

Debugging Flaky Tests on Web Applications

Jesus Morán1 a, Cristian Augusto1 b, Antonia Bertolino2 c, Claudio de la Riva1 d

and Javier Tuya1 e
1Computer Science Department, University of Oviedo, Gijón, Spain

2ISTI-CNR, Consiglio Nazionale delle Ricerche, Pisa, Italy

Keywords: Software Testing and Debugging, Spectrum-based Localization, Web Applications, Test Flakiness.

Abstract: Testing web applications is a challenging practice because it involves managing asynchronous requests

between clients and servers, the integration of heterogeneous technologies, and concurrent accesses to the

resources. Therefore, rerunning the test cases of these applications under the same conditions is difficult as

one test case can be executed in many different ways according to several environmental factors like memory,

screen size or network. Moreover, some of these test cases could be flaky, i.e., due to environmental factors

the test outcome can vary even though the application did not change. Understanding which factors are the

root cause of flakiness is very important for web developers to both prevent and fix flakiness. This paper

introduces a technique to locate the root causes of flakiness based on a characterization of the different

environmental factors that are not controlled during the testing of web applications. The root cause of flakiness

is located by a spectrum-based localization technique that analyses the execution of the same flaky test under

different environmental factors that can trigger the flakiness. The technique is illustrated on an educational

web platform named FullTeaching.

1 INTRODUCTION

Software testing and debugging play an important

role in the evaluation of software quality, but there are

several open challenges (Bertolino 2007). The design

and execution of the test cases of web applications are

complex due to the distributed interoperations

between heterogeneous clients and servers. These test

cases can be executed each time in different ways

according to environmental factors like the

underlying network bandwidth, the memory or the

timeouts in web server responses. The non-

deterministic execution can introduce flakiness in the

test cases of web applications. A test is considered

flaky when the same test with the same system-under-

test obtains different outcomes due to the

environmental factors executed (Luo et al., 2014).

Testers cannot rely on the outcome of flaky tests.

According to a recent study, the developers face

flakiness frequently and they usually stop to rely on

a https://orcid.org/0000-0002-7544-3901
b https://orcid.org/0000-0001-6140-1375
c https://orcid.org/0000-0001-8749-1356
d https://orcid.org/0000-0001-5592-9683
e https://orcid.org/0000-0002-1091-934X

flaky tests (Eck et al., 2019). Despite debugging these

tests is considered time-consuming, the majority of

developers also consider that finding the root cause of

flakiness is relevant in order to fix it, but it is also a

very difficult challenge (Eck et al., 2019).

In this paper, we introduce an ongoing technique

to locate the root cause of flakiness in test cases of

web applications. This technique is based on a

characterization of the environmental factors that are

not controlled during testing and can cause flakiness.

Based on this characterization, the test case is

executed several times under different environmental

factors so to get insights about flakiness. These

executions are analyzed with a spectrum-based

localization technique (Wong et al., 2016)

considering that the factors that usually triggers the

flakiness are more prone to be the root cause of

flakiness.

The contributions of paper include:

454
Morán, J., Augusto, C., Bertolino, A., de la Riva, C. and Tuya, J.
Debugging Flaky Tests on Web Applications.
DOI: 10.5220/0008559004540461
In Proceedings of the 15th International Conference on Web Information Systems and Technologies (WEBIST 2019), pages 454-461
ISBN: 978-989-758-386-5
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

1. Introduction of a technique called FlakcLoc to

locate the root cause of flakiness in web

applications.

2. The application of the technique to a real-world

web application.

The remainder of this paper is organized as

follows. The testing of web applications is introduced

in Section 2. The related work about flaky tests is

discussed in Section 3. The technique FlakcLoc is

introduced in Section 4 and a practical working

example of this technique is described in Section 5.

Finally, the conclusions and future work are in

Section 6.

2 FLAKINESS IN TESTING WEB

APPLICATIONS

The functionality of web applications is implemented

with code executed in a distributed architecture. The

client-side code performs web requests that are

responded by the server-side code. These interactions

from the client to the server are tested performing the

user actions across the web interface and checking if

the server responds properly. The WebDrivers allow

the automatization of the tests controlling the user

actions in a browser. There are different tools to

support the automatic execution of tests for web

applications, such as Selenium (Selenium HQ 2019).

These tools provide several WebDrivers that

support the execution of the test in different browsers.

However, there are other environmental factors that

can affect the execution of the tests. For example,

suppose a simple test that pushes a button and awaits

2 seconds to check if the server response is right. The

execution of the previous test can be affected by

several environmental factors like the screen

resolution, memory or network. These factors can

cause flakiness in the test, so that it sometimes passes

and other times fails, as in the following examples.

The test passes when it is executed in large screen

resolutions because it is able to find the button. In

contrast, the test can fail when it is executed in small

screen resolutions because the button can be hidden

automatically inside of the responsive menu. The test

can also fail if the button is not rendered due to lack

of memory. In case the button is pushed correctly, the

test awaits 2 seconds for the server response, however

the test can also fail if the server employs more time

due to network congestion. In the previous examples,

the test is flaky because the tester cannot rely on its

outcome as sometimes the test fails, and other times

it passes.

The presence of a flaky test is common (Eck et al.,

2019), and some researchers propose the aphorism

‘Assume Test are Flaky’ (ATAF) (Harman and

O’Hearn 2018). In order to deal with this flakiness,

the testing tools usually provide different

mechanisms based on the re-execution. JUnit has the

@RepeatedTest(10) tag that executes the test 10

times to avoid “failures” due to the environmental

factors of the execution (Bechtold et al., 2019). In a

similar way, the Spring framework has the

@Repeat(10) tag (Pivotal Software 2014). For the

case of progressive web applications, Android

provides the @FlakyTest(tolerance=10) tag (Google

2019). Maven also support the re-execution of those

tests that fail using the Surefire plugin with the option

-Dsurefire.rerunFailingTestsCount=10 (Apache

Software 2018). Based on the previous, Jenkins

provides the Flaky Test Handler plugin (Luo and

Micco 2015).

The previous tools re-execute several times the

flaky test in order to check if the test passes in at least

one execution. However, the tester could not rely on

the test because it is still flaky, and its execution is not

easy to reproduce. In order to both avoid and fix the

flakiness, the developers consider very important the

root cause of flakiness (Eck et al., 2019). In this paper

we introduce FlakcLoc to locate the root cause of

flakiness in web applications.

3 RELATED WORK

Root Causes of Flakiness:
There are several empirical studies that characterize

the causes of flakiness. Luo et al., (Luo et al., 2014)

characterize the following 11 causes of flakiness after

analyzed 51 open-source projects: asynchronous

waits, concurrency, test order dependency, resource

leak, network, time, IO, randomness, unordered

collections and others. The majority of flakiness is

caused by asynchronous waits, as for example when

the Selenium WebDriver sends an asynchronous web

request and does not await enough time for the server

response. Thorve et al., (Thorve, Sreshtha, and Meng

2018) analyzes 29 Android applications

characterizing another three root causes of flakiness:

Dependency, Program Logic, and UI. This kind of

flakiness can happen also in web applications,

especially the Dependency and UI. The Dependency

flakiness is caused by the use of specific hardware,

devices or thirty party libraries. The UI flakiness is

caused by the misunderstood of the rendering process

and user interface. Eck et al., (Eck et al., 2019)

characterize another four root causes of flakiness

Debugging Flaky Tests on Web Applications

455

analyzing Mozilla: Too Restrictive Range, Test Case

Timeout, Platform Dependency, and Test Suite

Timeout. These kinds of flakiness can happen in web

applications, especially Test Case Timeout and

Platform Dependency. The Test Case Timeout

flakiness is caused when the test does not finish in

proper time and it is killed. The Platform Dependency

flakiness is caused when the test passes in one

platform, but it fails in another, such as for example

those tests that pass in one version of the browser but

they fail in another. The previous studies are the basis

of our paper, that proposes a technique to locate the

root causes of flakiness. Based on these studies, we

characterize a series of environmental factors that are

prone to trigger flakiness in web applications.

Detection of Flaky Tests:
The flaky tests are prevalent in practice (Vahabzadeh,

Fard, and Mesbah 2015). The common way to detect

if a test is flaky is to re-execute it. However, some

researchers propose different approaches. Palomba

and Zaidman (Palomba and Zaidman 2017), studied

the relationship between flakiness and code smells,

concluding that the flakiness of 54% of flaky test tests

can be attributed to code smells. Muslu et al., (Muşlu,

Soran, and Wuttke 2011) propose to isolate the

execution of each test to detect problems related to

dependencies. Bell et al., (Bell et al., 2018) propose

to detect the flakiness when the same system-under-

test code is covered by two executions of the same

test, one passing and the other failing. The detection

of the flaky tests is outside the scope of the present

paper. In this paper, we locate the root cause of the

flakiness in a given flaky test re-executing the flaky

test with different environmental factors.

Root Flakiness Detection:
Lam et al., (Lam et al., 2019) propose to categorize

the kind of flakiness by analysing the logs after

several test executions, and locating the suspicious

lines of code that trigger the flakiness. The previous

technique and our paper are orthogonal because both

techniques aim to improve the understanding of the

flakiness, but providing complementary insights

about the root cause of flakiness. Our technique

(FlakcLoc) instead to provide the kind of flakiness

and the line of code that triggers the flakiness, it

provides the suspicious environmental factors that

cause the flakiness. These environmental factors are

obtained by FlakcLoc based on both the

characterization and analysis of several executions

through a spectrum-based localization.

4 FLAKINESS LOCALIZATION

In this section, we describe an ongoing proposal to

locate the root cause of flakiness in the flaky test of

web applications. A flaky test is a test that sometimes

passes and other fails depending on a combination of

different environmental factors that are not controlled

and therefore can introduce flakiness in the test, as for

example the screen size, the version of the browser,

or the network traffic. We refer as “factor” to each

one of the environmental characteristics that can alter

the test execution, and we refer as “configuration” to

one of the combinations of the previous factors.

The proposed technique, FlakcLoc, is

summarized in Figure 1. This technique locates the

root cause of flakiness based on the characterization

of the different environmental factors that are not

controlled in the flaky tests (Characterization).

FlakcLoc executes the flaky test in different

configurations that differ on the selection of its

factors (Execution). The root cause of the flakiness is

then automatically located by a spectrum-based

localization technique that analyses what factors are

shared by those executions that trigger the “failure”

(Analysis). In the remainder of this section, we detail

the main processes proposed: characterization of the

factors that can cause flakiness, execution of the test

in different configurations, and analysis of the root

cause of flakiness.

Characterization:

We characterize the configuration that triggers the

flakiness according to the potential environmental

factors that can cause the flakiness. In web

applications, a configuration is characterized

according to a set of factors, such as those indicated

below:

 Memory can cause issues in the WebDrivers,

Figure 1: Technique to locate the flakiness.

Characterization Execution Analysis
Flaky Test Root Cause of

flakiness

APMDWE 2019 - 4th International Special Session on Advanced practices in Model-Driven Web Engineering

456

Figure 2: Model of the configurations with several characteristics.

especially when several sessions and browsers

are not properly closed and consume the same

memory.

 The network is one of the main causes of

flakiness (Luo et al., 2014) that can produce

delays and race conditions in the asynchronous

web requests.

 CPU can increase or decrease the computation

and the concurrency, which is one of the main

issues of flakiness (Luo et al., 2014).

 Browsers and different versions of these

browsers can alter the execution of the test

making flakiness for different reasons such as

rendering the objects in a different way.

 Screen resolution can modify the test execution,

especially for those responsive applications as it

can hide/expose relevant web elements during

testing.

 The operating system can also produce flakiness,

especially when the application uses a workspace

or other environmental variables.

Each one of these factors takes one discrete value

from those depicted in Figure 2. The condigurations

are modelled according to the factors and the values

that takes these factors. Thus, each configuration is

composed of several factor-value pairs. For example,

a configuration can be composed by 1GB of memory

(memory-1GB pair), 100KB/s as Network bandwidth

(network bandwidth - 100KB/s pair), and so on for

the remaining factors.

Execution:

The same test case can be executed in different ways

according to the previous characterization, some of

them cause flakiness while others hide its flakiness.

FlakcLoc proposes to execute the same flaky test

under different configurations. For example:

 Configuration 1: Memory - 2GB, Network

bandwidth - 400KB/s, CPU - 1 core, Browser -

Google Chrome version 75, Screen resolution -

800×600, and Operating system - Microsoft

Windows 10.

 Configuration 2: Memory - 1GB, Network

bandwidth - 200KB/s, CPU - 1 core, Browser -

Debugging Flaky Tests on Web Applications

457

Google Chrome version 75, Screen resolution -

800×600, and Operating system - Microsoft

Windows 10.

 Configuration 3: Memory - 1GB, Network

bandwidth - 400KB/s, CPU - 1 core, Browser -

Firefox version 67, Screen resolution - 800×600,

and Operating system - Ubuntu 18.04.

The execution of the test in the previous

configurations provides insights about the root cause

of flakiness, especially those factors that usually

trigger the flakiness. Suppose that the test executed

with Configurations 1 and 3 passes, but the same test

executed with Configuration 2 triggers a “failure”

because the test cannot perform the user interactions

due to the lack of the web elements required.

The factors of Configuration 2 make the test flaky

whereas those factors of Configurations 1 and 3 hide

the flakiness. Configuration 1 hides the flakiness with

2GB of Memory and 400Kb/s in contrast,

Configuration 2 triggers the “failure” as both memory

and network bandwidth are decreased. In these cases,

we have some evidence that memory and network can

cause flakiness. This evidence is analysed

systematically with the following approach based on

the fault localization techniques.

Analysis:

We analyse several executions with a ranking metric

to obtain a prioritized list of the suspicious factors that

cause flakiness. Whereas the ranking metrics in fault

localization analyse the lines of code that cause the

fault (Harrold et al., 2000, 2005), in FlakcLoc the

ranking metrics analyse the factors that cause

flakiness.

Suppose the previous 3 configurations described

before. We analyse these executions with a ranking

metric like Ochiai (Abreu, Zoeteweij, and Van

Gemund 2007) obtaining that the most suspicious

root cause of flakiness is 200KB/s of network

bandwidth. This ranking metric analyses the

similarity between the values of the factors executed

and the configurations that fail/hide the flakiness. The

failure is triggered with 1GB of memory in

Configurations 2, but apparently is not the root cause

of flakiness because 1GB also hides the flakiness in

Configuration 3. A memory of 2GB is not also the

root cause of flakiness because it never triggers the

flakiness. In contrast, 200KB/s of network bandwidth

always triggers the flakiness. After analyzing, in the

same way, all factors through the localization

technique, we determine that the root cause of

flakiness is 200KB/s of network bandwidth.

According to Ochiai ranking metric: 200KB/s (1 out

of 1 of suspiciousness), 1GB of memory (0.707 out of

1 of suspiciousness), and so on.

The root cause of flakiness can improve the

understanding of the flaky test in order to avoid it or

fix it. The previous test case passes with 400KB/s of

network bandwidth because the web requests are

responded quickly just before the user interaction

takes place. However, with less network bandwidth

(200KB/s), the web requests are responded slowly

causing that the test fails because it tries to execute

the user interactions before the responses. This

flakiness can be avoided in different ways like

increasing the time of sleep or waitFor to wait for the

web responses.

5 WORKING EXAMPLE

In this section, we illustrate how FlakcLoc is able to

localize the root cause of flakiness on a web

application called FullTeaching (Pérez 2017). This

web application is an educational online platform on

which teachers and students can perform the lessons

and share their teaching materials, like calendars

dashboards and forums. This project has several test

cases including End-to-End tests that execute the

whole system (web application, streaming server, and

database). Several of these End-to-End tests are flaky

because the same test sometimes passes and other

fails in a non-deterministic way. In the remainder of

this section, we detail the localization of the root

cause of flakiness in one flaky test of FullTeaching

web application.

We consider a test that checks if the user is able to

log into the application, access the courses and

logout. Despite the tests are executed in an isolated

environment through a containerized instance, the test

sometimes fails due to the configuration executed.

This test was correctly executed in the tester’s

computer, but the same test failed in the Continuous

Integration server. In both environments, the test was

executed isolated inside of a container with the same

resources. We checked that the system-under-test and

the test case were properly deployed in the

Continuous Integration server, but the flakiness

remains.

In order to locate the root cause of flakiness, the

technique proposed in Section 4, FlakcLoc, is applied

to the previous flaky test:

Characterization:
We characterize those factors that can trigger the

failure. This example is illustrated with the following

factors-values pairs:

APMDWE 2019 - 4th International Special Session on Advanced practices in Model-Driven Web Engineering

458

 Memory: the test execution is modelled with

90MB and 240MB to increase or decrease the

WebDriver resources.

 CPU: the execution is modelled with 1 and 4

cores to increase or decrease the concurrency

between the threads executed by the test case.

 Screen resolution: the execution is modelled with

SVGA (800×600), HD (1366×768), and FullHD

(1920×1024) resolutions. These resolutions can

increase or decrease the web elements that are

rendered in the navigator window.

Execution:

We execute several times the flaky test varying the

previous environmental factors in the following

configurations:

 Configuration 1: 90MB of memory, CPU with 4

cores, and a screen resolution of 800×600.

 Configuration 2: 90MB of memory, CPU with 1

core, and a screen resolution of 1366×768.

 Configuration 3: 90MB of memory, CPU with 1

core, and a screen resolution of 1920×1024.

 Configuration 4: 240MB of memory, CPU with

4 cores, and a screen resolution of 800×600.

 Configuration 5: 240MB of memory, CPU with

1 core, and a screen resolution of 1920×1024.

 Configuration 6: 240MB of memory, CPU with

4 cores, and a screen resolution of 1366×786.

The configurations 2, 3, 5 and 6 pass, whereas the

configurations 1 and 4 fail in a flaky way. These

executions provide insights about the root cause of

the flakiness. We can observe that the “failure” is

triggered with 1 core and a screen resolution of

800×600.

Analysis:

We analyze the previous executions with the

localization technique proposed in Section 4 using the

Ochiai ranking metric. According to this analysis, the

most suspicious factor is the screen resolution of

800×600 (1.0 of suspiciousness), following by the

CPU with 1 core (0.816 of suspiciousness).

This information is valuable to understand the

flakiness in order to avoid it or fix it. The flakiness

was triggered in the Continuous Integration server

because it isolates the test in a container with low

screen resolution. In contrast, the test is executed

property in the computer of the tester because there it

isolates the test in a container with more large

resolution. In one part of this test, the Selenium

WebDriver must push the button highlighted in

Figure 3. However, the same button is hidden in low

resolutions like 800x600 as in Figure 4. This test is

executed inside of a container deployed by Docker,

and the test passes/fails depending on the screen

resolution assigned by Docker to the containers. the

taxonomy of flakiness proposed by Eck et al., (Eck et

al., 2019) , the flaky test described in this section is

‘Platform Dependent’.

Figure 3: Web application with a 1920x1080 resolution.

Debugging Flaky Tests on Web Applications

459

Figure 4: Web Application with A 800x600 Resolution.

6 CONCLUSIONS AND FUTURE

WORK

This paper introduces a technique called FlakcLoc to

locate the root cause of flakiness in the domain of web

applications. FlakcLoc is based on a characterization

of the environmental factors that can introduce

flakiness in the test, like the screen resolution,

network or memory. Varying these environmental

factors, the technique executes the flaky test several

times providing insights about the flakiness.

Analyzing the factors executed and the times that the

test fails, the root cause of flakiness of web

applications is located using a spectrum-based

localization technique. This paper provides a practical

example on the localization of the root cause of

flakiness in an educational web application.

There are a number of open questions that we can

summarize in three main lines for future work. The

first one is to enhance the characterization of

environmental factors that cause flakiness in web

applications including new factors. In this line of

work, we plan to both analyze and reproduce several

flaky tests in order to obtain more environmental

factors of their flakiness. The second line of work is

focused on the formalization of the technique with a

meta-model and transformations. This meta-model

could allow the localization of the root causes of

flakiness in different domains. For example, the

flakiness of the robotic domain can be located in a

similar way but with the different environmental

factors like GPU usage or sensor measurements. Last,

the third line of future work is concerned with

validating the proposed technique in a benchmark of

web applications. In this validation, we plan to

answer several research questions such as the

evaluation of the best ranking metrics to locate the

flakiness in web applications.

ACKNOWLEDGEMENTS

This work was supported in part by the Spanish

Ministry of Economy and Competitiveness under

TestEAMoS (TIN2016-76956-C3-1-R) project and

ERDF funds, and by the European Project ElasTest in

the Horizon 2020 research and innovation program

(GA No. 731535).

REFERENCES

Abreu, Rui, Peter Zoeteweij, and Arjan J. C. Van Gemund.

2007. “On the Accuracy of Spectrum-Based Fault

Localization.” Pp. 89–98 in Proceedings - Testing:

Academic and Industrial Conference Practice and

Research Techniques, TAIC PART-Mutation 2007.

IEEE.

Apache Software, Foundation. 2018. “Maven Surefire

Plugin – Rerun Failing Tests.” Retrieved June 29,

2019 (https://maven.apache.org/surefire/maven-

surefire-plugin/examples/rerun-failing-tests.html).

Bechtold, Stefan, Sam Brannen, Johannes Link, Matthias

Merdes, Marc Philipp, and Christian Stein. 2019.

“RepeatedTest (JUnit 5.2.0 API).” Retrieved June

29, 2019 (https://junit.org/junit5/docs/5.2.0/api/org/

junit/jupiter/api/RepeatedTest.html).

Bell, Jonathan, Owolabi Legunsen, Michael Hilton,

Lamyaa Eloussi, Tifany Yung, and Darko Marinov.

2018. “DeFlaker: Automatically Detecting Flaky

Tests.” Pp. 433–44 in Proceedings of the 40th

International Conference on Software Engineering -

ICSE ’18. New York, New York, USA: ACM Press.

Bertolino, Antonia. 2007. “Software Testing Research:

Achievements, Challenges, Dreams.” Pp. 85–103 in

2007 Future of Software Engineering, {FOSE} ’07.

Washington, DC, USA: IEEE Computer Society.

Eck, Moritz, Fabio Palomba, Marco Castelluccio, and

Alberto Bacchelli. 2019. “Understanding Flaky

Tests: The Developer’s Perspective.” To Appear

FSE19/ESEC.

Google. 2019. “FlakyTest | Android Developers.”

Retrieved June 28, 2019 (https://developer.

android.com/reference/android/support/test/filters/F

lakyTest.html).

Harman, Mark and Peter O’Hearn. 2018. “From Start-Ups

to Scale-Ups: Opportunities and Open Problems for

Static and Dynamic Program Analysis.” Pp. 1–23 in

Proceedings - 18th IEEE International Working

Conference on Source Code Analysis and

Manipulation, SCAM 2018. IEEE.

Harrold, Mary Jean, Gregg Rothermel, Kent Sayre, Rui

Wu, and Liu Yi. 2000. “Empirical Investigation of

the Relationship between Spectra Differences and

Regression Faults.” Software Testing Verification

and Reliability 10(3):171–94.

APMDWE 2019 - 4th International Special Session on Advanced practices in Model-Driven Web Engineering

460

Harrold, Mary Jean, Gregg Rothermel, Rui Wu, and Liu Yi.

2005. “An Empirical Investigation of Program

Spectra.” ACM SIGPLAN Notices 33(7):83–90.

Lam, Wing, Patrice Godefroid, Suman Nath, Anirudh

Santhiar, and Suresh Thummalapenta. 2019. “Root

Causing Flaky Tests in a Large-Scale Industrial

Setting.” Pp. 101–11 in Proceedings of the 28th ACM

SIGSOFT International Symposium on Software

Testing and Analysis - ISSTA 2019. New York, New

York, USA: ACM Press.

Luo, Qingzhou, Farah Hariri, Lamyaa Eloussi, and Darko

Marinov. 2014. “An Empirical Analysis of Flaky

Tests.” Pp. 643–53 in Proceedings of the 22nd ACM

SIGSOFT International Symposium on Foundations of

Software Engineering - FSE 2014. New York, New

York, USA: ACM Press.

Luo, Qingzhou and John Micco. 2015. “Flaky Test Handler

v1.04.” Retrieved June 29, 2019 (https://plugins.

jenkins.io/flaky-test-handler).

Muşlu, Kivanç, Bilge Soran, and Jochen Wuttke. 2011.

“Finding Bugs by Isolating Unit Tests.” P. 496 in

Proceedings of the 19th ACM SIGSOFT symposium

and the 13th European conference on Foundations of

software engineering - SIGSOFT/FSE ’11. New York,

New York, USA: ACM Press.

Palomba, Fabio and Andy Zaidman. 2017. “Does

Refactoring of Test Smells Induce Fixing Flaky Tests?”

Pp. 1–12 in Proceedings - 2017 IEEE International

Conference on Software Maintenance and Evolution,

ICSME 2017. IEEE.

Pérez, Pablo Fuente. 2017. “Fullteaching: A Web

Application to Make Teaching Online Easy.”

Pivotal Software. 2014. “Repeat (Spring Framework

5.1.8.RELEASE API).” Retrieved June 28, 2019

(https://docs.spring.io/spring/docs/current/javadoc-

api/org/springframework/test/annotation/Repeat.html).

Selenium HQ. 2019. “Selenium - Web Browser

Automation.” Retrieved June 29, 2019 (https://www.

seleniumhq.org/).

Thorve, Swapna, Chandani Sreshtha, and Na Meng. 2018.

“An Empirical Study of Flaky Tests in Android Apps.”

Pp. 534–38 in Proceedings - 2018 IEEE International

Conference on Software Maintenance and Evolution,

ICSME 2018. IEEE.

Vahabzadeh, Arash, Amin Milani Fard, and Ali Mesbah.

2015. “An Empirical Study of Bugs in Test Code.” Pp.

101–10 in 2015 IEEE 31st International Conference on

Software Maintenance and Evolution, ICSME 2015 -

Proceedings. IEEE.

Wong, W. Eric, Ruizhi Gao, Yihao Li, Rui Abreu, and

Franz Wotawa. 2016. “A Survey on Software Fault

Localization.” IEEE Transactions on Software

Engineering 42(8):707–40.

Debugging Flaky Tests on Web Applications

461

