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Abstract: Gene selection (GS) is a challenging problem in medical applications. This is because of the availability of a
large number of genes and a limited number of patient’s samples in microarray datasets. Selecting the most
relevant genes is a necessary pre-processing step for building reliable cancer classification systems. This paper
proposes two new fitness functions in Binary Harris Hawks Optimization (BHHO) for GS. The main objective
is to select a small number of genes and achieve high classification accuracy. The first fitness function balances
between the classification performance and the number of genes. This is done by using a weight that increases
linearly throughout the optimization process. The second fitness function is applied across two-stages. The
first stage optimizes the classification performance only while the second stage takes into consideration the
number of genes. K-nearest neighbor (K-nn) is used to evaluate the proposed approaches on ten microarray
data sets. The results show that the proposed fitness functions can achieve better classification results compared
with the fitness function that takes into account only the classification performance. Besides, they outperform
three other wrapper-based methods in most of the cases. The second fitness function outperforms the first
fitness function across most of the datasets based on classification accuracy and the number of genes.

1 INTRODUCTION

Microarray technology is a major application in
medicine and bioinformatics. In recent years, gene
expression datasets have been used for the diagnosis
of many diseases such as cancer disease. The gene
expression data sets cause a challenging problem for
data mining tasks (e.g classification). This is because
they are coded by a large number of genes and a lim-
ited number of instances that represent the clinical pa-
tient status (Alomari et al., 2018). The large dimen-
sionality problem, also known as the curse of dimen-
sionality problem has many negative consequences
on the classification system. The existence of irrel-
evant and redundant genes reduces the effectiveness
of the generalization process, complicates the learned
model, increases the learning time, makes the identi-
fication of a disease a difficult task and increases the
cost of the biological classification system due to in-
creasing the demand for specialized resources.

Gene selection (GS) is a data mining method that
is used to simplify the large scale gene expression data
sets by retaining the most informative genes. These
are considered the key marker in the identification of

a disease (Chuang et al., 2011). The noisy genes such
as irrelevant and redundant genes are discarded and
eliminated from the training process. This can sim-
plify the learning model, speed up the learning pro-
cess, and potentially increase the performance of dis-
ease identification (Mohamad et al., 2011). The out-
put of the GS process is a compact gene expression
data that can be used in the testing stage to produce
the final decision about the clinical status of a patient.

GS compromises the search and evaluation pro-
cesses. According to evaluation, the GS methods are
commonly classified into filter and wrapper methods
(Khurma et al., 2020). The filter methods (e.g In-
formation gain) use the intrinsic characteristics of the
dataset. Wrapper methods uses a learning algorithm
in GS process to perform an internal learning process.

The search algorithm examines the gene space to
find the optimal subset of genes that contains the most
useful genes in the diagnosis of a disease. Tradition-
ally, the complete search methods generate the entire
gene space and exhaustively traverse all the gene sub-
sets. This leads to an exponential running time, which
makes GS an Np-hard problem.

Meta-heuristic algorithms (MH) are stochastic
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search methods that have been widely used to miti-
gate the GS process (Khurma. et al., 2020). They
initialize random solutions at the beginning of the
search and iteratively evaluate and update them until a
stopping criterion is satisfied. MH algorithms include
the Swarm Intelligence (SI) algorithm (Khurma et al.,
2020).

SI algorithms are inspired by the natural behavior
of creatures such as a flock of birds, swarm of wolves,
school of fish. Swarm-based systems share informa-
tion between the individuals of a swarm to survive.
Common examples of SI algorithms include Parti-
cle Swarm Optimization (PSO) (Emary et al., 2016),
Grey Wolves Optimization (GWO) (Zawbaa et al.,
2018), Bat Algorithm (BA) (Al-Betar et al., 2020),
and Cuckoo Search (CS) (Moghadasian and Hosseini,
2014).

The search process in SI algorithms has mainly
two phases: exploration and exploitation. In explo-
ration, the individuals search globally in the gene
search space to find the most promising region that
may include the optimal solution. In exploitation, the
individuals search locally in the found region to ap-
proach to the optimal solution.

Many SI algorithms have been proposed and mod-
ified in the literature to increase the performance of
GS process for classification of diseases. In (Tran
et al., 2014), the Binary Particle Swarm optimization
algorithm (BPSO) was modified by adopting the re-
set strategy to allow the stagnated best solution to
jump from local minima. The BPSO was modified
by Boolean algebra operation in (Emary et al., 2016).
The BPSO was modified using the binary quantum
operator in (Xi et al., 2016). The new model called
BQPSO applied a sampling around the personal best,
then used the average of the sampled points to update
the current solution. A hybrid model called GWO-
ALO integrated the GWO and Ant Lion Optimiza-
tion (ALO) in (Zawbaa et al., 2018). The main ob-
jective was to exploit the global search ability of the
GWO and the local search performance of the ALO.
A model compromised of the CS algorithm, Mutual
Information (MI), entropy filters, and artificial neu-
ral network (ANN) was proposed in (Moghadasian
and Hosseini, 2014). In (Al-Betar et al., 2020), a
hybrid filter/wrapper, called rMRMR-MBA was pro-
posed based on robust Minimum Redundancy Max-
imum Relevancy (rMRMR) filter and a modified bat
algorithm (MBA) using TRIZ optimisation operators.

Harris Hawks Optimization (HHO) is a new SI
algorithm proposed in 2019 (Heidari et al., 2019).
The HHO simulates the hunting behavior of Harris’
hawks in nature. The extensive experimental com-
parisons in (Heidari et al., 2019) showed that HHO

outperformed well-regarded optimization algorithms
when they were investigated on unconstrained, uni-
modal, multi-modal, and composition problems. A
wide range of applications adopted the HHO algo-
rithm (Thaher et al., 2020). However, HHO has never
been used in the medical and bioinformatics applica-
tions. This paper investigates for the first time the
performance of the HHO algorithm in solving the GS
problem. The accuracy and the size of the selected
gene subsets are used as evaluation measurements.
The stability of the clinical classification system is de-
termined by noticing the standard deviation of the av-
erage accuracy results across 30 runs of the algorithm.

This paper aims to develop a new fitness function
in HHO for GS in microarray data sets. The over-
all goal is to enhance the classification performance
of cancer diseases. The expectation is to determine
the smallest subset of relevant genes that can increase
the classification performance. To achieve this goal,
this paper proposes two new fitness functions in HHO
for solving the GS problem. The new fitness func-
tions will be evaluated on ten benchmark microarray
data sets with different numbers of genes and sam-
ples. Specifically, we will investigate:

• The performance of HHO with a fitness function
that considers the classification performance only.

• The performance of HHO with a fitness function
that considers the classification performance and
number of genes simultaneously.

• The performance of HHO with a two-stage fitness
function that considers the classification perfor-
mance first then takes into account the number of
selected genes.

The remainder of the paper is organized as fol-
lows: Harris Hawks Optimization is presented in Sec-
tion 2. Section 3 describes the HHO for GS. Section
4 describes the two proposed BHHO based GS ap-
proaches with new fitness functions. Section 5 de-
scribes the experimental design. Section 6 presents
the experimental results with discussions. Compar-
isons with wrapper-based GS methods are provided
in Section 7. Finally, Section 8 provides conclusions
and future work.

2 HARRIS HAWKS
OPTIMIZATION

HHO has two phases of exploration and four phases
of exploitation.
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2.1 Exploration Phase

In HHO, the Harris’ hawks perch randomly on some
locations and wait to detect a prey based on two
strategies. By considering equal chance q for each
perching strategy, they perch based on the positions
of other family members and the rabbit, which is
modeled in Eq. (1) for the condition of q < 0.5, or
perch on random tall trees , which is modeled in Eq.
(1) for condition of q≥ 0.5.

X(t+1) ={
Xrand(t)− r1 |Xrand(t)−2r2X(t)| q≥ 0.5

(Xrabbit(t)−Xm(t))− r3(LB+ r4(UB−LB)) o.w
(1)

where X(t + 1) is the position vector of hawks in the
next iteration t, Xrabbit(t) is the position of rabbit, X(t)
is the current position vector of hawks, r1, r2, r3, r4,
and q are random numbers inside (0,1), which are up-
dated in each iteration, LB and UB show the upper and
lower bounds of variables, Xrand(t) is a randomly se-
lected hawk from the current population, and Xm is the
average position of the current population of hawks.
The average position of hawks is attained using Eq.
(2):

Xm(t) =
1
N

N

∑
i=1

Xi(t) (2)

where Xi(t) indicates the location of each hawk in it-
eration t and N denotes the total number of hawks. It
is possible to obtain the average location in different
ways, but we utilized the simplest rule.

2.2 Transition from Exploration to
Exploitation

The HHO algorithm can transfer from exploration to
exploitation then change between different exploita-
tive behaviors based on the escaping energy of the
prey. The escaping behavior of prey decreases the
energy of prey considerably. The energy of prey is
modeled as:

E = 2E0(1−
t
T
) (3)

where E indicates the escaping energy of the prey,
T is the maximum number of iterations, and E0 is
the initial state of its energy. In HHO, E0 randomly
changes inside the interval (-1, 1) at each iteration.

2.3 Exploitation Phase

According to the escaping behaviors of the prey and
chasing strategies of the Harris’ hawks, four possible

strategies are proposed in the HHO to model the at-
tacking stage. The preys always try to escape from
threatening situations. Suppose that r is the chance
of prey in successfully escaping (r <0.5) or not suc-
cessfully escaping (r ≥0.5) before surprise pounce.
Whatever the prey does, the hawks will perform a
hard or soft besiege to catch the prey. In this regard,
when |E| ≥0.5, the soft besiege happens, and when
|E|<0.5, the hard besiege occurs.

• Soft besiege: when r ≥ 0.5 and |E| ≥ 0.5. This
behavior is modeled by the following rules:

X(t +1) = ∆X(t)−E |JXrabbit(t)−X(t)| (4)

∆X(t) = Xrabbit(t)−X(t) (5)
where ∆X(t) is the difference between the posi-
tion vector of the rabbit and the current location in
iteration t, r5 is a random number inside (0,1), and
J = 2(1−r5) represents the random jump strength
of the rabbit throughout the escaping procedure.
The J value changes randomly in each iteration to
simulate the nature of rabbit motions.

• Hard besiege: when r ≥0.5 and |E| <0.5. In this
situation, the current positions are updated using
Eq. (6):

X(t +1) = Xrabbit(t)−E |∆X(t)| (6)

• Soft besiege with progressive rapid dives: when
still |E| ≥0.5 but r <0.5. This procedure is more
intelligent than the previous case.
To mathematically model the escaping patterns of
the prey, the levy flight (LF) concept is utilized in
the HHO algorithm. To perform a soft besiege,
the hawks can evaluate (decide) their next move
based on the following rule in Eq. (7):

Y = Xrabbit(t)−E |JXrabbit(t)−X(t)| (7)

Then, they compare the possible result of such a
movement to the previous dive to detect that will
it be a good dive or not. If it was not reasonable,
they also start to perform irregular, abrupt, and
rapid dives when approaching the rabbit based on
the LF-based patterns using the following rule:

Z = Y +S×LF(D) (8)

where D is the dimension of problem and S is a
random vector by size 1×D and LF is the levy
flight function, which is calculated using Eq. (9)
(Yang, 2010):

LF(x)= 0.01× u×σ

|v|
1
β

,σ=

(
Γ(1+β)× sin( πβ

2 )

Γ( 1+β

2 )×β×2( β−1
2 ))

) 1
β

(9)
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where u, v are random values inside (0,1), β is a
default constant set to 1.5. Hence, the final strat-
egy for updating the positions of hawks in the soft
besiege phase can be performed by Eq. (10):

X(t +1) =
{

Y i f F(Y )< F(X(t))
Z i f F(Z)< F(X(t)) (10)

where Y and Z are obtained using Eqs.(7) and (8).

• Hard besiege with progressive rapid dives
When |E| <0.5 and r <0.5, the following rule is
performed in hard besiege condition:

X(t +1) =
{

Y i f F(Y )< F(X(t))
Z i f F(Z)< F(X(t)) (11)

where Y and Z are obtained using new rules in
Eqs.(12) and (13).

Y = Xrabbit(t)−E |JXrabbit(t)−Xm(t)| (12)

Z = Y +S×LF(D) (13)

where Xm(t) is obtained using Eq. (2).

The pseudocode of the proposed HHO algorithm
is reported in Algorithm 1.

3 HHO ALGORITHM FOR GENE
SELECTION

The HHO algorithm was first used for solving the fea-
ture selection problem (FS) in (Thaher et al., 2020).
The methodology used for converting the continuous
HHO into binary is a two-step binarization method.
In this method, the solution is transformed into bi-
nary but the real operators are used without convert-
ing. The solutions are converted into binary using two
steps. The first step is by using a transfer function
(TF) to convert the real solution Rn into intermedi-
ate vector [0,1]n. Each element in the vector contains
a probability of converting the corresponding feature
or gene into either ”0” or ”1”.The second step is per-
formed by using a specific binarization method.

This paper uses the S-shaped TF, which was used
firstly in (Kennedy and Eberhart, 1997) to convert the
continuous PSO into binary using Eq 14.

T (x j
i (t)) =

1

1+ e−x j
i (t)

(14)

Algorithm 1: Pseudo-Code of HHO algorithm.

Inputs: The population size N and maximum num-
ber of iterations T
Outputs: The location of rabbit and its fitness
value
Initialize the random population Xi(i = 1,2, . . . ,N)
while (stopping condition is not met) do

Calculate the fitness values of hawks
Set Xrabbit as the location of rabbit (best loca-

tion)
for (each hawk (Xi)) do

Update the initial energy E0 and jump
strength J . E0=2rand()-1, J=2(1-rand())

Update the E using Eq. (3)
if (|E| ≥ 1) then . Exploration phase

Update the location vector using Eq. (1)
if (|E|< 1) then . Exploitation phase

if (r ≥0.5 and |E| ≥ 0.5 ) then . Soft
besiege

Update the location vector using Eq.
(4)

else if (r ≥0.5 and |E|< 0.5 ) then .
Hard besiege

Update the location vector using Eq.
(6)

else if (r <0.5 and |E| ≥ 0.5 ) then .
Soft besiege with progressive rapid dives

Update the location vector using Eq.
(10)

else if (r <0.5 and |E|< 0.5 ) then .
Hard besiege with progressive rapid dives

Update the location vector using Eq.
(11)
Return Xrabbit

4 PROPOSED BHHO BASED
GENE SELECTION
APPROACHES

This section describes the BHHO algorithm for GS
with three fitness functions. The basic fitness func-
tion concerns the overall classification performance.
The other new fitness functions are proposed to fur-
ther increase the classification performance and mini-
mize the number of selected genes in HHO GS frame-
work.

4.1 Basic Fitness Function: Error Rate

The BHHO can be used to solve the GS problem us-
ing a single objective fitness function. This fitness
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function utilizes the classification performance only.
The main target is to maximize the classification accu-
racy or minimize the error rate in classification tasks.
Eq 15 shows the basic fitness function which will be
used as a baseline for comparison with the new fitness
functions.

Fitness1 = ErrorRate (15)

Where ErrorRate is determined according to Equa-
tion 6:

ErrorRate =
FP+FN

T P+T N +FP+FN
(16)

Where T P, T N, FP and FN stand for true pos-
itives, true negatives, false positives and false nega-
tives, respectively.

4.2 New Fitness Function: Error Rate
and # Genes

Using the basic function in Eq 15, the BHHO may
select a gene subset that has irrelevant or redundant
genes. This is because the formula doesn’t take into
account minimizing the number of features, but focus
on the classification performance only. This causes
to select gene subsets that increases the classifica-
tion performance and discard the number of selected
genes. The problem of this approach is that the
BHHO may select a gene subset with a classifica-
tion performance that may be achieved by a smaller
gene subset. To address this problem, a new multi-
objective fitness function is proposed that aims to
maximize the classification performance (minimize
the classification error rate) and minimizes the num-
ber of genes. The formula of the new fitness function
is shown in Eq 17.

Fitness2 = αt ×
#Genes

#All Genes
+(1−αt)×

ErrorRate
Error0

(17)
Where

αt = αmax×
t
T

(18)

Where α ∈ [0,1]. t denotes the tth iteration in the
optimization process. #Genes represents the number
of selected genes. #AllGenes stands for the number
of all the available genes. ErrorRate is the classi-
fication error rate got by the selected gene subset.
Error0 is the error rate got by using all the available
genes. αmax is the predefined maximum value of αt
and αmax ∈ [0,1]. T is the predefined maximum num-
ber of iterations for the BHHO evolutionary process.

Using Eq 17, the relative importance of the num-
ber of genes and the classification error rate is deter-
mined by the αt and (1−αt) respectively. The er-
ror rate is always assumed more significant than the

size of the genes subset. Thus, the (1−α) is assigned
to value greater than the αmax. αt increases linearly
throughout the optimization process of the BHHO.
This means that the error rate has greater importance
at the initial stages of the optimization process. The
linear increment of the αt causes to reduce the im-
portance of the error rate at the late stages. The op-
posite case occurs for the number of selected genes.
The size of a genes subset is given larger weights at
the latter stages. Another matter is that the number
of genes is much larger than the error rate. Thus, a
normalization step is required to balance these com-
ponents. This is done by dividing the size of genes
subset by the total number of genes. The result will
fall in the range (0,1]. Besides, the classification er-
ror rate is divided by the error rate got by using all
available genes. This will transform the error rate to a
value in the range [0,1]. Normalizing the error rate is
a necessary step because in some microarray data sets,
the error rate changes in a small range throughout the
evolutionary process. Another issue is that ErrorRate

Error0
may be larger than 1 at the begging of the optimiza-
tion process. This is normal because the error rate is
required to dominate the evolutionary process at the
initial stages. When αt increases to a relatively large
value, BHHO reduces the value of ErrorRate to be
smaller than the Error0.

4.3 New Fitness Function: A Two-stage
Approach

In the proposed Fitness2, using a linear increasing
weight can balance the error rate and the number of
selected genes. Thus, it can solve the problem of
selecting redundant and irrelevant genes in the gene
subset. However, there is still a problem that the
BHHO selects a small gene subset with low classi-
fication performance instead of selecting a large gene
subset with high classification performance. To solve
this problem, Fitness3 is proposed to perform GS in
two stages. This implies that the entire optimization
process is divided into two stages. In the first stage,
the BHHO concerns optimizing the classification per-
formance. In the second stage, the number of selected
genes is considered in the fitness function. In the two-
stage fitness function, the BHHO uses the solutions
found in the first stage to perform further optimiza-
tion for the number of genes. This causes the BHHO
to start in the second stage with optimized solutions
that achieved suitable classification performance in
the first stage. The fitness function used in this two-
stage GS approach is shown in Eq 19.
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Fitness3 =

{
ErrorRate, Stage1
α× #Genes

#All Genes +(1−α)× ErrorRate
Error0

,Stage2

(19)

Where α is constant values and αin[0,1]. α shows
the relative importance of the number of features and
(1−α) shows the relative importance of the classi-
fication error rate. ErrorRate, #Genes, #All Genes,
ErrorRate, Error0 are the same as the ones used in
Fitness2. As the classification performance is as-
sumed to be more important than the number of fea-
tures, α is set to be smaller than (1−α).

5 EXPERIMENTAL DESIGN

All the experiments were executed on a personal
machine with AMD Athlon Dual-Core QL-60 CPU
at 1.90 GHz and memory of 2 GB running Win-
dows7 Ultimate 64 bit operating system. The op-
timization algorithms have been all implemented
in Python in the EvoloPy-FS framework (Khurma
et al., 2020). Ten microarray datasets taken
from http://csse.szu.edu.cn/staff/zhuzx/Datasets.html
are used to evaluate the performance of the proposed
approach. The selected benchmark data sets are com-
monly used in many studies and cover the example of
small, medium, and large dimensional data sets. Table
1 shows the characteristics of the selected datasets.

Table 1: Gene expression datasets characteristics.
NO Datasets # Genes # Samples # classes

1 Breast 24,481 97 2
2 MLL 12,582 72 3
3 Colon 2000 62 2
4 ALL-AML 7129 72 2
5 ALL-AML-3C 7129 72 3
6 ALL-AML-4C 7129 72 4
7 CNS 7129 60 2
8 Ovarian 15,154 253 2
9 SRBCT 2308 83 4
10 Lymphoma 4026 62 3

The maximum number of iterations and the pop-
ulation size were set to 100 and 10 respectively. In
this work, the K-nn classifier (K = 5) is used to as-
sess the goodness of each solution in the wrapper GS
approach. Each data set is randomly divided into two
parts; 80% for training and 20% for testing. To ob-
tain statistically significant results, this division was
repeated 30 independent times. Therefore, the final
statistical results represent the average over 30 inde-
pendent runs. As the maximum iteration is 100, in
the two-stage approach, the first 50 iterations are the
first stage and the last 50 iterations are the second
stage. We assume the number of genes is important

in GS but much less important than classification ac-
curacy. Therefore, αmax = 0.2 in Eq 17 and α = 0.2 in
Eq 19 in the second stage of the two-stage approach.
BGWO, BCS, and BBA were used for comparison
with the proposed approaches. The parameters set-
tings of them as follows: in GWO α value is [2,0].
In BA, Qmin Frequency minimum is 0, Qmax Fre-
quency maximum is 2, A Loudness is 0.5, r Pulse rate
is 0.5. In CS, pa value is 0.25 and β is 3/2.

The proposed evaluation measures are classifica-
tion accuracy and number of selected genes.

6 RESULTS AND DISCUSSIONS

The experimental results of the three approaches on
ten datasets are shown in Table 2. In the table, “All”
means that all of the available genes are used for clas-
sification. BHHO-Er stands for the BHHO based GS
approach with Eq 15 as the fitness function. BHHO-
ErNo and BHHO-2Stage represent the two proposed
GS approaches with Eq 17 and Eq 19 as fitness func-
tions, respectively. “#A” and “#G” show the average
test accuracy and the size of the gene subsets selected
by each algorithm in 30 runs respectively. “Std-Acc”
represents the standard deviation of the 30 test accu-
racy achieved by each algorithm.

6.1 Results of BHHO with Basic Fitness
Function

Inspecting Table 2, it can be seen that the BHHO-
Er algorithm can select gene subsets with a sufficient
number of genes and high classification performance.
In comparison with the results of BHHO with all the
gene subsets, BHHO-Er achieves higher classification
accuracy in almost all microarray data sets. Regard-
ing the number of selected genes, it appears that the
BHHO-Er minimized the number of selected genes to
half of the original number of genes. The 5K-nn clas-
sifier with BHHO-Er obtained a classification accu-
racy similar to using all genes across only one data set
which is the Breast data set. The results suggest that
BHHO-Er can efficiently select a subset of relevant
genes that contains around half of the original genes
and increase the classification performance. For ex-
ample, in the ALL-AML4c data set, with all the 7,129
genes, 5K-nn could achieve a classification accuracy
of 81.425% while with 3,427 genes, it can increase
the classification accuracy to 83.569%. All the stan-
dard deviation values shown by “StdAcc” are smaller
than 0.05 which indicates the stability of the proposed
approach.
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Table 2: Experimental results.

Algorithm Dataset
Breast MLL Colon ALL-AML ALL-AML3c

All #A 75.800 94.000 78.500 85.100 82.211
#G 24,481 12,582 2000 7129 7129

BHHO-Er #A 75.800 94.420 79.256 85.742 83.006
#G 12,175.217 8,052.48 1,031.111 3,831.838 2,176.441

#A-Std 2.111E-17 1.755E-3 52.800E-5 1.359E-3 4.251E-2
BHHO-ErNo #A 75.800 95.341 79.391 85.822 83.140

#G 6,242.655 7,839.554 853.333 2,815.955 1,792.734
#A-Std 2.111E-17 1.536E-3 50.211E-5 1.729E-3 4.671E-2

BHHO-2Stage #A 75.800 95.958 79.455 85.963 83.620
#G 5,451.103 4,936.015 811.111 2,560.499 1,866.121

#A-Std 2.111E-17 2.189E-3 44.369E-5 1.952E-5 5.008E-2

ALL-AML4c CNS Ovarian SRBCT Lymphoma
All #A 81.425 66.456 91.623 87.623 98.315

#G 7,129 7,129 15,154 2308 1026
BHHO-Er #A 83.569 67.889 94.569 87.612 98.450

#G 3,427 3,389.840 7,631.773 1,129.443 504.087
#A-Std 1.430E-2 4.223E-2 1.456E-2 2.854E-2 17.857E-5

BHHO-ErNo #A 84.001 68.201 95.226 87.655 98.596
#G 3,427.012 2,691.198 7,248.359 1,104.516 493.910

#A-Std 1.375E-2 4.985E-2 1.369E-2 2.159E-2 7.589E-5
BHHO-2Stage #A 84.250 68.025 95.631 87.598 98.629

#G 2,828.685 2,644.859 5,720.635 1,114.0716 503.106
#A-Std 1.231E-2 5.079E-2 1.175E-2 2.006E-2 8.438E-5

6.2 Results of BHHO with New Fitness
Function: Error Rate and #Genes

Based on the results in Table 2, the selected gene sub-
sets in most of the cases contains fewer than half of
the original number of genes. The highest reduc-
tion rate was achieved on the Breast data set, which
is around 75% of the original genes. In comparison
with the accuracy obtained by all the gene sets, the
BHHO-ErNo got a higher classification rate across
all the data sets except the Breast data set. BHHO-
ErNo can search in the gene space and obtain gene
subsets with a smaller size than those obtained by the
BHHO-Er across all the data sets. The reduction rate
across four data sets is more than 16%. The highest
reduction rates were around 49% on the Breast data
set and 27% on the ALL-AML data set. Regarding the
standard deviation results, there is no clear difference
between the BHHO-Er and the BHHO-ErNo. This
supports the idea that adding the number of genes to
the formula of fitness function as in Eq 17 helps the
BHHO to search in the gene space for smaller size
gene subsets. The removal of the irrelevant and redun-
dant genes can simplify the generated learning model
and achieve better classification results on testing.

6.3 Results of BHHO with New
Two-Stage Fitness Function

Based on Table 2, the results of BHHO-2Stage shows
that the size of the selected gene subsets using this ap-
proach reached to around 60% of the number of origi-
nal genes in many cases. The Breast data set achieved

the highest reduction rate of around 78%. The gener-
ated gene subsets by BHHO-2Stage achieved higher
classification performance compared with using all
genes across all the data sets except the Breast data
set. By comparing BHHO-2Stage with BHHO-Er,
BHHO-2Stage can generate smaller size gene subsets
than BHHO-Er. In comparison with the BHHO-Er,
the reduction of the average size is more than 20% in
six of ten data sets and it is around 55% in the Breast
data set. With smaller gene subsets, BHHO-2Stage
achieves better or same classification performance as
“BPSO-Er” in almost all data sets. The standard de-
viation values in the two approaches are very close.

7 COMPARISONS WITH OTHER
WRAPPER-BASED GS
METHODS

To show the performance of the proposed fitness func-
tions, we compare the best-proposed approach, which
is BHHO-2Stage with three well-known wrapper-
based GS methods. These are BGWO, BBA, and
BCS. We will apply theses GS approaches with a 2
stage fitness function. Taking the Breast data set as an
example, BGWO selects 9,559 genes with a classifi-
cation performance 72.44%, BCS selects 7,360 genes
with classification performance 74.84%, and BBA se-
lects 6,289 genes with a classification performance of
64.23%. The average number of genes in BHHO-
2Stage is 5,451.103 with classification performance
75.800. These results show the superiority of the
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BHHO-2Stage approach to other well-known GS ap-
proaches using the same fitness function.

8 CONCLUSIONS

This paper presents a new GS method based on the
BHHO algorithm and KNN classifier. Two new fit-
ness functions are proposed. The first fitness function
combines the classification performance and the size
of the genes subset in one formula. A linear weight
is used to balance these components together. The
second one is a two-stage fitness function. This fo-
cuses on optimizing the classification performance in
the first stage and optimizing the number of genes in
the second stage. The new two fitness functions were
compared with a common fitness function that uses
the classification performance only in a BHHO based-
wrapper GS approach. The results show that BHHO
with the fitness function that uses the classification
performance only can improve the classification per-
formance using all genes. In almost all the data sets,
BHHO with either of the two proposed fitness func-
tions could achieve higher classification performance.
Besides, they could achieve a fewer number of genes
than BHHO with overall classification performance as
the fitness function. BHHO with the two-stage fitness
function outperforms the linearly changing weights
fitness function in most problems based on the clas-
sification performance and the number of genes se-
lected. BHHO with the proposed fitness functions can
successfully reduce the number of genes and achieve
higher classification performance. In the future, we
will investigate a BHHO-based evolutionary multi-
objective GS approach to explore the Pareto front of
non-dominated solutions.
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