C4.5 Implementation to Predict the Rate of Resignation
of Students in the University

Darsono Nababan1, Parasian D. P. Silitonga2, Magdalena Simanjuntak3, Rusmin Saragih4,
Yoseph P. K. Kelen5

1Department of Information and Technology, Timor University, Kefamenanu, Indonesia
2Faculty of Computer Science, Santo Thomas Catholic University, Medan 20132, Indonesia
3Department of Computer Science, STMIK Kaputama Binjai 20714, Indonesia
4Department of Information System, STMIK Kaputama Binjai 20714, Indonesia
5Department of Information and Technology, Timor University, Kefamenanu, Indonesia

4evitha12014@gmail.com, 5yosepkelen@unimor.ac.id

Keywords: Data Mining, Classification, Decision Tree, C4.5, Achievement Index Rating

Abstract: Classification is a process in data mining that is used to find models or functions that explain or differentiate
concepts or data classes. Classification of data is used to estimate a class of an object whose label is unknown.
One of the classification models is in the form of a decision tree and decision rules. The main function of
decision tree implementation is a decision tree's ability to break down the complex decision process into a
simpler one. This study uses the C4.5 method which is used to form a decision tree carried out on the data of
students at the University. Based on the decision tree that is produced, the causes that affect the resignation
of college students can be found. The attributes that are used in the decision tree in this research are student
Achievement Index Rating, parents' income and student attendance rate at lectures. Based on the results of
the research conducted, it was concluded that the parents' small income factors and small Achievement Index
Rating became the dominant factors that caused students to resign.

1 INTRODUCTION

Classification is a process in data mining that is used to find models or functions that explain or
differentiate concepts or data classes (Saputra, Rizal., 2014). Classification of data is used to estimate the
class of an object whose label is unknown (Sharma, Jitendra, Sanjeev, 2013). One of the classification
models is in the form of decision tree and decision rules.

C4.5 algorithm is the algorithm used to form a decision tree that can be used to predict a decision by
implementing a series of decision rules (Larose, Daniel T., 2005). A decision tree is a flow chart where
each internal node denotes the attribute being tested, each branch presents certain classes or classes
distribution.

The main function of the application of the decision tree is a decision tree's ability to break down
complex decision-making processes into more simple one (Sharma & Asst., Prof. Rupali, Bhartiya, 2012).
Through the decision tree, the decision-maker will better interpret the solution to the problem (Dai, W.,
Ji, W., 2014). Besides this, decision tree are useful for exploring data, finding hidden relationships between
several input variables with output variables. The decision tree combines data exploration and
modeling.

The problem of student resignation is a problem that occurs at every college. The resignation of
students can occur due to several things, including
parent's job transfer, job factors, inability to continue their education, tuition fees, and many other factors. The factors that resulted in the student's resignation were varied and several cases did not explain the reason for the resignation. But in general cases of student resignation are caused by factors such as poor student Achievement Index Rating, attendance rates and income of parents that affect the tuition fee.

Based on this, a study was conducted to find factors that influenced the level of the resignation of students at the University by using the C4.5 algorithm. The results of this study were expected to help the college to anticipate the level of student resignation so that it did not become too high.

2 DATA MINING

Data mining is a term that is often said to be a way to describe and to search for knowledge discovery in a database. One of the difficulties to define data mining is the fact that data mining inherits many aspects and techniques from various established fields of science.

Data mining is a process that uses statistical techniques, mathematics, artificial intelligence and machine learning to extract and identify useful information and related knowledge from various large databases (Silitonga, Parasian, Irene Sri Morina., 2018). According to Partner Group, Data Mining is a process of finding meaningful relationships, patterns, and tendencies by examining in a large collection of data stored in storage using pattern recognition techniques such as statistical and mathematical techniques (Larose, 2005).

One of the data mining techniques is classification. Classification is the process of finding a model or function that explains or distinguishes a concept or class of data, to be able to estimate the class of an object which label is unknown. The model itself can be an if-then rule, decision tree, mathematical formula or neural network.

2.1 Classification

Classification is a process in data mining that is used to find models or functions that explain or differentiate concepts or data classes (Saputra, Rizal., 2014). Classification of data is used to estimate a class of an object whose label is unknown (Sharma, Jitendra, Sanjeev, 2013).

Data mining classification is done by placing objects into one of several predetermined categories. Classification is used widely to predict classes on a particular label. That is by classifying data (building models) based on training sets and values (class labels) in classifying certain attributes and using them in classifying new data (Breiman, et al., 1984). The stages of classification in data mining consist of (Lior Rokach & Oded Maimon., 2005):

1. Building a model, in this stage, a model is created to solve the problem of class classification or attributes in the data, this model is built based on a training set - an example of data from a problem encountered, this training set already has complete information both attributes and classes.
2. Implementation of the model, at this stage the model that has been built previously is used to determine the attribute/class of new data whose attributes/class is not known before.
3. Evaluation, at this stage the results of the application of the model in the previous stage are evaluated using measured parameters to determine whether the model is acceptable.

2.2 Decision Tree

Decision tree and decision rules are data mining methodologies that applied widely as a solution to classify problems (Areega, et al., 2013). Data mining is a term that is often said to be a way to describe and find discoveries in the form of knowledge in a database (Silitonga, Parasian.2017).

The main function of the application of the decision tree is a decision tree's ability to break down the complex decision making processes more simple (Sarma, Sunil, 2013). Through the decision tree, decision-makers will interpret the solution to the problem more (Dai, W., Ji, W., 2014). Besides this, decision tree are useful for exploring data, finding hidden relationships between several input variables with output variables. The decision tree combine data exploration and model.

Decision tree representations are considered as a logical method which often used in the discussion of applied statistics and learning machine (Ling., Charles X., et. Al., 200 4). Decision tree making uses a supervised learning method is a learning process where new data is classified based on existing training samples.

Decision tree consist of nodes that are attributes of the sample data. Branches come out of the node the values or outcomes that are associated with the attributes (nodes). While the leaves in the decision tree show the class of the tested data sample.
In general, the steps in the C4.5 algorithm for building decision tree are as follows (Adhatrao, et al., 2013):
1. Select an attribute as root.
2. Create a branch for each value.
3. Divide the case into the branches.
4. Repeat the process for each branch until all cases in the branch have the same class.

To select an attribute as root, select the one with the highest Gain value from all the attributes that present. To calculate the value of a Gain attribute is used following equation 1.

\[
\text{Gain}(S,A) = \text{Entropy}(S) - \sum_{i=1}^{n} \frac{|S_i|}{|S|} \times \text{Entropy} S_i \quad (1)
\]

Where:
- \(S \) = Case Set
- \(A \) = Attribute
- \(n \) = Number of attribute partitions
- \(|S_i| \) = Number of cases on the \(i \) partition
- \(|S| \) = Number of cases in \(S \)

While the calculation of Entropy values is carried out by Equation 2.

\[
\text{Entropy}(S) = \sum_{i=1}^{n} - p_i \log_2 p_i \quad (2)
\]

Where:
- \(S \) = Case Set
- \(n \) = Total Partition of \(S \)
- \(p_i \) = Proportion of \(S_i \) to \(S \)

2.4 Achievement Index Rating

Achievement Index Rating is an average credit value which is the final value unit that describes the value of the teaching and learning process every semester or can also be interpreted as a quantity or number that states the achievement of success in the teaching and learning process of students in one semester (H, Burhanuddin Salam., 2003).

The Achievement Index Rating is divided into Semester Achievement Index Rating and Cumulative Achievement Index Rating (Nasir et al., 2011). Semester Achievement Index Rating is an index of achievement that is calculated based on subjects covered during a certain semester. While Achievement Index Rating is a student achievement index based on all courses taken. Calculation of Achievement Index is carried out by Equation 3.

\[
\text{AIR} = \frac{\sum \text{SKS} \times N}{\sum \text{SKS}} \quad (3)
\]

Where:
- \(\text{AIR} \) = Achievement Index Rating
- \(\text{SKS} \) = Semester Credit System Weight
- \(N \) = Course weight

3 IMPLEMENTATION

The purpose of this study was to determine the classification factors that resulted in students who resigned from college. The variable that becomes the decision criterion consists of the Cumulative Achievement Index, Attendance Level in Lecture and Parental Income. Whereas variables become the destination parameter is the Decision Variable. Research conducted on students of the College in the year 2014 and 2015 as many as 180 students with a table structure as in Table 1.
Number of Classes \((K) = 1 + 3.3 \log n \). \hspace{1cm} (4)

Where: \(n = \) amount of data

So:

\[
K = 1 + 3.3 \log(180) \\
= 1 + 3.3 \times 2.25527 \\
= 8.443239
\]

Based on the class grouping process, there are 8 classes \((K)\).

Achievement Index Rating
The Student’s Achievement Index Rating is grouped according to table 2.

<table>
<thead>
<tr>
<th>Achievement Index Rating (AIR)</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.00 \leq AIR \leq 0.50)</td>
<td>1</td>
</tr>
<tr>
<td>(0.50 < AIR \leq 1.00)</td>
<td>2</td>
</tr>
<tr>
<td>(1.00 < AIR \leq 1.50)</td>
<td>3</td>
</tr>
<tr>
<td>(1.50 < AIR \leq 2.00)</td>
<td>4</td>
</tr>
<tr>
<td>(2.00 < AIR \leq 2.50)</td>
<td>5</td>
</tr>
<tr>
<td>(2.50 < AIR \leq 3.00)</td>
<td>6</td>
</tr>
<tr>
<td>(3.00 < AIR \leq 3.50)</td>
<td>7</td>
</tr>
<tr>
<td>(\text{AIR} > 3.50)</td>
<td>8</td>
</tr>
</tbody>
</table>

1. Income (Parents Monthly Income)
The grouping of income variables for each month is presented as in table 3.

<table>
<thead>
<tr>
<th>Parents Monthly Income (Rupiah)</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>(500.000 \leq \text{Income} \leq 1.500.000)</td>
<td>1</td>
</tr>
<tr>
<td>(1.500.000 < \text{Income} \leq 3.000.000)</td>
<td>2</td>
</tr>
<tr>
<td>(3.000.000 < \text{Income} \leq 4.000.000)</td>
<td>3</td>
</tr>
<tr>
<td>(4.000.000 < \text{Income} \leq 5.000.000)</td>
<td>4</td>
</tr>
<tr>
<td>(5.000.000 < \text{Income} \leq 6.500.000)</td>
<td>5</td>
</tr>
<tr>
<td>(6.600.000 < \text{Income} \leq 7.500.000)</td>
<td>6</td>
</tr>
<tr>
<td>(7.000.000 < \text{Income} \leq 8.500.000)</td>
<td>7</td>
</tr>
<tr>
<td>(\text{Income} > 8.500.000)</td>
<td>8</td>
</tr>
</tbody>
</table>

1. Students’ Attendance Level
The students’ attendance level is categorized as presented in Table 4.

<table>
<thead>
<tr>
<th>Student Attendance Percentage (%)</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0 \leq \text{Attendance} \leq 12.5)</td>
<td>1</td>
</tr>
<tr>
<td>(12.5 < \text{Attendance} \leq 25)</td>
<td>2</td>
</tr>
<tr>
<td>(25 < \text{Attendance} \leq 37.5)</td>
<td>3</td>
</tr>
<tr>
<td>(37.5 < \text{Attendance} \leq 50)</td>
<td>4</td>
</tr>
<tr>
<td>(50 < \text{Attendance} \leq 62.5)</td>
<td>5</td>
</tr>
<tr>
<td>(62.5 < \text{Attendance} \leq 75)</td>
<td>6</td>
</tr>
<tr>
<td>(75 < \text{Attendance} \leq 87.5)</td>
<td>7</td>
</tr>
<tr>
<td>(\text{Attendance} > 87.5)</td>
<td>8</td>
</tr>
</tbody>
</table>

2. **Decision**

Decision Variable is the objective parameter in the case of student resignation. Decision Variable categorized on Yes and No.

Decision Tree To Predict Students Who Resign

1. **Decision Tree Root Attribute (Node Level 0)**

Determination of the root attribute in the decision tree is based on the highest Gain value of each attribute. The calculation of the Gain value of the attribute is done after the total entropy value of the case is obtained and the entropy of each attribute corresponds to Equation 2.

\[
\text{Entropy (Case)} = \left(\frac{141}{180} \log_2 \frac{141}{180} \right) + \left(\frac{39}{180} \log_2 \frac{39}{180} \right) \\
= 0.754034056
\]

Entropy AIR

\[
\text{Entropy (1)} = \left(-\frac{9}{5} \log_2 \left(\frac{9}{5} \right) \right) + \left(-\frac{9}{5} \log_2 \left(\frac{9}{5} \right) \right) = 0
\]

\[
\text{Entropy (2)} = \left(-\frac{2}{3} \log_2 \left(\frac{2}{3} \right) \right) + \left(-\frac{2}{3} \log_2 \left(\frac{2}{3} \right) \right) = 0
\]

This is done so on each partition on each variable. After obtaining the entropy value of each attribute,
next is determining the Gain attribute value by equation 3.

\[
\text{Gain (Case, AIR)} = \text{Entropy}(S) - \sum_{i=1}^{n} \frac{|IPK|}{|Total|} \times \text{Entropy}(IPK_i).
\]

\[
= 0.754034056 - \left(\frac{9}{180} \times 0 \right) + \left(\frac{5}{180} \times 0.99107606 \right) + \left(\frac{10}{200} \times 1 \right) + \ldots
\]

\[
= 0.473613716
\]

Thus, it is done to obtain the Gain value of each attribute. The results of the calculation of Gain and Entropy for each attribute in the prediction process of student resignation are presented in Table 5.

Table 5. Calculation of Node 1.

<table>
<thead>
<tr>
<th>Node</th>
<th>Category</th>
<th>Total Case (S)</th>
<th>Decision To Stay</th>
<th>Yes (S1)</th>
<th>No (S2)</th>
<th>Entropy</th>
<th>Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AIR</td>
<td>180</td>
<td>141</td>
<td>39</td>
<td>0.754034056</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>AIR (3)</td>
<td>10</td>
<td>3</td>
<td>7</td>
<td>0.881290899</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Attendance</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>0.605802149</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>Income</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0.681290899</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.551802149</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.59167277</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Based on the results in Table 5 shows that the School Attendance Highest Gain value, thus Attendance me njadi roots in a decision tree. The Node 1 decision tree is presented in Figure 1.

Table 6. Calculation of Node 1.1

<table>
<thead>
<tr>
<th>Node</th>
<th>Category</th>
<th>Total Case (S)</th>
<th>Decision To Stay</th>
<th>Yes (S1)</th>
<th>No (S2)</th>
<th>Entropy</th>
<th>Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>AIR (3)</td>
<td>10</td>
<td>3</td>
<td>7</td>
<td>0.881290899</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Attendance</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>0.605802149</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>Income</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0.681290899</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7. Calculation of Node 1.2

<table>
<thead>
<tr>
<th>Node</th>
<th>Category</th>
<th>Jumlah Kasus (S)</th>
<th>Decision To Stay</th>
<th>Yes (S1)</th>
<th>No (S2)</th>
<th>Entropy</th>
<th>Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AIR (4)</td>
<td>18</td>
<td>24</td>
<td>14</td>
<td>0.949452015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>AIR (3)</td>
<td>10</td>
<td>3</td>
<td>7</td>
<td>0.881290899</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Attendance</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>0.605802149</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>Income</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0.681290899</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2: Node Decision Tree of Node Level 0.

1. Node Level 1 Decision Tree Attributes

Next, determine the node in Node 1.1 and Node 1.2 of the remaining attributes, namely the Achievement Index and the Parent's Earnings every Month. Calculation results of Gain and Entropy Node 1.1, Node 1.2 and Node 1.3 are presented as in Table 6 and Table 7.

Table 6. Calculation of Node 1.1

<table>
<thead>
<tr>
<th>Node</th>
<th>Category</th>
<th>Total Case (S)</th>
<th>Decision To Stay</th>
<th>Yes (S1)</th>
<th>No (S2)</th>
<th>Entropy</th>
<th>Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AIR (4)</td>
<td>18</td>
<td>24</td>
<td>14</td>
<td>0.949452015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Attendance</td>
<td>16</td>
<td>22</td>
<td>10</td>
<td>0.9957277</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Income</td>
<td>6</td>
<td>12</td>
<td>1</td>
<td>0.7642849</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.59167277</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7. Calculation of Node 1.2

Based on the results in Table 5 shows that the School Attendance Highest Gain value, thus Attendance me njadi roots in a decision tree. The Node 1 decision tree is presented in Figure 1.
Table 8. Calculation of Node 1.3

<table>
<thead>
<tr>
<th>Node</th>
<th>Category</th>
<th>Jumlah Kasus</th>
<th>Decision To Stay Yes</th>
<th>No</th>
<th>Entropy</th>
<th>Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3</td>
<td>AIR</td>
<td>64</td>
<td>59</td>
<td>4</td>
<td>0.541153893</td>
<td>0.128809708</td>
</tr>
<tr>
<td></td>
<td>Attendance</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0.120609708</td>
</tr>
<tr>
<td></td>
<td>Income</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>0.918295834</td>
<td>0.118813931</td>
</tr>
</tbody>
</table>

The results of calculations in Table 6 show that parents’ income gets the highest Gain value. Whereas the calculations in Tables 7 and 8 show that the student attendance level has the highest Gain score. Based on the results in Table 6, Table 7 and Table 8 obtained the Level 1 decision tree as in Figure 2.

Figure 3: Decision Tree of Node Level 1

Next is completing to calculate level 2 Nodes. The results of calculating Gain and Entropy Node level 2 are presented in the form of a decision tree as shown in Figure 3.

Figure 4: Decision Tree of Node Level 2

4 CONCLUSION

1. Based on the results of data collection, it was found that as many as 21% of 2014 and 2015 class year students who resigned from the College.

2. Achievement index rating, students’ attendance level and small parents’ income greatly influence the level of the resignation of students from the College.

3. Based on the decision tree produced, that the students who resigned from the College is the students who have achievement index between 1.00 and 2.50.

ACKNOWLEDGMENT

This research has limitations, especially in determining the variables and methods used. The author is open to all suggestions and critics and hopes that this research can be used for other researches.

REFERENCES

