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Modern web applications must be secure, and use authentication and authorisation for verifying the iden-
tity and the permissions of users. Programming language reliability mechanisms commonly implement web
application security and include exceptions, actors and futures. This paper compares the performance and
programmability of these three reliability mechanisms for secure web applications on the popular Scala/Akka
platform.

Key performance metrics are throughput and latency for workloads comprising successful, unsuccessful and
mixed requests across increasing levels of concurrent connections. We find that all reliability mechanisms fail
fast: unsuccessful requests have low mean latency (1-2ms) but dramatically reduce throughput: by more than
100x. For a realistic authentication workloads exceptions have the highest throughput (187K req/s) and the
lowest mean latency (around 5ms), followed by futures.

Our programmability study focuses on the available attack surface measured as code blocks in the web appli-
cation implementation. For authentication and authorisation actors have the smallest number of code blocks
for both our benchmark (3) and a sequence of n security checks (n + 1). Both futures and exceptions have 4

(2n) code blocks. We conclude that Actors minimise programming complexity and hence attack surface.

1 INTRODUCTION

Security is critical for all software, and especially for
globally accessible web applications. In a typical on-
line interaction the user’s identity, and their access
rights, must be verified. That is, the user is authenti-
cated and their actions are authorised. Cyber attacks
seek to subvert these processes and must be countered
by securing the server and the client.

The web application programming language im-
plements the security protocols and provides relia-
bility mechanisms to recover from security failures.
Programming languages offer a choice of reliability
mechanisms, and many are available in a single lan-
guage. Three common reliability mechanisms are as
follows, and all are available in languages like Scala
or C++. Exceptions are widely available, and often
formulated as try-catch blocks. The actor model al-
lows failing actors to die while an associated supervi-
sor deals with the aftermath. Finally, responsive in-
terfaces and frequent asynchronous calls have seen a
rise in the popularity of futures. With futures, failures
are managed by specifying actions for both successful
and unsuccessful outcomes.

Penev, D. and Trinder, P.

Currently, there is little information to guide de-
velopers when selecting between reliability mecha-
nisms; and this paper compares the performance and
programming complexity of exceptions, actors and
futures for handling security failures in Scala web
apps (Odersky et al., 2008). The comparison is based
on measurements of three instances of a simple web
app that differ only in using exceptions, actors or fu-
tures for recovering authentication or authorisation
failures. We make the following research contribu-
tions.

(1) We compare the performance (throughput and
latency) of the reliability mechanisms as the num-
ber of concurrent connections to the webserver ranges
between 50 and 3200. The workloads we consider
include 100% successful, 100% unsuccessful, and a
realistic mixture of successful/unsuccessful requests
(Section 4).

(2) We compare the programming effort required
to secure the web app and the associated attack sur-
face. The metric we use is the number of code blocks
that the programmer must consider, and secure by for-
mal or informal reasoning (Section 5).
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2 BACKGROUND

2.1 Security

Security is critical for web applications, and espe-
cially for web applications that are globally accessi-
ble. People give software access to their credit card
numbers, photos, etc. and such private data must be
secured and protected (European Union, 2016). The
two main security mechanisms for protecting users
and their information are authentication and autho-
risation. Authentication verifies the identity of, and
authorisation grants access privileges to, a user, pro-
cess, or device (Kissel, 2013). Standard techniques
exist for both, and the specific techniques used are not
germane here.

Each security check typically introduces addi-
tional program states: for success, and for failure. Se-
curity is typically verified repeatedly, e.g. each data
access typically requires authorisation. This can lead
to a lot of boilerplate code and a large number of pro-
gram states (Schlaeger and Pernul, 2005).

When an authentication or authorisation fails,
application-level reliability mechanisms recover the
system to a normal state and respond properly to the
user. The mechanisms need to be (1) secure enough to
prevent potential malicious agents from interfering in
the system; (2) fast to maintain high throughput and
low latency.

2.2 Exceptions

Exceptions provide reliability in many programming
languages and do so by supplying code to handle ab-
normal (or exceptional) events like attempting to open
a file that does not exist or dividing by zero. They
are commonly formulated as a try/catch block with
the normal case in the try block and the exception
handled in the catch block. Exceptions have faced
substantial criticism for producing convoluted control
flow, breaking encapsulation, being abused to capture
normal behaviours (Weimer and Necula, 2008; Dony
et al., 2006). They have even been excluded from
some recent languages like Go (The Go Program-
ming Language, 2018). Even used properly exception
handling adds additional control flows increasing the
number of states in a program and, crucially for secu-
rity, the complexity of the code and its attack surface
(Section 5).

2.3 Futures

Futures also known as promises or delegates return
values from asynchronous method calls (Liskov and
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Figure 1: Secure Web Application Benchmark.

Shrira, 1988). Originally developed as a way to de-
couple a value from its computation mechanism in
functional programming languages, Futures have be-
come popular for developing responsive user inter-
faces and minimising communication in distributed
systems by accessing the server only once the com-
putation has completed. Futures provide a callback to
be executed when the asynchronous computation fin-
ishes. The callback can handle abnormal cases, pos-
sibly in conjunction with a timeout. Commonly the
normal and abnormal cases are handled in separate
processes, neatly abstracting fault handling.

2.4 Actors

Actor systems are comprised of independent actors,
or processes, that communicate by asynchronous
messages (Hewitt et al., 1973). The key reliability
mechanism is supervision where an actor can monitor
the status of a child actor and react to any failure, for
example by spawning a substitute actor to replace a
failed actor. Supervised processes can, in turn, super-
vise other processes, leading to a supervision tree. So
the normal case is handled in one actor, and the abnor-
mal case by the supervising actor, neatly abstracting
fault handling as with futures. Typically any secu-
rity failure will result in spawning a fresh actor, i.e.
from the same initial state, minimising complexity,
the number of program states, and hence the attack
surface. With built-in concurrency and data isolation,
actors are a natural paradigm for engineering reliable
scalable general-purpose systems.

2.5 Other Reliability Mechanisms

Other options include returning error values from
functions as in Go (Errors are values - The Go Blog,
2015). Not only do many functional languages re-
turn abnormal results in an abstract data type, but the
approach is adopted in modern imperative languages,
e.g. the Result type in Rust (Klabnik and Nichols,
2019).
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3 SECURE WEB APPLICATION
BENCHMARK

As a realistic basis for comparing the language level
reliability mechanisms, we use each in a simple se-
cure web application (Figure 1). A common Scala
codebase is used, except that authentication and au-
thorisation failures are handled separately by actors,
exceptions and futures in the three versions. Scala
is selected for the benchmark for industrial relevance
and experiment suitability. It is used in data-intensive
applications like Kafka, Flink and Spark (Miller et al.,
2016), and by tech-giants like LinkedIn (Bagwell,
2010), Twitter (Marius Eriksen 2012, 2012) and Ebay
(Deepak Vasthimal 2016, 2016). While Scala, in con-
junction with the popular Akka actor library (Vernon,
2015), provides all three reliability models this rich
feature set requires a design team to select an appro-
priate model for their application.

3.1 Reliability Mechanisms

The reliability mechanisms in the benchmark are im-
plemented idiomatically: full descriptions are avail-
able in (Penev, 2019a) and the code is available
at (Penev, 2019b). The actor model has supervisor
and worker instances and a worker that fails to au-
thenticate or authorise immediately crashes and the
supervisor restores the system. With exceptions, there
are try-catch clauses that handle the successful and
unsuccessful outcomes. Handling of different excep-
tions and finally-clauses are omitted for the sake of
brevity. With futures, the authentication and authori-
sation functions have a (single) callback that handles
both successful and unsuccessful outcomes.

3.2 Authentication and Authorisation

The authentication and authorisation functions are
carefully designed and relatively simple. For exam-
ple, if user data (user names, passwords etc.) was
stored in a database, then the access time would dom-
inate performance, making it hard to determine the
performance of the reliability mechanisms. Hence
user data is stored in memory.

The authentication function emulates a user at-
tempting to log into the web application. It receives
a username and password pair, in Basic Auth form.
(Reschke, 2015). No password hashing or encrypt-
ing is implemented as it is not germane. On success-
ful authentication (1) the user is (notionally) issued
a cookie which represents their identity and avoids
unnecessary username-password combination checks
(2) the function completes without errors and returns

an HTTP status code 200. Failures are handled by ac-
tors, exceptions or futures, and an HTTP status code
401 Unauthorised is returned.

The authorisation function emulates a user at-
tempting to access an admin panel. It assumes that
authentication has been completed: the cookie passed
in the request is mapped to a user and their permis-
sions are checked. If the user is a part of the admin
group, the function completes successfully and the re-
liability mechanism returns an HTTP status code 200.
Failures are handled by the respective model and an
HTTP status code 403 Forbidden is returned.

4 PERFORMANCE EVALUATION

4.1 Performance Experiment Design

Here we compare the performance of the reliability
mechanisms for authentication only. As the authori-
sation code is very similar for each mechanism, so
too is the performance (Penev, 2019a). The evalua-
tion code and data are available at (Penev, 2019b), and
additional experiments and further analysis are also
available in (Penev, 2019a).

Metrics. The performance metrics are standard:
namely throughput at a given load (requests/s) and
mean latency. As both metrics are influenced by mul-
tiple factors, we compare the reliability mechanisms
with a range of parameters like the number of con-
nections and the ratio of successful/unsuccessful re-
quests.

Concurrent Connections represent varying loads
on a web server. As the number of open connections
increases, we expect throughput to rise, as long as the
service is capable of handling all requests. At capac-
ity throughput plateaus, and mean latency increases.
Starting with 50 connections we continue to double
the number up to 3200.

Wrk Load Generator is an open-source tool
for load-testing servers. It is multi-threaded by de-
sign and uses notification systems, such as epoll and
kqueue to achieve higher performance than older tools
like Apache Bench. Wrk also provides Just-in-Time
scripting in Lua, allowing dynamic modification of
requests.

Experiment Protocol. The experiment uses Scala
2.12.7, with Akka 2.5.12 and Akka-Http 10.1.5. The
project is built with sbt 1.2.6 and executes on JDK
1.8.0. The experiments are run on two nodes of
a Beowulf cluster: one hosts the web app bench-
mark, and the other a Wrk load generator. Wrk is a
high-performance load testing tool similar to Apache
Bench. Each Beowulf node has 16 cores (2 * Intel
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Figure 2: Authentication Throughput for (Un)successful Requests.

Xeon E5-2640 2GHz) with 64 Gb RAM and a 10 Gbit
Ethernet connection and runs Ubuntu 14.04. Each
experimental scenario runs for 5 minutes with the
specified number of connections, allowing the server
to reach a steady state, e.g. queues to build, JVM
garbage collections to occur. The JVM is restarted
for each experiment. To minimise variability reported
results are the median of three consecutive benchmark
runs.

4.2 Successful and Unsuccessful
Requests

The first experiments compare the reliability mecha-
nisms when processing only successful requests, and
only unsuccessful requests. The reliability mecha-
nisms act differently, depending on whether the au-
thentication succeeded or not. Sending a request, sup-
posed to fail, can make the system enter an abnormal
state. The ability of the service to handle these abnor-
mal states is directly related to the choice of the re-
liability mechanism. We measure the throughput and
latency to find the performance of which reliability
mechanism is the best in each situation.
Throughput. Figure 2 shows that exceptions have the
highest throughput for 100% successful requests for
all numbers of concurrent connections. With 800 con-
nections exceptions handle 196K requests/s, futures
159K, and actors 117K.

For 100% unsuccessful requests throughput is re-
duced by two orders of magnitude, e.g. less than
500 requests/s with 400 connections for all reliability
mechanisms. Actors have the highest throughput at
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50, 100, 200 and 400 concurrent connections: 2360,
1540, 830 and 520 requests/s respectively, compared
to 180, 230, 210 and 240 for exceptions, and 330,
430, 460 and 500 for futures. Throughput decreases
for actors as the number of connections rises as the
relatively small number of supervising processes (10)
must handle a huge number of crashes and become
bottlenecks. We selected 10 supervisors to represent
a typical system where the majority of security re-
quests succeed. Performance for high failure rate sys-
tems could be recovered by increasing the number of
supervisors. In contrast, both exceptions and futures
increase throughput with the number of connections
and reach maximal throughput at 3200 connections:
670 and 370 requests/s respectively.

Mean Latency. Figure 3 shows that exceptions have
the lowest mean latency between the three reliabil-
ity mechanisms for both 100% successful and 100%
unsuccessful requests. All three mechanisms have
lowest latency with 50 concurrent connections. Ex-
ceptions require 0.54ms for successful requests and
0.25ms for unsuccessful requests. For futures, the la-
tencies are 1.19ms and 0.38ms and for actors 1.67ms
and 0.63ms for successful/unsuccessful requests.

At 3200 concurrent connections and 100% suc-
cessful requests, actors have the highest latency
9.19ms compared to 6.98ms for futures and 5.7ms
for exceptions. With 3200 connections and 100% un-
successful requests futures have the highest latency
2.04ms, compared to 1.49ms for actors and 1.33ms
for exceptions.

Mean latency is between 3 and 6 times lower for
unsuccessful requests than for successful ones. So the
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Figure 3: Authentication Mean Latency for Successful/Unsuccessful Requests.

server is failing fast: quickly responding to an unau-
thenticated request. The drop in throughput, however,
reveals that it takes time to restore the system to a nor-
mal state.

4.3 Representative Workload

Measurements show that users fail in around 11% of
their authentications (Mare et al., 2016). The failures
stem from a range of reasons: forgotten passwords,
wrong usernames, typing errors etc. Hence we mea-
sure a “realistic” workload with an 89/11% split be-
tween successful and unsuccessful requests.

Throughput for the realistic authentication work-
load is depicted in Figure 4. It shows that actors, ex-
ceptions and futures follow the same pattern with dif-
ferent levels of connections, i.e. maximum through-
put is achieved with 800 connections and maintained
as the number of connections rises. Exceptions have
the highest throughput: 187K requests/s, followed by
futures with 156K and then actors with 108K.

Mean Latency for the realistic authentication
workload is depicted in Figure 5. It shows that excep-
tions have the lowest mean latency, followed by fu-
tures and actors. For example, at maximal throughput
(800 connections) the latencies of exceptions, futures
and actors are 5.32ms, 6.51ms and 10.61ms respec-
tively. The latencies delivered by the three reliability
mechanisms follow the same, classical server, pattern
as the number of connections are increased. That is
latencies are low up to 200 connections, climb steeply
up to around 800 connections, and thereafter remain
high.

Authentication Throughput
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Figure 4: Throughput.

Authentication Mean Latency
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Figure 5: Mean Latency.

S PROGRAMMABILITY

While the performance of web servers is much stud-
ied, the effort to develop and secure them receives far
less attention.
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5.1 Experiment Design

Shorter and simpler code reduces development time,
is more maintainable, and more likely to be correct,
reliable, and secure. Crucially for our current focus,
reducing program complexity has been shown to re-
duce software vulnerabilities (Moshtari et al., 2013).

The reliability mechanisms introduce different
levels of programming complexity. A number of met-
rics have been proposed for measuring software com-
plexity (Fenton and Bieman, 2014), ranging in sophis-
tication from logical source lines of code (SLOC) to
elaborate measures like McCabe’s cyclomatic com-
plexity (McCabe, 1976). The complexity metric we
use here is the number of code blocks executed by
the reliability mechanism. The code blocks may in-
clude conditionals. The number of code blocks, and
the flows between them, determine the development
effort and the attack surface of the software.

5.2 Benchmark Evaluation

Figure 6 shows the code blocks and control flows
for the three reliability models. Exceptions start in
a MAIN block, and for each action, there are two
code blocks: try/action and catch. The try block is
always entered, to attempt authentication or authori-
sation. On success flow returns to MAIN; On fail-
ure, the catch block is entered to handle the error be-
fore returning to MAIN. There may be multiple catch
clauses covering multiple exceptions; or a finally-
clause and state, but these are omitted here. There
are 4 code blocks.
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Futures attach an OnComplete callback to the au-
thentication and authorisation functions, and both are
executed in sequence. The OnComplete uses a con-
ditional to handle both successful and unsuccessful
outcomes. There are 4 code blocks.

With actors, the program sends a message to the
Supervisor, which spawns either an Authentication or
Authorisation Worker. If the action completes suc-
cessfully, the child actor returns the appropriate re-
sponse. If it fails the supervisor handles the failure
and returns to MAIN. There are 3 code blocks. The
messages to restart the child and make it exit with a
failure are omitted for the sake of clarity.

5.3 General Models

Our benchmark recovers from a single security failure
in each of Authorisation and Authentication. How-
ever many web applications must recover from some
failure in a sequence of security checks, e.g. banks
often require multiple Authorisation checks. We can
generalise our models to predict the number of code
blocks induced by a sequence of n security checks.

Exceptions induce additional try and catch code
blocks for each security check, i.e. 2n code blocks.
The number of code blocks can be reduced by ab-
stracting the catches into a single error-handling
function. However, it is hard to guarantee the correct-
ness of this error function as it must deal with mul-
tiple exceptions, check function results, and recovery
actions.

Futures induce an additional OnComplete code
block for each security check function, i.e. 2n code
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blocks.

In the actor model, if the result of failing any secu-
rity check is to recover to the starting state, there can
be a single supervisor and one actor for each security
check, i.e. n+ 1 code blocks. Of course, more elabo-
rate recovery strategies are possible, and will typically
generate more code blocks.

6 SUMMARY AND FUTURE
WORK

Programming languages support multiple reliability
mechanisms, and these have a key role in securing
web applications. This paper seeks to provide in-
formation to guide Scala developers on what mech-
anisms to select. Our results are based on measure-
ments of three instances of a simple secure web app
using the popular Scala/Akka platform, and the key
findings can be summarised as follows.
Performance. (1) All reliability mechanisms fail fast:
unsuccessful requests have low mean latency(1-2ms
in Figure 3) but dramatically reduce throughput: by
more than 100x in Figure 2. (2) For a realistic au-
thentication workloads exceptions have the highest
throughput (187K req/s) and the lowest mean latency
(around 5ms), followed by futures (156K reg/s; 6ms)
and actors (108K req/s; 10ms) (Figures 4 and 5).
Programmability. For authentication and authorisa-
tion, actors have the smallest number of code blocks
both for our benchmark (and for a sequence of n secu-
rity checks) namely 3 (n+ 1), and both futures and ex-
ceptions have 4 (2n) code blocks (Figure 6). We con-
clude that Actors minimise programming complexity
and hence attack surface.
Recommendations. Our Scala study reveals an
inverse relationship between performance and pro-
grammability. So for Scala when throughput and la-
tency are not critical, security is paramount, or un-
successful requests are frequent, actors are the best
choice as they minimise complexity and reduce attack
surface. Exceptions provide better performance at the
cost of greater complexity and attack surface. Futures
occupy a middle ground between exceptions and ac-
tors.
Ongoing Work. The current study can be extended in
a number of ways. For example, currently, there are
a fixed number of supervisors in the actor implemen-
tation (10). For workloads with varying failure rates,
we could investigate whether raising or lowering the
number of supervised actors improves throughput and
latency.

Longer term goals are to investigate other applica-
tion domains, and beyond Scala/Akka. For example,

Erlang has far more lightweight actors and may de-
liver very different performance. Likewise, futures
might have better performance in a functional lan-
guage, such as Haskell.
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