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Abstract: Nowadays, Machine Learning (ML) algorithms are being widely applied in virtually all possible scenarios.
However, developing a ML project entails the effort of many ML experts who have to select and configure
the appropriate algorithm to process the data to learn from, between other things. Since there exist thousands
of algorithms, it becomes a time-consuming and challenging task. To this end, recently, AutoML emerged to
provide mechanisms to automate parts of this process. However, most of the efforts focus on applying brute
force procedures to try different algorithms or configuration and select the one which gives better results.
To make a smarter and more efficient selection, a repository of knowledge is necessary. To this end, this
paper proposes (1) an approach towards a common language to consolidate the current distributed knowledge
sources related the algorithm selection in ML, and (2) a method to join the knowledge gathered through this
language in a unified store that can be exploited later on. The preliminary evaluations of this approach allow
to create a unified store collecting the knowledge of 13 different sources and to identify a bunch of research
lines to conduct.

1 INTRODUCTION

Machine Learning (ML) entails the study of algo-
rithms that automatically improve through experience
(Mitchell, 1997). This kind of algorithms has been
successfully and broadly applied in the past (Mitchell,
2006) and nowadays is receiving an increasing atten-
tion due to the affordable access to bigger computa-
tion power of machines.

A ML project requires selecting an appropriate al-
gorithm to process the data to learn from, what is typ-
ically named creating the data model. However, there
are thousands of algorithms under the paradigm of
ML, each of them tailored to some specific tasks or
contexts. In addition, many of these algorithms of-
fer a different set of parameters to be configured (e.g.,
selecting the number of layers in a neural network).

Many existing approaches focus on the latter task,
i.e., supporting the user after the algorithm selection
is done, and few of them recommend an algorithm al-
ways after the user has provided the dataset. As an
example, the recent research area of AutoML (Thorn-
ton et al., 2012) aims to automate the different steps

a https://orcid.org/0000-0002-2782-9893
b https://orcid.org/0000-0001-8657-992X
c https://orcid.org/0000-0002-2631-5890

A
B

Heterogeneous 
Knowledge Sources

Machine learning
algorithms

Problem 
characteristics

Consolidated 
knowledge

Selection 
criteria +

C

Figure 1: Problem motivation.

of ML projects. Nonetheless, such approaches ne-
glect the early stages of the project. Many of them
just provide a brute force mechanism that runs several
algorithms in later stages of the project, i.e., when the
dataset is ready. Thus, little effort has been done to
support the user in the algorithm selection in an effi-
cient manner (i.e., without applying brute force) and
based on the problem characteristics (i.e., the early
information).

The algorithm selection is specifically challeng-
ing since the existing knowledge regarding this task is
distributed across different sources and each of them
is specified in a non-standard manner, thus, making
it difficult to consolidate information from different
sources, i.e., the name of the algorithms —or family
of algorithms—, the selection criteria, and the char-
acteristics of the problem that affect the selection are
heterogeneous (cf. Figure 1).
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Figure 2: Overall proposal.

To reduce the risk of taking inaccurate decisions
due to a lack of information, a central repository of
the ML Knowledge which stores the information in
a structured way is required. In order to address
this problem, this paper proposes (cf. Figure 2), on
the one hand, a unified language for representing the
knowledge related to the algorithm selection in ML
projects. On the other hand, the paper describes a
method to transform the knowledge gathered using
this language to a unified knowledge store which can
be exploited later on.

The unified language is presented as a metamodel
that allows a graphical representation of the knowl-
edge related to:

• The characteristics that affect the decisions, e.g.,
the amount of data which is available or the type
of problem.

• The algorithms that can be recommended, e.g.,
Bayesian network or Support Vector Machine.

• The criteria for recommending an algorithm based
on some of the characteristics, e.g., if the project
aims to detect anomalies and the number of
columns of the dataset is greater than 100, the
Support Vector Machine algorithm is an excellent
candidate.

Thereafter, the recommendations which are writ-
ten using this language can be transferred to the pro-
posed unified stored. This store allows to reduce the
ambiguity on (1) the name of the characteristics, e.g.,
number of columns is often used as number of vari-
ables or features in some information sources, and
(2) the name of the algorithms to recommend, e.g.,
Bayesian network can be found as Bayes model too.

This approach has been validated in a real indus-
trial project using several publicly-available informa-
tion sources related to ML. Some of them represent
the information as a picture summarizing the knowl-
edge (e.g., (Sckit-learn, 2019; Microsoft, 2019))
while some others are expressed in text form (e.g.,
(Dataiku, 2019)). After considering an initial set of
13 different information sources, our approach suc-
cessfully stored 150 recommendations of more than
80 algorithms considering more than 20 characteris-
tics.

Although it remains out of the scope of this paper,
this unified knowledge can be used to create a recom-
mendation system that helps the user to decide which
is the best algorithm for her new project.

The rest of the paper is organized as follows: sec-
tion 2 put in context the problem treated in this re-
search, detailing a background related to the Machine
Learning and Model-Driven Engineering. Section 3
presents the contributions of the paper. This section
is divided into two main elements: (1) a common
language for recommendations of ML algorithms and
(2) an early approach to reach a unified knowledge
store. Finally, section 4 summarizes the conclusions
and states a set of future work.

2 BACKGROUND

This paper deals with two main concepts: ML (cf.
Section 2.1) and Model-Driven Engineering (cf. Sec-
tion 2.2).

2.1 Machine Learning

Machine learning emerges as a set of tools un-
der a broader paradigm called artificial intelligence
(Mitchell, 1997). A ML project typically follows a
life-cycle comprising many activities, e.g., the under-
standing of the problem, selecting the appropriate al-
gorithm, parametrizing the algorithm, or creating and
testing the model. All these steps involve tedious
manual work which motivating the arising of AutoML
(Thornton et al., 2012; Feurer et al., 2015), a research
line that pursues the automation of the ML life-cycle
steps.

So far, AutoML has been applied in several do-
mains, like health (Panagopoulou et al., 2018), chem-
istry (Dixon et al., 2016) or software engineering
(Abukwaik et al., 2018). Most of the effort has been
applied to automatically generate the ML model, e.g.,
to look for the algorithm’s parameters which allow the
most accurate model for a given dataset. However,
the majority of these studies applied brute force to
look for these parameters and only a few approaches
(Panagopoulou et al., 2018; Mohr et al., 2018) include
smarter solutions to reduce the search space.

In the industry field, there exist some commer-
cial tools that support AutoML, e.g., BigML (BigML,
2019) or DataRobot (DataRobot, 2019). Similarly
to the academic field, these tools mainly apply brute
force to find the appropriate algorithm.

At a glance, selecting the appropriate algorithm is
a non-deterministic and time-consuming task that de-
pends on many problem and data characteristics. For
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this, the empirical knowledge is commonly shared in
different Internet sources. Beyond the research pa-
pers, organizations used to share their experiences
with the aim of guiding practitioners to use some soft-
ware products. For example, scikit-learn (Pedregosa
et al., 2011) (cf. Figure 3) and Microsoft Azure (Mi-
crosoft, 2019) share a cheat sheet which tries to ex-
plain which algorithm better fits according to a set
of problem characteristics while Dataiku (Dataiku,
2019) contains technical documents with the same ob-
jective. The current work aims to gather all this dis-
tributed knowledge to enable a smarter way of Au-
toML.

2.2 Model-Driven Engineering

The Model-Driven Engineering (MDE) paradigm
raises the use of models as a mechanism to reach the
concrete from the abstract (Fondement and Silaghi,
2004).

MDE incorporates the elements: concepts, nota-
tions, processes, rules and support tools (Brambilla
et al., 2012), to provide advantages such as: having
a common way of representing processes, facilitat-
ing compatibility with other formalisms, enabling the
reuse of models or creating specific solutions of do-
main among others (Mohagheghi et al., 2013).

The fundamental elements of MDE are models
and transformations between models (Cetinkaya and
Verbraeck, 2011), which must be expressed through
some notation (called a modeling language), and de-
fines the syntax or notation of the model, as well as
its semantics or meaning.

Everything in MDE can be expressed as a model
(Bézivin, 2005). The term “metamodeling” is known
as the action of modeling a model or modeling a mod-
eling language. A metamodel is an abstraction of
a model itself, which defines the properties of that
model, the structure and restrictions for a family of
models (Mellor et al., 2004).

MDE is probably one of the best-known model-
ing techniques in software engineering (Kent, 2002).
Modeling languages are the mechanisms that allow
designers to specify the models of their processes or
systems. They establish the way in which the concrete
representation of a conceptual model is defined and
can be composed of graphical representations, textual
representations, or even both. In any case, modeling
languages are formally defined and oblige designers
to use their syntax when creating models (Brambilla
et al., 2012). There are two major groups of modeling
languages.

• Domain-Specific Languages (DSLs), which are
designed specifically for a certain domain.

• General-Purpose Modeling Languages (GPMLs),
which can be used for any application domain.

The Meta Object Facility (MOF) language (OMG,
2016), proposed by the reference body in this field,
the Object Management Group (OMG), is one of the
best-known languages for the definition of metamod-
els. In this language, metainformation is specified that
makes data understandable by a computer (Schmidt,
2006).

Considering the background presented, it is pos-
sible to assume that MDE can be used to standardize
the way in which the ML Knowledge is created.

3 CONTRIBUTION

This section describes the two main contributions of
this paper: (1) a common language is proposed to
enable a consolidated way of representing the ML
Knowledge (cf. Section 3.1), and (2) a process to
incorporate heterogeneous information sources into a
unified knowledge store (cf. Definition 1) using the
previous language (cf. Section 3.2).

Definition 1. A Unified knowledge store UKS =
(CharTerms,AlgTerms,KnowlSources,Rules) con-
sists of

• A set of pairs 〈charid ,charname〉 which contains an
id and a name associated to problem characteris-
tics, e.g., the amount of data (i.e., CharTerms),

• A set of pairs 〈algid ,algname〉 which contains an
id and a name associated to the ML algorithms,
e.g., Naives Bayes (i.e., AlgTerms),

• A set of tuples 〈sourceid ,sourcename〉 which con-
tains an id and a name associated to the knowl-
edge sources that have been considered in the
store, e.g., Sckit-Learn Algorithm Cheat Sheet
(i.e., AlgTerms),

• And a set of tuples
〈ruleid ,sourceid ,antecedents,consequences〉
which contains an id, the reference of the
knowledge source which motivates this rule, and
the rule itself (i.e., Rules). On the one hand,
antecedents is a set of pairs 〈charid ,value〉
stating that this rule is fired if the problem
characteristics have the given value. On the other
hand, consequences is a set algid which indicates
that these algorithms are recommended if the rule
is fired.

APMDWE 2019 - 4th International Special Session on Advanced practices in Model-Driven Web Engineering

472



Figure 3: Example knowledge source. source:scikit-learn.com.

3.1 A Common Language for
Recommendations of ML
Algorithms

This paper proposes a formal language to abstract
from the different languages which are used to rep-
resent the knowledge. More precisely, in the con-
text of recommendations for the usage of a ML al-
gorithm, sources of knowledge can be found in re-
search papers, Web forums, cheat sheets of organiza-
tions, etc. Nonetheless, if these sources are analyzed
and the non-relevant information is wiped out, the
knowledge that they contain shares a similar and sim-
ple format: some algorithms are recommended if a set
of problem characteristics have some specific values
(e.g., the problem is to predict a discrete value and the
amount of data is over 10K).

Herein, we propose an abstract syntax or meta-
model (cf. Figure 4) that allows: (1) representing
this knowledge in a graphical way and (2) being in-
terpreted by a computer program.

The proposed metamodel is composed of six
metaclasses. The “MLKnowledge” metaclass allows
the content of the knowledge source to be represented
in the format of the target knowledge source. This
representation format is composed of Decisions and
Nodes.

The “Node” metaclass, defined by the attribute
“name”, allows to represent each origin points of the
different branches of the knowledge source. This
metaclass can be represented as three different ways:

• Start: it represents the initial node.

• Characteristic: it represents the antecedents that
are considered for making a decision and generate
a consequence.

• Algorithm: it represents a consequence, that is,
an algorithm resulting from the recommendation
based on some antecedents).

The “Decision” metaclass allows to represent the
antecedents of the knowledge source, that is, a set of
characteristics that affects the decisions and the crite-
ria for recommending an algorithm based on them.
These criteria are represented through the “expres-
sion” attribute of “Decision” metaclass. Moreover,
this metaclass connects instances of the metaclass
“Node” through the “source” and “target” attributes.

In addition to the abstract syntax, a concrete syn-
tax that allows to create models based on the ML
Knowledge Language was defined. This concrete
syntax is a DSL composed of a set of specific symbols
(cf. Figure 5) that let the software engineer instantiate
each of the metaclasses of the metamodel.

A small example of the use of the DSL is illus-
trated in Figure 6. This figure represents a piece of
the knowledge source of scikit-learn (cf. Figure 3)
modelled with the DSL described above.

As evidenced in Figure 6, the model begins with
the Start Node. Next, it is presented a Characteris-
tic Node called “data”, which represents the amount
of data that the user has. This Characteristic is con-
nected to a pair of Nodes called “Linear SVC” and
“SGD Classifier” by two different Decisions, called
“>100K” and “<100K” respectively. It means, if the
antecedent “data” takes value “<100K” the conse-
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Figure 4: MLKnowledge Metamodel.
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Figure 6: Example of DSL use.

quence value will be “SGD Classifier”, else, the con-
sequence value will be “Linear SVC”.

There is another Characteristic Node called “text”
linked to the “Linear SVC” Node. This Character-
istic Node represents the type of data that the user
has. It means, if the antecedent “Linear SVC” takes
value “yes” the consequence value will be “Naive
Bayes”, else, the consequence value will be “KNeigh-
bors Classifier”.
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Figure 7: Consolidate terms of knowledge source.

3.2 Towards a Unified Knowledge Store

As seen in Figure 2, this approach consists of two
phases. In a first phase, each knowledge source is ex-
pressed using the suggested language (cf. Figure 7).
For this, the terminology of the considered knowledge
source is unified with the terminology that is already
used in the existing unified knowledge store. That
is, each problem characteristic or algorithm that ap-
pears in the knowledge source is mapped to a term in
CharTerms and AlgTerms respectively. In case that
some new term has not a mapping to any exiting term,
it remains with the original one since it will be in-
cluded later in the store.

Thereafter, the knowledge source with unified ter-
minology is manually modeled using the previous
language. That is, the different relations between the
problem characteristics and the algorithms is written
in a formal way.

In a second phase, the knowledge source is pro-
cessed to extract the individual recommendation rules
(cf. Figure 8) and store them in the unified knowl-
edge store. For this, since the model present a tree-
like structure, it is divided into the different paths that
exist from the root (i.e., the start node) to any algo-
rithm node.

Each path is composed of (1) a “Start Node, (2) a
set of “Characteristic Nodes together with a labeled
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Figure 9: Example for extracting rules from a sample knowledge source.

outgoing edge where the label indicates the value that
takes the characteristic, and (3) one or various “Al-
gorithm Nodes. Therefore, the paths are processed to
extract the rules of the knowledge source. These rules
have a similar shape to the unified knowledge store.
Each one keeps a set of antecedents (i.e., the names
and the values of the characteristics that appears in
the path) and a set of consequences (i.e., the names of
the algorithms that appears in the path).

As a final step, these intermediate rules are incor-
porated in the unified knowledge store. First, if the
knowledge source does not exist in the KnowlSources
of the store, a new entry is included with a new
sourceid . Second, each characteristic name and al-
gorithm name that exists in the CharTerms and the
AlgTerms are substituted by the charid and the algid
respectively. If some characteristics or algorithms
were not previously included in the store, new en-
tries are created in the CharTerms or AlgTerms
and the new charid or algid are used to sub-
stitute the names in the antecedents and conse-
quences. And third, a new ruleid is obtained and the
tuple 〈ruleid ,sourceid ,antecedents,consequences〉 is
the Rules of the unified knowledge store.

For example, Figure 9 depicts how the different
rules can be extracted from the model of Figure 6.

4 CONCLUSIONS AND FUTURE
WORK

This paper presents an approach to deal with the dis-
tributed knowledge of ML. Specifically, it aims to cre-

ate a repository with rules that help to decide which
ML algorithms are suitable to solve a given prob-
lem. For this, a common language for modeling this
knowledge is proposed. Such a language is stated in
form of a metamodel that a computer program can
process. In addition, a procedure to transfer these
models to a unified knowledge store is described.
This store will enable exploiting the knowledge of the
distributed sources to make decisions with less risk.

However, this work considers some assumptions
that limit its application. First, it considers that all
the knowledge sources are equally relevant and not
biased, e.g., an organization may not recommend
certain algorithms just because they do not provide
a component for it. Second, the suggested unified
knowledge store keeps simple rules lacking more
complex syntax like OR or NOT expressions. And
finally, using this proposal requires a manual work
to model the knowledge source through the provided
language which may entail a considerable effort de-
pending on the number of sources. Nonetheless, this
effort will be leveraged not only by a single ML
project but by the future ones too.

As further future work, we plan (1) to exploit the
unified knowledge store in order to generate a deci-
sion support tool, (2) to improve traceability of term
mappings between knowledge sources and the uni-
fied store, so that we can enable a revision of the
translations that have been done related to a term in
the unified knowledge store. (3) to weight knowl-
edge sources according to their relevance, sound-
ness or reliability, in order to optimize the search
for the right algorithm, (4) to extend the proposed
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MLKnowledge language capabilities since complex
expressions, such as disjunctions and negations, oc-
casionally appear within the antecedents of knowl-
edge sources, (5) to introduce the concept of inten-
sity of recommendation with the aim of expressing
the degree of acceptance of the recommendations,
since some knowledge sources express a distinction
between the value of different recommendations (e.g.,
excellent vs acceptable recommendations), (6) to an-
alyze the impact of fuzzy terms within knowledge
sources since some of them specify fuzzy values for
the characteristics (e.g., few data instead of a con-
crete number), (7) to use ML to automatically trans-
late knowledge sources, so that it takes as input the
source as its (e.g., either in graphic or text mode) and
generates as output the associated models in the ML
Knowledge Language.
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