Kruse and Meyer, 1987) ap-
proach, and many computation procedures can be de-
rived from this definition. This includes the known
approach based on considering a pre-defined distribu-
tion. Hereafter, we recall the definition and the con-
struction procedure of a traditional fuzzy confidence
interval.

Let us consider a random sample X1, . . . ,Xn of size
n. Suppose this sample to be fuzzy. We denote by
X̃1, . . . , X̃n its fuzzy perception. For a given parameter
θ, we are interested in testing the following hypothe-
ses:

H0 : θ = θ0 against H1 : θ 6= θ0.

One could construct a fuzzy confidence interval for
θ to accomplish this task at a particular significance
level denoted by δ. Based on a vague sample, we de-
fine a two-sided fuzzy confidence interval Π̃ as de-
scribed in (Kruse and Meyer, 1987).

Definition 4.1 (Fuzzy confidence interval). [(Kruse
and Meyer, 1987)]. We denote by [π1,π2] a symmetri-
cal confidence interval for a particular parameter θ at
the significance level δ. A fuzzy confidence interval Π̃

is a convex and normal fuzzy set such that its left and
right α-cuts, respectively written by Π̃α = [Π̃L

α,Π̃
R
α],

are given as follows:

Π̃
L
α = inf

{
a ∈ R : ∃xi ∈ (X̃i)α,∀i = 1, . . . ,n,

such that π1(x1, . . . ,xn)≤ a
}
, (8)

Π̃
R
α = sup

{
a ∈ R : ∃xi ∈ (X̃i)α,∀i = 1, . . . ,n,

such that π2(x1, . . . ,xn)≥ a
}
. (9)

This fuzzy confidence interval is a 1− δ confidence
one if for a parameter θ, we have

P
(
Π̃

L
α ≤ θ≤ Π̃

R
α

)
≥ 1−δ, ∀α ∈ [0;1]. (10)

In the same way, we could also write a one-sided
fuzzy confidence interval as:

Remark 4.1. The α-level sets of a left one-sided fuzzy
confidence interval at a confidence level 1−δ denoted
by Π̃α are written as:

Π̃α = [Π̃L
α,∞],
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and the α-cuts of a right one-sided one are given by:

Π̃α = [−∞,Π̃R
α].

By way of example, it is useful to describe the
two-sided fuzzy confidence interval for the mean re-
lated to the normal distribution. It can be written as
follows:

Remark 4.2. Let X1, . . . ,Xn be a sample of size n
drawn from a normal distribution with a known vari-
ance and X̃1, . . . , X̃n be the corresponding fuzzy ran-
dom variable. X̃ is the fuzzy sample mean such that its
left and right α-cuts are respectively written as (X̃)L

α

and (X̃)R
α. The two-sided fuzzy confidence interval for

the mean of this fuzzy sample is written by its α-cuts
in the following way:

Π̃α =
[
Π̃

L
α,Π̃

R
α

]
=

[
(X̃)L

α−u1− δ

2

σ√
n
, (X̃)R

α +u1− δ

2

σ√
n

]
,(11)

where σ is the standard deviation and u1− δ

2
is the 1−

δ

2 ordered quantile taken from the standard normal
distribution.

5 FUZZY CONFIDENCE
INTERVALS BY THE
LIKELIHOOD METHOD

Fuzzy confidence intervals suit the statistical infer-
ence very well. Following Definition 4.1, construct-
ing a confidence interval for a particular parameter de-
pends on a specific distribution. We therefore present
a generalisation of the previous construction and give
a practical tool to estimate a fuzzy confidence inter-
val. In classical statistical theory, this task can be
done using the so-called ”likelihood ratio” method.
For fuzzy contexts, we proposed in (Berkachy and
Donzé, 2019a) a new approach to constructing fuzzy
confidence intervals based on the concept of the like-
lihood ratio, conveniently considering the fuzziness
contained in the variables. Note that the likelihood ra-
tio has been used several times in fuzzy environments
such as in (Gil and Casals, 1988) for hypotheses test-
ing.

Let us recall the definition of the likelihood func-
tion in classical theory.

Definition 5.1 (Likelihood function). Consider Xi,
i = 1, . . . ,n to be a sequence of random variables in-
dependent identically distributed (i.i.d). Let xi, i =
1, . . . ,n be their corresponding realisations. We de-
note by f (xi;θ) the probability density function (pdf)

of the variable Xi. Consider θ to be a vector of un-
known parameters in the parameter space Θ. We de-
fine the likelihood function L(θ;xi) by:

L(θ;xi) = f (xi;θ). (12)

In this case, the expression f (xi;θ) is called the like-
lihood function because it is now on a function of the
vector of parameters θ rather than xi.

Now assume that the variable Xi is fuzzy, and con-
sider its fuzzy perception. In other words, the fuzzy
random variable (FRV) X̃i is such that its correspond-
ing fuzzy realisation x̃i is associated with a measur-
able membership function written as µx̃i in the sense
of Borel, i.e. µx̃i : x→ [0;1]. Following the probabil-
ity notions defined by (Zadeh, 1968), we could then
expose the likelihood function described in the fuzzy
context as:

Definition 5.2 (Likelihood function of a fuzzy obser-
vation). Consider θ̃ to be a vector of fuzzy parameters
in the parameter space Θ. For a single fuzzy observa-
tion x̃i, the likelihood function can be expressed by:

L(θ̃; x̃i) = P(x̃i; θ̃) =
∫
R

µx̃i(x) f (x; θ̃)dx. (13)

This probability can also be expressed using the α-
cuts of the involved fuzzy numbers.

Now we consider the fuzzy sample x̃ composed
of all the fuzzy realisations x̃i of the fuzzy random
variable X̃i. We can express the likelihood function
L(θ̃; x̃) by:

L(θ̃; x̃) = P(x̃; θ̃)

=
∫
R

µx̃1(x) f (x; θ̃)dx · . . . ·
∫
R

µx̃n(x) f (x; θ̃)dx

=
n

∏
i=1

∫
R

µx̃i(x) f (x; θ̃)dx. (14)

We conclude that the log-likelihood function written
as l(θ̃; x̃) can be given as follows:

l(θ̃; x̃) = logL(θ̃; x̃)

= log
∫
R

µx̃1(x) f (x; θ̃)dx+ . . .

+ log
∫
R

µx̃n(x) f (x; θ̃)dx. (15)

We call ˆ̃
θ a maximum likelihood estimator (MLE) of

the fuzzy parameter θ̃. The likelihood ratio is given
by:

L(θ̃; x̃)

L( ˆ̃
θ; x̃)

,

such that L(θ̃; x̃) is the likelihood function related to
the fuzzy parameter θ̃, and L( ˆ̃

θ; x̃) is the likelihood
function depending on the estimator ˆ̃

θ with L( ˆ̃
θ; x̃) 6=
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0 and finite. It is important in this case to write the
logarithm of this ratio. This latter is nothing but the
difference between the log-likelihood functions eval-
uated at ˆ̃

θ and at θ̃. Let us then write the statistic LR
given by:

LR =−2 log
L(θ̃; x̃)

L( ˆ̃
θ; x̃)

= 2
[
l( ˆ̃

θ; x̃)− l(θ̃; x̃)
]
, (16)

such that L( ˆ̃
θ; x̃) 6= 0, L(θ̃; x̃) 6= 0 and are both finite.

Under classical statistical assumptions, the ratio LR
is known to be asymptotically χ2-distributed with a
particular number of degrees of freedom. Fuzzy sta-
tistical theories do not have any clear indication if this
asymptotical property can also be proved for the con-
sidered contexts. For this reason, in Section 5.2 we
propose a methodology to solve this problem using
bootstrap techniques.

Recall that our purpose in constructing a 100(1−
δ)% confidence interval is to find every value of θ̃ for
which we reject or we do not reject the null hypothe-
sis. To construct the required 100(1−δ)% fuzzy con-
fidence interval, let η be the (1− δ)-quantile of the
distribution of LR. The confidence interval can then
be given by:

2
[
l( ˆ̃

θ; x̃)− l(θ̃; x̃)
]
≤ η. (17)

It can equivalently be given by

l(θ̃; x̃)≥ l( ˆ̃
θ; x̃)− η

2
. (18)

This latter can be explained as the interval composed
of all the possible values of θ̃ for which the log-
likelihood maximum varies by no more than η

2 . We
add that depending on LR, the constructed fuzzy con-
fidence interval Π̃LR given by its left and right α-cuts
[(Π̃LR)

L
α;(Π̃LR)

R
α] has to insure the following equation

P
(
(Π̃LR)

L
α ≤ θ≤ (Π̃LR)

R
α

)
≥ 1−δ, ∀α∈ [0;1] (19)

for every value of the parameter θ. Therefore, we
propose the construction of fuzzy confidence intervals
using the following procedure.

5.1 Procedure

Our idea is to revisit the methodology of constructing
fuzzy confidence intervals using the likelihood ratio.
In our case, the data set is considered to be impre-
cise. The log-likelihood becomes a function of fuzzy
information. Recall that the parameter is considered
to be fuzzy. It is then natural to see that the needed
MLE estimator has to be fuzzy nature-based. Con-
sequently, assume that the calculated crisp MLE es-
timator is modelled by a convenient fuzzy number.

Accordingly, the support set of this fuzzy number is
a set of crisp elements. Considering every element of
this set in the calculation process of the log-likelihood
function is computationally tedious. For this reason,
we propose choosing specific values leading to the
calculation of the so-called threshold points. The in-
tersection between these threshold points and the log-
likelihood curve will be particularly interesting for us
in the process of calculating the fuzzy confidence in-
terval.

To develop this idea, let us first expose the so-
called standardising function. It is deliberately pro-
posed to preserve the [0;1]-interval identity as a basic
property of α-level sets. It is given by:
Definition 5.3 (Standardising function). [(Berkachy,
2020)]. Let θ̃ be a fuzzy number with its member-
ship function µ

θ̃
and θ ∈ supp (θ̃). The standardising

function Istand is:

Istand : R → R

l(θ, x̃) 7→ Istand
(
l(θ, x̃)

)
=

l(θ, x̃)− Ia

Ib− Ia
,

where Ia and Ib are arbitrary real values such
that Ia ≤ l(θ, x̃) ≤ Ib and Ia 6= Ib. We have that
Istand

(
l(θ, x̃)

)
is bounded and 0≤ Istand(l(θ, x̃))≤ 1.

The different steps of the calculation procedure
can now be given as follows:
1. Consider a fuzzy parameter θ̃. We first have to

calculate the log-likelihood function l(θ̃; x̃) de-
scribed in Equation 16.

2. Next, from the support and the core sets defining
the fuzzy number modelling the MLE estimator
composed of an infinity of values, we choose the
lower and upper bounds only. In this way, we re-
duce the number of considered elements to four,
and we denote them by p, q, r and s, such that
p ≤ q ≤ r ≤ s. Consider supp( ˆ̃

θ) and core( ˆ̃
θ) to

be the support and the core sets of ˆ̃
θ, respectively.

The four values p, q, r and s are given by:

p = min(supp( ˆ̃
θ)); q = min(core( ˆ̃

θ)); (20)

r = max(core( ˆ̃
θ)) and s = max(supp( ˆ̃

θ)). (21)

We know that the fuzzy parameter is bounded and
the sets supp( ˆ̃

θ) and core( ˆ̃
θ) are not empty. It is

then clear that the four values p, q, r and s always
exist. We mention that this choice of elements
is somehow evident specifically for the case of a
symmetrical probability function because the left
and right-hand sides of a log-likelihood function
are monotonic and continuous.

3. Next, we estimate η. We propose to use the boot-
strap technique developed in the next section.
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4. Once the parameter η is estimated, we calculate
the threshold values denoted by I1, I2, I3 and I4
corresponding respectively to the chosen values
p, q, r and s. Thus, we affect θ by each of the
four values on the right-hand side of Equation 19.
They are then written in the following manner:

I1 = l(p; x̃)− η

2
; I2 = l(q; x̃)− η

2
; (22)

I3 = l(r; x̃)− η

2
and I4 = l(s; x̃)− η

2
.(23)

5. Next, we denote by Imin and Imax the minimum
and maximum thresholds given by:

Imin = min(I1, I2, I3, I4), (24)
and Imax = max(I1, I2, I3, I4). (25)

It is important to find Imin and Imax and include
them in the calculation process in order to cover
the entirety of the interval of the possible values
verifying Equation 19.

6. We are now interested in finding the intersec-
tion between the log-likelihood function and the
threshold values I1, I2, I3 and I4. Let θ?L

1 , θ?L
2 ,

θ?L
3 , θ?L

4 and θ?R
1 , θ?R

2 , θ?R
3 , θ?R

4 be the intersection
abscisses. The letters ”L” and ”R” refer to the left
and right sides of a given entity. The abscisses can
be calculated by solving the following equations:

lL(θ?L
1 ; x̃) = I1 and lR(θ?R

1 ; x̃) = I1, (26)
lL(θ?L

2 ; x̃) = I2 and lR(θ?R
2 ; x̃) = I2, (27)

lL(θ?L
3 ; x̃) = I3 and lR(θ?R

3 ; x̃) = I3, (28)

lL(θ?L
4 ; x̃) = I4 and lR(θ?R

4 ; x̃) = I4. (29)

7. We then find the minimum and maximum left in-
tersection abscisses written as

θ
?L
inf = inf(θ?L

1 ,θ?L
2 ,θ?L

3 ,θ?L
4 ), (30)

and θ
?L
sup = sup(θ?L

1 ,θ?L
2 ,θ?L

3 ,θ?L
4 ). (31)

The minimum and maximum right intersection
abscisses are analogously given by:

θ
?R
inf = inf(θ?R

1 ,θ?R
2 ,θ?R

3 ,θ?R
4 ), (32)

and θ
?R
sup = sup(θ?R

1 ,θ?R
2 ,θ?R

3 ,θ?R
4 ). (33)

Note that these left and right side intersection ab-
scisses are single and real values.

8. These intersection abscisses and the previously
calculated entities are consequently used to con-
struct the α-cuts of the fuzzy confidence interval
using the likelihood ratio method Π̃LR. We pro-
pose to write the left and right α-cuts (Π̃LR)α =

[
(Π̃LR)

L
α;(Π̃LR)

R
α

]
as follows:

(Π̃LR)
L
α =

{
θ ∈ R | θ?L

inf ≤ θ≤ θ
?L
sup and

α = Istand
(
l(θ, x̃)

)
=

l(θ, x̃)− Imin

Imax− Imin

}
,(34)

(Π̃LR)
R
α =

{
θ ∈ R | θ?R

inf ≤ θ≤ θ
?R
sup and

α = Istand
(
l(θ, x̃)

)
=

l(θ, x̃)− Imin

Imax− Imin

}
.(35)

We add that we are able to prove that the fuzzy confi-
dence interval Π̃LR previously described verifies Defi-
nition 4.1. In addition, it can be proved that regarding
the coverage rate, Equation 20 holds from a theoret-
ical point of view. The complete proofs of both as-
sumptions can be found in (Berkachy, 2020).

5.2 Bootstrap Technique for the
Approximation of the Likelihood
Ratio and Its Distribution

(Efron, 1979) formally proposed the bootstrap tech-
nique to empirically estimate a particular sampling
distribution using some observed data. Based on a
random primary sample drawn from an unknown
distribution, his method seeks to draw a large number
of samples and thus construct a so-called bootstrap
distribution of the statistic of interest. This technique
aims to ensure the estimation of such distributions
using random-based procedures. It has also been
thought in the fuzzy environment. For example, the
bootstrap technique was used in the hypotheses test-
ing procedure for the mean of fuzzy random variables
as discussed in (Gonzalez-Rodriguez et al., 2006).
(Montenegro et al., 2004) stated that a bootstrap
methodology is considered to be computationally
lighter than asymptotic designs, for example.

For our fuzzy context, our idea is to empirically
estimate the distribution of the likelihood ratio
LR shown in Equation 17—the difference of the
log-likelihood function evaluated at ˆ̃

θ compared to
the one evaluated at θ̃. We propose the following
two approaches to construct the bootstrap imprecise
samples.

• The first approach is based on simply generating
with replacement a number D of bootstrap sam-
ples. For each sample, we calculate the needed
deviance. The corresponding algorithm is as
follows:
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Algorithm 1:

1. Consider a particular estimator ˆ̃
θ. Based on the

primary fuzzy sample, compute the value of the
deviance 2

[
l( ˆ̃

θ; x̃)− l(θ̃; x̃)
]
.

2. From the original data set, construct a bootstrap
data set by drawing randomly with replacement
a set of observations.

3. Calculate the bootstrapped deviance 2
[
l( ˆ̃

θ; x̃)−
l(θ̃; x̃)

]boot.
4. Recursively repeat the Steps 2 and 3 a large

number D of times. The aim is to construct the
bootstrapped distribution composed of D val-
ues.

5. Find η, the (1−δ)-quantile of the bootstrapped
distribution of the LR.

• The second approach is to generate D sam-
ples by preserving the location and dispersion
characteristics s0 and ε, respectively, of the
nearest symmetrical trapezoidal fuzzy numbers.
These fuzzy numbers are calculated based on
the primary data set as seen in Proposition 3.3.
Algorithm 2 using the characteristics (s0,ε) is
given by:

Algorithm 2:

1. For each observation of the primary sample,
calculate the set of characteristics (s0,ε).

2. From the calculated set of characteristics (s0,ε)
related to the initial data set, randomly draw
with replacement and with equal probabilities a
set of characteristics (s0,ε). Based on this set,
construct a bootstrap sample.

3. For each bootstrap sample, calculate the de-
viance 2

[
l( ˆ̃

θ; x̃)− l(θ̃; x̃)
]boot.

4. Recursively repeat the Steps 2 and 3 a large
number D of times. The aim is to construct the
bootstrapped distribution composed of D val-
ues.

5. Find η, the (1−δ)-quantile of the bootstrapped
distribution of LR.

For our approach, it is crucial to calculate a max-
imum likelihood estimator. The fuzzy EM algorithm
can be adopted as seen in (Denoeux, 2011). How-
ever, a drawback of this specific algorithm is that it
produces a crisp estimator instead of a fuzzy one. Be-
cause we lack of methods for obtaining a fuzzy maxi-
mum likelihood estimator in such contexts, we pro-
pose modelling the calculated EM crisp-based esti-

mator using a triangular fuzzy number. This crisp
element will serve as the core of the required fuzzy
number. Regarding its shape, we propose to use sym-
metrical triangles as a first step in reducing as much
as possible the complexity that could be due to the
choice of shapes. The R package EM.Fuzzy described
in (Parchami, 2018) can be used to find the crisp esti-
mators using the EM algorithm.

Finally, note that in practical settings the proposed
detailed procedure and calculations can be easily
computed using our R package FuzzySTs described
in (Berkachy and Donzé, 2020) and developed for ap-
plication purposes.

5.3 Simulation Study

Next, we propose a simulation study illustrating the
use of the presented bootstrap algorithms in the pro-
cess of calculating fuzzy confidence intervals. We
randomly generate data sets from different character-
istics and different sample sizes. Consider data sets
composed of N = 50, 100 and 500 observations and
taken from a normal distribution N(5,1). To simplify
the situation, we model the observations of our data
sets by triangular symmetrical fuzzy numbers with a
support set of spread 2.

We calculate the fuzzy confidence intervals us-
ing the likelihood ratio method for the theoretical
mean of the generated data sets at the confidence level
1− δ = 1− 0.05. Therefore, we have to estimate the
bootstrapped quantile η. This is done for each data
set using Algorithms 1 and 2 proposed in Section 5.2.
In our previous studies, we remarked that the num-
ber of iterations did not really influence the outcome
of the calculations. Therefore, we consider the case
of D = 1000 iterations for all our calculations. How-
ever, the fuzzy EM algorithm for calculating EM esti-
mators leads to crisp estimators instead of fuzzy ones.
For this reason, we assume the following two ways of
modelling the MLE estimator:

• the first way is by using a triangular symmetrical
fuzzy number of spread 2;

• the second way is by using a triangular symmetri-
cal fuzzy number of spread 1.

One of our interests is to investigate the influ-
ence of the intentionally chosen degree of fuzziness
of these estimators on the characteristics of the con-
structed fuzzy confidence intervals. Note that we will
additionally use the fuzzy sample mean as a fuzzy es-
timor for the sake of comparison.

Table 1 shows the 95%-quantiles of the boot-
strapped distribution of the likelihood ratio LR for
the cases of 50, 100 and 500 sample sizes. From
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this table, we can briefly remark that the quantiles
depending on the sample sizes and/or the algorithm
chosen are somehow close. Furthermore, it is clear
that greater fuzziness, that is modelling the MLE esti-
mator using a fuzzy number with spread 2, leads to a
greater quantile compared to the case where the mod-
elling fuzzy number is less fuzzy, that is, modelling
the MLE estimator by a fuzzy number with spread 1.

Table 1: The 95%-quantiles of the bootstrapped distribution
of LR - Case of a data set taken from a normal distribution
N(5,1) modelled using triangular symmetrical fuzzy num-
bers at 1000 iterations.

Algorithm 1
Sample size N=50 N=100 N=500
Bootstrap quantile using 1.990 2.038 2.342
the sample mean
Bootstrap quantile using the 1.809 1.927 2.181
MLE estimator (Spread 2)
Bootstrap quantile using the 1.523 1.626 1.825
MLE estimator (Spread 1)

Algorithm 2
Sample size N=50 N=100 N=500
Bootstrap quantile using 1.802 1.845 2.118
the sample mean
Bootstrap quantile using the 1.854 1.971 2.201
MLE estimator (Spread 2)
Bootstrap quantile using the 1.563 1.671 1.864
MLE estimator (Spread 1)

Based on the boostrapped quantiles shown in Ta-
ble 1, we now calculate the fuzzy confidence intervals
using the likelihood method following the instructions
given in Section 5.1. Note that for the construction of
confidence intervals, we will develop the case with
N = 500 observations only. Table 2 gives the lower
and upper bounds of the support and the core sets of
the calculated fuzzy confidence intervals.

Let us first look at the influence of the choice of
the bootstrap algorithm on the constructed confidence
intervals. From Table 2, it is clear that no notable dif-
ferences exist between the support and the core sets
obtained by both algorithms. We can conclude that
the choice of algorithms has no evident effect on the
outcome of the approach. Therefore, although the de-
sign of both algorithms is different relative to points
1 and 2, similar results are depicted. Obviously, the
small fluctuations in the bootstrapped quantiles given
in Table 1 did not drastically influence the outcome of
our approach.

Contrarily, regarding the fuzziness chosen for
modelling the MLE estimator, we can clearly see a
difference in the support sets of the calculated fuzzy
confidence intervals. In fact, less fuzziness in the
fuzzy number modelling the MLE estimator leads to

a smaller support set of the obtained confidence in-
terval. By way of example for Algorithm 1, the fuzzy
confidence interval for the MLE estimator with spread
1 has a smaller support set (i.e. [4.303;5.685]) than
the fuzzy confidence interval for the MLE estimator
with spread 2 (i.e. [3.804;6.184]). Consequently, be-
cause the degree of fuzziness of the estimator directly
affects the constructed fuzzy confidence interval, it is
very important to carefully model this MLE estimator.

Next, we compare the constructed bootstrap fuzzy
confidence intervals to the traditional fuzzy confi-
dence interval Π̃ given by the trapezoidal fuzzy num-
ber Π̃ = (3.907,4.907,5.080,6.080), as shown in
Section 4. We can see that the bootstrap fuzzy con-
fidence interval using the MLE estimators results in
slightly larger core sets, while the characteristics of
the obtained support sets differ between the cases de-
pending on the degree of fuzziness of the MLE esti-
mator. In this context, we add that once we use the
fuzzy sample mean as an estimator in the calculation
process, we get a fuzzy confidence interval for which
the support and the core sets are tighter than the ones
of the traditional fuzzy confidence interval Π̃.

Table 2: The fuzzy confidence interval by the likelihood ra-
tio at the 95% significance level - Case of 500 observations
taken from a normal distribution N(5,1) modelled by trian-
gular symmetrical fuzzy numbers.

Algorithm 1
Support set Core set

Lower Upper Lower Upper
fci using the 3.991 5.996 4.940 5.047
sample mean
fci using the MLE 3.804 6.184 4.795 5.193
estimator (Spread 2)
fci using the MLE 4.303 5.685 4.797 5.191
estimator (Spread 1)

Algorithm 2
Lower Upper Lower Upper

fci using the 3.991 5.996 4.945 5.042
sample mean
fci using the MLE 3.803 6.184 4.795 5.193
estimator (Spread 2)
fci using the MLE 4.303 5.685 4.797 5.191
estimator (Spread 1)

Simulation Study on Coverage Rates. It is cru-
cial to investigate the coverage rates corresponding to
the fuzzy confidence intervals calculated using the de-
fended likelihood method. We generated a large num-
ber of data sets composed of N = 100, 500 and 1000
observations. These data sets are considered to be un-
certain. Every observation is modelled by a triangu-
lar symmetrical fuzzy number such that its spread is
equal to 2. For these samples, we estimate fuzzy con-
fidence intervals for the mean at the confidence level
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1− δ = 1− 0.05. We are particularly interested in
calculating the coverage rates of the constructed con-
fidence intervals.

For this study, we used both Algorithms 1 and 2
to estimate the bootstrapped distribution of the like-
lihood ratio LR. These calculations were performed
using the MLE estimators modelled by fuzzy num-
bers of spreads 1 and 2. For the sake of comparison,
we also considered the fuzzy sample mean, similar to
the previously described analysis. The fuzzy confi-
dence intervals obtained using the likelihood method
are then constructed and their coverage rates calcu-
lated. As a final step, we compare their coverage rates
with the rates of the traditional fuzzy ones given in
Equation 11.

It appears that the coverage rates of the boot-
strap fuzzy confidence intervals calculated using Al-
gorithms 1 and 2 are overall very close in the various
setups. The difference is not noteworthy. Therefore,
we propose elaborating the rates of the intervals using
Algorithm 1 only.

Overall, the difference in the coverage rates of the
bootstrap fuzzy intervals compared to the ones of the
traditional fuzzy method is slight. This difference did
not exceed 1.4% in all the cases. Using similar setups
as in the previously described analysis, the results are
developed as follows.

Regarding the data sets composed of 500 obser-
vations, we found that the coverage rate of the fuzzy
confidence interval achieved by the likelihood method
using the fuzzy sample mean is about 94.4% in the
core set and about 100% in the support set. It is ex-
actly the same as the rate for the traditional fuzzy con-
fidence interval. Nevertheless, according to the fuzzy
confidence intervals calculated using the spread 1 and
spread 2 fuzzy numbers modelling the MLE estima-
tors, the coverage rates are about 95.6% in the core
set for both cases and about 100% in the support set.
Remember that these rates are somehow acceptable
in this context since theoretically a 95% confidence
level has to be guaranteed. From these numbers, it is
clear that the fuzziness contained in the MLE estima-
tor is supposed to be uncertain. Although affecting
its spread, the fuzziness did not actually influence the
coverage rate of the calculated fuzzy confidence inter-
val.

As a general interpretation of the outcome of our
approach compared to the traditional fuzzy one, we
can say that the LR fuzzy confidence interval us-
ing the MLE estimators modelled by fuzzy numbers
seemed to be slightly less restrictive than the tradi-
tional fuzzy one. Therefore, once the fuzzy sample
mean serves as an estimator, the support of the ob-
tained interval appears to be smaller. In this context,

it would be interesting to further investigate the be-
havior of the coverage rates in several setups and to
find an appropriate theoretical method for calculating
fuzzy MLE estimators.

6 NUMERICAL APPLICATION

Let us now discuss the construction of such confi-
dence intervals where we suppose our data and the
hypotheses to be fuzzy. We will consider the known
normal distribution in order to simplify understanding
the different steps.

Suppose a random sample composed of 10 ob-
servations X1, . . . ,X10 given in Table 3. This sample
is supposed to be taken from a normal distribution
with a mean µ and a known variance σ2 = 1.29,
i.e. N(µ,σ2 = 1.29). We consider this sample to
be uncertain and model its fuzzy perception using
triangular fuzzy numbers. The setups to estimate a
particular fuzzy confidence interval for the mean µ at
the confidence level 1−δ = 1−0.05 are given in the
following steps:

Table 3: The data set and the fuzzified observations.

Index Xi Triangular Fuzzy Number

1 4 (3,4,5)

2 1 (0,1,2)

3 3 (2,3,4)

4 2 (1,2,3)

5 3 (2,3,4)

6 2 (1,2,3)

7 5 (4,5,6)

8 2 (1,2,3)

9 3 (2,3,4)

10 3 (2,3,4)

X = 2.8 X̃ = (1.8,2.8,3.8)

• Model the Data: Suppose the following mod-
elling schema:
– the value ”1” modelled by L̃1 = (0,1,2),
– the value ”2” modelled by L̃2 = (1,2,3),
– the value ”3” modelled by L̃3 = (2,3,4),
– the value ”4” modelled by L̃4 = (3,4,5),
– the value ”5” modelled by L̃5 = (4,5,6).
Based on this, we obtain the modelled sample
shown in Table 3.
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• Define the Required Test: We test a fuzzy null
hypothesis H̃0 against a fuzzy alternative one H̃1
for the mean µ at the significance level δ = 0.05.
Let us consider the following fuzzy hypotheses H̃0
and H̃1:
H̃T

0 = (1.8,2,2.3) against H̃T
1 = (2.25,2,5).

• Calculate the Fuzzy Sample Mean: The
fuzzy sample average X̃ of the fuzzy percep-
tions of the n = 10 observations denoted by
X̃ = (1.8,2.8,3.8) can be written by its α-cuts
(X̃)α = [(X̃)L

α;(X̃)R
α] = [1.8+α;3.8−α].

6.1 Estimation of the Traditional Fuzzy
Confidence Interval for the Mean

A traditional fuzzy confidence interval for the mean
µ at the confidence level 1− δ = 1− 0.05 can be es-
timated as presented in Definition 4.1. We obtain the
lower and upper bounds of the confidence interval at
the confidence level 1−0.05:

Π̃α =
[
Π̃

L
α;Π̃

R
α

]
=

[
(X̃)L

α−u1− δ

2

σ√
n

;(X̃)R
α +u1− δ

2

σ√
n

]
=

[
1.0965+α;4.5034−α

]
,

where u1− δ

2
= u0.975 = 1.96 is the 0.975-quantile of

the normal distribution, σ = 1.135 is the standard de-
viation and n = 10 is the number of observations. The
obtained interval is shown in Figure 1.
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Figure 1: Traditional fuzzy confidence interval for the mean
Π̃ - Section 6.

6.2 Estimation of the Fuzzy Confidence
Interval for the Mean using the
Likelihood Method

We now re-calculate the fuzzy confidence interval
for the mean but use the likelihood methodol-
ogy presented above. At the confidence level

1 − δ = 1 − 0.05, the fuzzy confidence interval
obtained using the likelihood method denoted by Π̃LR
can then be constructed in the following way:

1. Consider the probability density function f (x; θ̃)
of the standard normal distribution such that σ =
1.135. For the fuzzy sample X̃i, i = 1, . . . ,10, we
first calculate the log-likelihood function written
as:

l(θ̃; x̃) = log
∫
R

µX̃1
(x) f (x; θ̃)dx+ . . .

+ log
∫
R

µX̃10
(x) f (x; θ̃)dx

= log
∫ 4

3
(3+ x) f (x; θ̃)dx

+ log
∫ 5

4
(5− x) f (x; θ̃)dx+ . . .

+ log
∫ 3

2
(2+ x) f (x; θ̃)dx

+ log
∫ 4

3
(4− x) f (x; θ̃)dx.

2. Once we assume the sample to be fuzzy, we can
consider the parameter to be fuzzy as well. How-
ever, we first calculate a crisp maximum likeli-
hood estimator for the mean. The EM algorithm
for the fuzzy context gives the crisp MLE estima-
tor ˆ̃

θ = 3.6568. Let us now model this crisp esti-
mator using the following triangular symmetrical
fuzzy number (3.1568,3.6568,4.1568). We high-
light that its support set is nothing but the interval
[3.1568;4.1568], and its core set is reduced to the
element 3.6568.

3. Let us now consider Algorithm 1 to estimate the
distribution of the likelihood ratio LR by the boot-
strap technique. At the significance level δ =
0.05, the bootstrapped (1− δ)-quantile η is esti-
mated to be η= 1.4778. We then get η

2 = 1.4778
2 =

0.7389. The threshold points I1, I2, I3 and I4 as
described in Equations 23 and 24 have to be cal-
culated afterwards. They are given by:

I1 = l(3.1568; x̃)−0.7389 =−16.2258,
I2 = l(3.6568; x̃)−0.7389 =−18.3079,
I3 = l(3.6568; x̃)−0.7389 =−18.3079,
I4 = l(4.1568; x̃)−0.7389 =−22.1101.

Note that the minimum and maximum
thresholds shown in Figure 2(a) are
Imin = min(I1, I2, I3, I4) = −22.1101, and
Imax = max(I1, I2, I3, I4) =−16.2258.

4. The intersection points θ?L
1 , θ?L

2 , θ?L
3 , θ?L

4 and θ?R
1 ,

θ?R
2 , θ?R

3 , θ?R
4 have to be found as proposed in
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(b) Fuzzy confidence interval by likelihood ratio method Π̃LR.

Figure 2: The construction process of the fuzzy confidence interval by the likelihood ratio method - Section 6.

Equations 27, 28, 29 and 30. We get:

θ
?L
1 = 2.2175, θ

?R
1 = 3.3838,

θ
?L
2 = θ

?L
3 = 1.8276, θ

?R
2 = θ

?R
3 = 3.7736,

θ
?L
4 = 1.3674, θ

?R
4 = 4.2332.

The minimum and maximum intersection ab-
scisses θ?L

inf, θ?L
sup, θ?R

inf and θ?R
sup are given by:

θ
?L
inf = inf(θ?L

1 ,θ?L
2 ,θ?L

3 ,θ?L
4 ) = 1.3674,

θ
?R
inf = inf(θ?R

1 ,θ?R
2 ,θ?R

3 ,θ?R
4 ) = 3.3838,

θ
?L
sup = sup(θ?L

1 ,θ?L
2 ,θ?L

3 ,θ?L
4 ) = 2.2175,

θ
?R
sup = sup(θ?R

1 ,θ?R
2 ,θ?R

3 ,θ?R
4 ) = 4.2332.

5. For the last step, we standardise the obtained func-
tion to the y-interval [0;1] and get the following
fuzzy confidence interval Π̃LR given by its left
and right α-cuts (Π̃LR)α =

[
(Π̃LR)

L
α,(Π̃LR)

R
α

]
as

shown in Equations 35 and 36:

(Π̃LR)
L
α =

{
θ ∈ R | 1.3674≤ θ≤ 2.2175

and α =
l(θ, x̃)+22.1101

5.8843

}
,

(Π̃LR)
R
α =

{
θ ∈ R | 3.3838≤ θ≤ 4.2332

and α =
l(θ, x̃)+22.1101

5.8843

}
.

This latter is shown in Figure 2(b).

6.3 Comparison and Interpretation

At this stage, it would be interesting to compare the
fuzzy confidence interval obtained using the likeli-
hood approach Π̃LR to the traditional fuzzy confi-
dence interval Π̃. If we superpose Figures 1 and 2(b),
we can clearly see that the likelihood-based interval

Π̃LR has a tighter support set than the traditional in-
terval Π̃, i.e. Π̃LR ⊆ Π̃. In the considered specific se-
tups, we can say that our approach appears to be more
restrictive. In other words, with our approach we tend
to reject the hypothesis under study more often. We
highlight that this interpretation can be slightly op-
posite in the situation with a larger support set of
the fuzzy confidence interval. This could be mainly
due to a greater amount of fuzziness contained in the
fuzzy number modelling the MLE estimator.

Furthermore, concerning the shape of the obtained
confidence intervals, i.e. their membership functions,
it is clear that the shape of the traditional one strongly
depends on the modelling procedure of the studied
sample—in other words on the shape of the chosen
fuzzy numbers. Note that this statement is similar in
the case of the fuzzy sample mean. Contrarily, the
fuzzy confidence interval obtained using the likeli-
hood method relies directly on the probability density
function connected to the considered data set. Finally,
we can clearly see that the shape of the LR interval is
more elaborated than the traditional one. This is con-
sidered an increase in the accuracy of such calculation
methodologies.

7 CONCLUSION

This study proposed a complete procedure to estimate
fuzzy confidence intervals using the likelihood ratio
method. This required estimating the distribution of
the likelihood ratio. A contribution of this research is
the use of the bootstrap technique to accomplish this
task. Two algorithms are discussed—a simple one
and a more complex one based on preserving the loca-
tion and dispersion measures related to a new metric
called the dθ?

SGD metric.
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It is clear that such methodologies are computa-
tionally expensive. However, our procedure consti-
tutes an affordable tool to reduce this computational
complexity. Furthermore, our contribution is in some
sense general, as it can be applied to a variety of esti-
mators.

Finally, the main problem encountered is in the
fuzziness contained in the fuzzy number modelling
the maximum likelihood estimator. An investigation
of different use cases depending on several modelling
schemas for this estimator is welcome. Overall, a
method of calculating a fuzzy-nature maximum like-
lihood estimator needs to be developed in future re-
search.
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