Towards a Unified Model Representation of Machine Learning Knowledge

Antonio Martínez-Rojas, Andrés Jiménez-Ramírez and Jose G. Enríquez

Departamento de Lenguajes y Sistemas Informáticos, Universidad de Sevilla, Seville, Spain

Keywords: Machine Learning, Automated Machine Learning, Knowledge Representation, Model-Driven Engineering.

Abstract: Nowadays, Machine Learning (ML) algorithms are being widely applied in virtually all possible scenarios. However, developing a ML project entails the effort of many ML experts who have to select and configure the appropriate algorithm to process the data to learn from, between other things. Since there exist thousands of algorithms, it becomes a time-consuming and challenging task. To this end, recently, AutoML emerged to provide mechanisms to automate parts of this process. However, most of the efforts focus on applying brute force procedures to try different algorithms or configuration and select the one which gives better results. To make a smarter and more efficient selection, a repository of knowledge is necessary. To this end, this paper proposes (1) an approach towards a common language to consolidate the current distributed knowledge sources related the algorithm selection in ML, and (2) a method to join the knowledge gathered through this language in a unified store that can be exploited later on. The preliminary evaluations of this approach allow to create a unified store collecting the knowledge of 13 different sources and to identify a bunch of research lines to conduct.

1 INTRODUCTION

Machine Learning (ML) entails the study of algorithms that automatically improve through experience (Mitchell, 1997). This kind of algorithms has been successfully and broadly applied in the past (Mitchell, 2006) and nowadays is receiving an increasing attention due to the affordable access to bigger computation power of machines.

A ML project requires selecting an appropriate algorithm to process the data to learn from, what is typically named creating the data model. However, there are thousands of algorithms under the paradigm of ML, each of them tailored to some specific tasks or contexts. In addition, many of these algorithms offer a different set of parameters to be configured (e.g., selecting the number of layers in a neural network).

Many existing approaches focus on the latter task, i.e., supporting the user after the algorithm selection is done, and few of them recommend an algorithm always after the user has provided the dataset. As an example, the recent research area of AutoML (Thornton et al., 2012) aims to automate the different steps of ML projects. Nonetheless, such approaches neglect the early stages of the project. Many of them just provide a brute force mechanism that runs several algorithms in later stages of the project, i.e., when the dataset is ready. Thus, little effort has been done to support the user in the algorithm selection in an efficient manner (i.e., without applying brute force) and based on the problem characteristics (i.e., the early information).

The algorithm selection is specifically challenging since the existing knowledge regarding this task is distributed across different sources and each of them is specified in a non-standard manner, thus, making it difficult to consolidate information from different sources, i.e., the name of the algorithms —or family of algorithms—, the selection criteria, and the characteristics of the problem that affect the selection are heterogeneous (cf. Figure 1).

Figure 1: Problem motivation.
Towards a Unified Model Representation of Machine Learning Knowledge

2 BACKGROUND

This paper deals with two main concepts: ML (cf. Section 2.1) and Model-Driven Engineering (cf. Section 2.2).

2.1 Machine Learning

Machine learning emerges as a set of tools under a broader paradigm called artificial intelligence (Mitchell, 1997). A ML project typically follows a life-cycle comprising many activities, e.g., the understanding of the problem, selecting the appropriate algorithm, parameterizing the algorithm, or creating and testing the model. All these steps involve tedious manual work which motivating the arising of AutoML (Thornton et al., 2012; Feurer et al., 2015), a research line that pursues the automation of the ML life-cycle steps.

So far, AutoML has been applied in several domains, like health (Panagopoulos et al., 2018), chemistry (Dixon et al., 2016) or software engineering (Abukwaik et al., 2018). Most of the effort has been applied to automatically generate the ML model, e.g., to look for the algorithm’s parameters which allow the most accurate model for a given dataset. However, the majority of these studies applied brute force to look for these parameters and only a few approaches (Panagopoulos et al., 2018; Mohr et al., 2018) include smarter solutions to reduce the search space.

In the industry field, there exist some commercial tools that support AutoML, e.g., BigML (BigML, 2019) or DataRobot (DataRobot, 2019). Similarly to the academic field, these tools mainly apply brute force to find the appropriate algorithm.

At a glance, selecting the appropriate algorithm is a non-deterministic and time-consuming task that depends on many problem and data characteristics. For
this, the empirical knowledge is commonly shared in different Internet sources. Beyond the research papers, organizations used to share their experiences with the aim of guiding practitioners to use some software products. For example, scikit-learn (Pedregosa et al., 2011) (cf. Figure 3) and Microsoft Azure (Microsoft, 2019) share a cheat sheet which tries to explain which algorithm better fits according to a set of problem characteristics while Dataiku (Dataiku, 2019) contains technical documents with the same objective. The current work aims to gather all this distributed knowledge to enable a smarter way of AutoML.

2.2 Model-Driven Engineering

The Model-Driven Engineering (MDE) paradigm raises the use of models as a mechanism to reach the concrete from the abstract (Fondement and Silaghi, 2004).

MDE incorporates the elements: concepts, notations, processes, rules and support tools (Brambilla et al., 2012), to provide advantages such as: having a common way of representing processes, facilitating compatibility with other formalisms, enabling the reuse of models or creating specific solutions of domain among others (Mohagheghi et al., 2013).

The fundamental elements of MDE are models and transformations between models (Cetinkaya and Verbraeck, 2011), which must be expressed through some notation (called a modeling language), and defines the syntax or notation of the model, as well as its semantics or meaning.

Everything in MDE can be expressed as a model (Bézivin, 2005). The term “metamodeling” is known as the action of modeling a model or modeling a modeling language. A metamodel is an abstraction of a model itself, which defines the properties of that model, the structure and restrictions for a family of models (Mellor et al., 2004).

MDE is probably one of the best-known modeling techniques in software engineering (Kent, 2002). Modeling languages are the mechanisms that allow designers to specify the models of their processes or systems. They establish the way in which the concrete representation of a conceptual model is defined and can be composed of graphical representations, textual representations, or even both. In any case, modeling languages are formally defined and oblige designers to use their syntax when creating models (Brambilla et al., 2012). There are two major groups of modeling languages.

- General-Purpose Modeling Languages (GPMLs), which can be used for any application domain.
- Domain-Specific Languages (DSLs), which are designed specifically for a certain domain.

The Meta Object Facility (MOF) language (OMG, 2016), proposed by the reference body in this field, the Object Management Group (OMG), is one of the best-known languages for the definition of metamodels. In this language, metainformation is specified that makes data understandable by a computer (Schmidt, 2006).

Considering the background presented, it is possible to assume that MDE can be used to standardize the way in which the ML Knowledge is created.

3 CONTRIBUTION

This section describes the two main contributions of this paper: (1) a common language is proposed to enable a consolidated way of representing the ML Knowledge (cf. Section 3.1), and (2) a process to incorporate heterogeneous information sources into a unified knowledge store (cf. Definition 1) using the previous language (cf. Section 3.2).

Definition 1. A Unified knowledge store UKS = \(\langle \text{CharTerms}, \text{AlgTerms}, \text{KnowlSources}, \text{Rules} \rangle \) consists of

- A set of pairs \(\langle \text{id}, \text{name} \rangle \) which contains an id and a name associated to problem characteristics, e.g., the amount of data (i.e., CharTerms).
- A set of pairs \(\langle \text{id}, \text{name} \rangle \) which contains an id and a name associated to the ML algorithms, e.g., Naives Bayes (i.e., AlgTerms).
- A set of tuples \(\langle \text{source}, \text{name} \rangle \) which contains an id and a name associated to the knowledge sources that have been considered in the store, e.g., Sckit-Learn Algorithm Cheat Sheet (i.e., AlgTerms).
- And a set of tuples \(\langle \text{rule}, \text{source}, \text{antecedents}, \text{consequences} \rangle \) which contains an id, the reference of the knowledge source which motivates this rule, and the rule itself (i.e., Rules). On the one hand, antecedents is a set of pairs \(\langle \text{char}, \text{value} \rangle \) stating that this rule is fired if the problem characteristics have the given value. On the other hand, consequences is a set of pairs \(\langle \text{id}, \text{value} \rangle \) indicating that these algorithms are recommended if the rule is fired.
3.1 A Common Language for Recommendations of ML Algorithms

This paper proposes a formal language to abstract from the different languages which are used to represent the knowledge. More precisely, in the context of recommendations for the usage of a ML algorithm, sources of knowledge can be found in research papers, Web forums, cheat sheets of organizations, etc. Nonetheless, if these sources are analyzed and the non-relevant information is wiped out, the knowledge that they contain shares a similar and simple format: some algorithms are recommended if a set of problem characteristics have some specific values (e.g., the problem is to predict a discrete value and the amount of data is over 10K).

Herein, we propose an abstract syntax or metamodel (cf. Figure 4) that allows: (1) representing this knowledge in a graphical way and (2) being interpreted by a computer program.

The proposed metamodel is composed of six metaclasses. The "MLKnowledge" metaclass allows the content of the knowledge source to be represented in the format of the target knowledge source. This representation format is composed of Decisions and Nodes.

The "Node" metaclass, defined by the attribute "name", allows to represent each origin points of the different branches of the knowledge source. This metaclass can be represented as three different ways:

- **Start**: it represents the initial node.
- **Characteristic**: it represents the antecedents that are considered for making a decision and generate a consequence.
- **Algorithm**: it represents a consequence, that is, an algorithm resulting from the recommendation based on some antecedents).

The "Decision" metaclass allows to represent the antecedents of the knowledge source, that is, a set of problem characteristics that affect the decisions and the criteria for recommending an algorithm based on them. These criteria are represented through the "expression" attribute of "Decision" metaclass. Moreover, this metaclass connects instances of the metaclass "Node" through the "source" and "target" attributes.

In addition to the abstract syntax, a concrete syntax that allows to create models based on the ML Knowledge Language was defined. This concrete syntax is a DSL composed of a set of specific symbols (cf. Figure 5) that let the software engineer instantiate each of the metaclasses of the metamodel.

A small example of the use of the DSL is illustrated in Figure 6. This figure represents a piece of the knowledge source of scikit-learn (cf. Figure 3) modelled with the DSL described above.

As evidenced in Figure 6, the model begins with the Start Node. Next, it is presented a Characteristic Node called “data”, which represents the amount of data that the user has. This Characteristic is connected to a pair of Nodes called “Linear SVC” and “SGD Classifier” by two different Decisions, called “>100K” and “<100K” respectively. It means, if the antecedent “data” takes value “<100K” the conse-
3.2 Towards a Unified Knowledge Store

As seen in Figure 2, this approach consists of two phases. In a first phase, each knowledge source is expressed using the suggested language (cf. Figure 7). For this, the terminology of the considered knowledge source is unified with the terminology that is already used in the existing unified knowledge store. That is, each problem characteristic or algorithm that appears in the knowledge source is mapped to a term in CharTerms and AlgTerms respectively. In case that some new term has not a mapping to any exiting term, it remains with the original one since it will be included later in the store.

Thereafter, the knowledge source with unified terminology is manually modeled using the previous language. That is, the different relations between the problem characteristics and the algorithms is written in a formal way.

In a second phase, the knowledge source is processed to extract the individual recommendation rules (cf. Figure 8) and store them in the unified knowledge store. For this, since the model present a tree-like structure, it is divided into the different paths that exist from the root (i.e., the start node) to any algorithm node.

Each path is composed of (1) a “Start Node, (2) a set of “Characteristic Nodes” together with a labeled
outgoing edge where the label indicates the value that takes the characteristic, and (3) one or various “Algorithm Nodes. Therefore, the paths are processed to extract the rules of the knowledge source. These rules have a similar shape to the unified knowledge store. Each one keeps a set of antecedents (i.e., the names and the values of the characteristics that appears in the path) and a set of consequences (i.e., the names of the algorithms that appears in the path).

As a final step, these intermediate rules are incorporated in the unified knowledge store. First, if the knowledge source does not exist in the KnowSources of the store, a new entry is included with a new sourceid. Second, each characteristic name and algorithm name that exists in the CharTerms and the AlgTerms are substituted by the charid and the algid respectively. If some characteristics or algorithms were not previously included in the store, new entries are created in the CharTerms or AlgTerms and the new charid or algid are used to substitute the names in the antecedents and consequences. And third, a new ruleid is obtained and the tuple \((\text{ruleid}, \text{sourceid}, \text{antecedents, consequences})\) is the Rules of the unified knowledge store.

For example, Figure 9 depicts how the different rules can be extracted from the model of Figure 6.

4 CONCLUSIONS AND FUTURE WORK

This paper presents an approach to deal with the distributed knowledge of ML. Specifically, it aims to create a repository with rules that help to decide which ML algorithms are suitable to solve a given problem. For this, a common language for modeling this knowledge is proposed. Such a language is stated in form of a metamodel that a computer program can process. In addition, a procedure to transfer these models to a unified knowledge store is described. This store will enable exploiting the knowledge of the distributed sources to make decisions with less risk.

However, this work considers some assumptions that limit its application. First, it considers that all the knowledge sources are equally relevant and not biased, e.g., an organization may not recommend certain algorithms just because they do not provide a component for it. Second, the suggested unified knowledge store keeps simple rules lacking more complex syntax like OR or NOT expressions. And finally, using this proposal requires a manual work to model the knowledge source through the provided language which may entail a considerable effort depending on the number of sources. Nonetheless, this effort will be leveraged not only by a single ML project but by the future ones too.

As further future work, we plan (1) to exploit the unified knowledge store in order to generate a decision support tool, (2) to improve traceability of term mappings between knowledge sources and the unified store, so that we can enable a revision of the translations that have been done related to a term in the unified knowledge store. (3) to weight knowledge sources according to their relevance, soundness or reliability, in order to optimize the search for the right algorithm, (4) to extend the proposed
MLKnowledge language capabilities since complex expressions, such as disjunctions and negations, occasionally appear within the antecedents of knowledge sources, (5) to introduce the concept of intensity of recommendation with the aim of expressing the degree of acceptance of the recommendations, since some knowledge sources express a distinction between the value of different recommendations (e.g., excellent vs acceptable recommendations), (6) to analyze the impact of fuzzy terms within knowledge sources since some of them specify fuzzy values for the characteristics (e.g., few data instead of a concrete number), (7) to use ML to automatically translate knowledge sources, so that it takes as input the source as its (e.g., either in graphic or text mode) and generates as output the associated models in the ML Knowledge Language.

ACKNOWLEDGEMENTS

This research has been supported by the Pololas project (TIN2016-76956-C3-2-R) of the Spanish Ministerio de Economía y Competitividad and the PROMETEO project (P009-18/E09) of the Centre for Industrial Technological Development (Centro para el Desarrollo Tecnológico Industrial, CDTI) of Spain.

REFERENCES

