Improving the Accuracy of Features Weighted k-Nearest Neighbor using Distance Weight

K. U. Syaliman¹, Ause Labellapansa², Ana Yulianti²

¹Department of Informatics, Politeknik Caltex Riau, Pekanbaru, Indonesia
²Department of Informatics, Universitas Islam Riau, Pekanbaru, Indonesia

Keywords: Accuracy, Distance Weight, FWk-NN, K-NN, Vote Majority

Abstract: FWk-NN is an improvement of k-NN, where FWk-NN gives weight to each data feature thereby reducing the influence of features that are less relevant to the target. Feature weighting is proven to be able to improve the accuracy of k-NN. However, the FWk-NN still uses the majority vote system for class determination to new data. Whereby the majority vote system is considered to have several weaknesses, it ignores the similarity between data and the possibility of a double majority class. To overcome the issue of vote majority at FWk-NN, the research will change the voting majority by using distance weight. This study uses a dataset obtained from the UCI repository and a water quality data set. The data used from the UCI repository are iris, ionosphere, hayes-Roth, and glass. Based on the tests carried out using UCI repository dataset it is proven that FWk-NN using distance weight has averaged an increase about 2%, with the highest increase of accuracy of 4.23% in the glass dataset. In water quality data, FWk-NN using distance weight can achieve an accuracy of 92.58% or has increased 2% from FWk-NN. From all the data tested, it is proven that the distance weight is able to increase the accuracy of the FWk-NN with an average increase about 1.9%.

1 INTRODUCTION

k-Nearest Neighbor or commonly known as kNN is one of the popular classification methods for dealing with problems in the field of mining data, including text categorization, pattern recognition, classification, etc (Bhatia and Vandana, 2010; Jabbar et al., 2013; Rui-Jia and Xing, 2014; Sánchez et al., 2016; Zheng et al., 2017). This is because kNN has advantages including simple methods, quite interesting, easy to implement, intuitive, can be exploited in various domains, and is quite efficient (Wang et al., 2007; Garca-Pedrajas and Ortiz-Boyer, 2009; Ougiaroglou and Evangelidis, 2012; Feng et al., 2016; Pan et al., 2017; Sánchez et al., 2016; Song et al., 2017).

kNN still has weaknesses that make the results of accuracy remain relatively low, even more so when compared with other classification algorithms. (Danades et al., 2016; Tamatjita and Mahasta, 2016). The low accuracy value of kNN is caused by several factors. One of them is because each feature has the same effect on determining the similarity between data. The solution is to give weight to each data feature or commonly called Feature Weight k-NN (Kuhkan, 2016; Duneja and Puyalnithi, 2017; Nababan et al., 2018).

FWk-NN is proven to improve the accuracy of the kNN method. It can be seen in the research conducted by Duneja (2017) and Nababan, et al (2018) which gives weights for each data feature using the Gain Ratio. In determining the class for new data, FWk-NN still adopts the votes system, where the majority vote system ignores the similarity between data, and another problem is the possible emergence of a double majority class (Gou and Xiong, 2011; Yan et al., 2015; Syaliman et al., 2017).

The solution to the majority vote system problem has been done by Mitani et al. (2006) . In this research, it was proposed to make a method change in class determination for new data, initially used the voting majority to be exchanged using local mean, so the class for new data is no longer based on the majority class, but is determined based on the similarity of the local mean vector. The results of this research proved that the local mean was able to reduce misclassification caused by the vote majority system.

Another solution to overcome the weaknesses in the vote majority system is to use the method proposed by Batista & Silva (2009). In this research it is recommended to use a distance weight while to
determine the new data class is based on the weight of the distance between the data, it has proved that it is able to overcome the problems in the majority vote system which ignored the similarity between data (Gou and Xiong, 2011; Syaliman et al., 2017).

Based on previous studies, the authors see that the accuracy of the FWk-NN method can be improved, where to improve the accuracy of FWk-NN, in this research the author will replace the vote majority system with a distance weight system. It is expected that using distance weight is able to increase the results of the classification.

2 FEATURE WEIGHTED K-NN (FWK-NN)

FWK-NN is a method developed to overcome problems in kNN that are sensitive to distance functions because of the sensitivity inherent in irrelevant features. FWK-NN is based on feature weighting (Chen and Hao, 2017). The details of the FWk-NN algorithm are as follows:

Step 1: Compute the weight of each feature using the Gain Ratio. (Duneja and Puyalnithi, 2017; Nababan et al., 2018).

Step 2: Determine the value of \(k \), \(k \) is the number of nearest neighbor (Syaliman and A., 2015).

Step 3: Compute distance using equations:

\[
D(x - y) = \sqrt{\sum_{i=1}^{f} f w_i \times (x_i - y_i)^2} \tag{1}
\]

Where \(D(x - y) \) is the euclidean distance from \(x \) and \(y \), \(f \) is the number of features, \(f w \) is the weight of the features.

Step 4: Sort the distance between data from the smallest to the largest (ascending) depend on the number of \(k \).

Step 5: Compute the number of each class based on closest \(k \) neighbors using the equation (4):

\[
\text{sum}_{c} w_{c} = \sum_{i=1}^{k} w_{c} \cdot (c = c_{i}^{NN}) \tag{4}
\]

Step 6: Select the class with the highest average weight value, then make it as a class for new data.

The workflow of DWk-NN is quite similar to k-NN. In K-NN class determination is based on majority vote while in DWk-NN uses the highest number of average distance weight values between data.

3 DISTANCE WEIGHTED K-NN (DWK-NN)

DWk-NN is also one of the improvements of k-NN. Improve to the DWk-NN were carried out to overcome the problem of the vote majority system from k-NN (Lidya et al., 2015). In k-NN, each nearest neighbor has the same influence in class determination for new data, this is considered irrational when viewed based on the similarity between data (Pan et al., 2016). The details of the FWk-NN algorithm are as follows:

Step 1: Determine the value of \(k \)

Step 2: Compute distance using equations:

\[
D(x - y) = \left(\sum_{i=1}^{f} (x_i - y_i)^2 \right)^{1/r} \tag{2}
\]

\(D(x - y) \) is the distance between \(x \) and \(y \), \(f \) is the number of features, \(r \) is lambda value (a positive integer). \(r = 1 \) is known as Manhattan / City Block distance, \(r = 2 \) is known as Euclidean distance and if \(r = \infty \) is known as Chebyshev distance (Merigó and Casanovas, 2008; Labellapansa et al., 2016; Koteswara Rao, 2012).

Step 3: Sort the distance between data from the smallest to the largest (ascending) depend on the number of \(k \).

Step 4: Compute the weight of the distance between data using equation (Batista and Silva, 2009):

\[
dw = \frac{1}{d(x, y)} \tag{3}
\]

Step 5: Compute the average weights each data class based on closest \(k \) neighbors using the equation (4).

Step 6: Select the class with the highest average weight value, then make it as a class for new data.

4 PROPOSE METHOD

To further described the changes made to FWk-NN using the distance weight will explain step by step in this sub-chapter. The stages are in figure 1.
From figure 1, the modified Feature Weight K-Nearest Neighbor (FWk-NN) and Distance Weight have several stages, which are:

Step 1: Compute influence of features by using Gain Ratio

Step 2: Compute the weight based on the gain ratio using equation (5)

\[f_{w_i} = \frac{(G_i - \text{Min}(G))}{\text{Max}(G) - \text{Min}(G)} \times 1 \]

where \(f_{w_i} \) is features weight-i, \(G_i \) is Gain Ratio-i, \(\text{Min}(G) \) is the minimum gain ratio, and \(\text{Max}(G) \) is the maximum gain ratio.

Step 3: Determine the value of \(k \)

Step 4: Compute distance using equations (1).

Step 5: Sort the distance between data from the smallest to the largest (ascending) based on the number of \(k \)

Step 6: Compute the weight of the distance between data sorted by equation(3).

Step 7: Calculate the average weight for each class based on the nearest neighbor kusing equation(4).

Step 8: Select the class with the highest average weight value, then make it as a class for new data.

Step 1 to 5 is the contribution from FWk-NN, while step 6 to step 8 are the steps of the distance weight to determine the class for new data.

5 RESULT AND DISCUSSION

This research uses several datasets from the UCI Machine Learning repository, such as ionosphere, Haberman, hayes, glass, and iris. In addition, the proposed method is also tested using real data from a water quality status of Indonesia (Danades et al., 2016). The detail of the data can be seen in table 1.

<table>
<thead>
<tr>
<th>Data</th>
<th>Features</th>
<th>Class</th>
<th>Total Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ionosphere</td>
<td>34</td>
<td>2</td>
<td>351</td>
</tr>
<tr>
<td>Iris</td>
<td>4</td>
<td>3</td>
<td>150</td>
</tr>
<tr>
<td>Hayes</td>
<td>4</td>
<td>3</td>
<td>160</td>
</tr>
<tr>
<td>Glass</td>
<td>10</td>
<td>6</td>
<td>214</td>
</tr>
<tr>
<td>Water Quality Status</td>
<td>8</td>
<td>4</td>
<td>120</td>
</tr>
</tbody>
</table>

Table 1: Detail of Data

In this study used 10-fold cross-validation, and the value of \(k \) is only worth 1 to 10. The average accuracy of each data can be seen in figure 2.

Based on figure 2, the proposed method or FWk-NN using distance weight has higher accuracy than FWk-NN, where the highest improved of accuracy obtained in Glass dataset is worth 4.23%, and the lowest improved of accuracy obtained in the iris dataset of 0.4%. From all dataset, the accuracy increase is 2%.

Based on the testing by using the dataset from UCI was knowing, the proposed method is better than the original FWk-NN. To know with certainty whether the proposed method is better to make predictions in the real data from water quality status in Indonesia, it...
will be compared with original FWk-NN. Details of the test results can be seen in table 2.

<table>
<thead>
<tr>
<th>k</th>
<th>Accuracy FWk-NN(1)</th>
<th>Proposed Method(2)</th>
<th>Best Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>94.20%</td>
<td>96.67%</td>
<td>(2)</td>
</tr>
<tr>
<td>2</td>
<td>92.50%</td>
<td>96.67%</td>
<td>(2)</td>
</tr>
<tr>
<td>3</td>
<td>95.00%</td>
<td>95.83%</td>
<td>(2)</td>
</tr>
<tr>
<td>4</td>
<td>90.00%</td>
<td>93.33%</td>
<td>(2)</td>
</tr>
<tr>
<td>5</td>
<td>92.50%</td>
<td>93.33%</td>
<td>(2)</td>
</tr>
<tr>
<td>6</td>
<td>87.50%</td>
<td>90.83%</td>
<td>(2)</td>
</tr>
<tr>
<td>7</td>
<td>90.80%</td>
<td>89.17%</td>
<td>(1)</td>
</tr>
<tr>
<td>8</td>
<td>88.30%</td>
<td>90.00%</td>
<td>(2)</td>
</tr>
<tr>
<td>9</td>
<td>89.20%</td>
<td>90.00%</td>
<td>(2)</td>
</tr>
<tr>
<td>10</td>
<td>85.80%</td>
<td>90.00%</td>
<td>(2)</td>
</tr>
<tr>
<td>Avg</td>
<td>90.58%</td>
<td>92.58%</td>
<td></td>
</tr>
</tbody>
</table>

Based on table 2, the proposed method gives the best prediction results in determining Data. Although when the value of k is 7, the accuracy of the proposed method is decreased by 1.63%, overall the proposed method was able to improve the accuracy worth 2%, whereby the highest difference of accuracy is 4.20% when k is 10.

6 CONCLUSIONS

Referring result and discussion in the previous chapter can be concluded that distance weights can improve the accuracy of FWk-NN. Based on the test, the highest accuracy is obtained at about 4.23% in the glass data. Distance weights also have proven to be successful in improving accuracy on water quality status data. The highest accuracy occurs when k is ten by 4.2% with the average increase is 2%. In all tests that have been carried out, it has proven that the distance weights applied to FWk-NN provide better accuracy results than the majority vote system with the average accuracy of all data used is 1.9%.

ACKNOWLEDGMENTS

High appreciation should be given to Universitas Islam Riau (UIR) especially Department of Informatics for their support on the dissemination of this research work as well as the facilities provided.

REFERENCES

