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Abstract: In this paper, we raise a question of tuning parameters of Evolutionary Algorithms (EAs) and consider three 

alternative approaches to tackle this problem. Since many different self-adaptive EAs have been proposed so 

far, it has led to another problem of choice. Self-adaptive modifications usually demonstrate different 

effectiveness on the set of test functions, therefore, an arbitrary choice of it may result in the poor performance. 

Moreover, self-adaptive EAs often have some other tuned parameters such as thresholds to switch between 

different types of genetic operators. On the other hand, nowadays, computing power allows testing several 

EAs with different settings in parallel. In this study, we show that running parallel islands of a conventional 

Differential Evolution (DE) algorithm with different CR and F enables us to find its variants that outperform 

advanced self-adaptive DEs. Finally, introducing interactions among parallel islands, i.e. exchanging the best 

solutions, helps to gain the higher performance, compared to the best DE island working in an isolated way. 

Thus, when it is hard to choose one particular self-adaptive algorithm from all existing modifications proposed 

so far, the co-operation of conventional EAs might be a good alternative to advanced self-adaptive EAs.   

1 INTRODUCTION 

Evolutionary algorithms (EAs) are flexible and 

widely applicable tools for solving optimization 

problems. Their effectiveness has been demonstrated 

in many studies and international competitions on 

black-box optimization problems. Nowadays, EAs 

are successfully used in machine learning, deep 

learning, and reinforcement learning. Therefore, 

more and more effective heuristics and meta 

heuristics are being developed and their beneficial 

properties and convergence are being investigated in 

the scientific community.  

In spite of all positive features, EAs require tuning 

a set of parameters for their effective work, which is 

a non-trivial task even for the experts (Eiben et al., 

2007). The main issue is that optimal values of the 

parameters tuned differ for various problems. The 

“No Free Lunch” theorem proves this phenomenon 

and claims that there is no one search algorithm 
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working best for any kind of optimization problem 

(Wolpert and Macready, 1997). As a result, an idea of 

parameter self-adaption has been proposed to find 

their proper values for the problem solved during the 

algorithm execution (Meyer-Nieberg and Beyer, 

2007).  

The primary approaches to the EA self-adaptation 

are normally based on one of the following concepts. 

Firstly, it might be a deterministic scenario, according 

to which parameters are changed during iterations. As 

an example, in Daridi’s work, a mutation probability 

is presented as a function of a generation number 

(Daridi, 2004). Secondly, several types of genetic 

operators (different implementations of selection, 

crossover, and mutation) may compete for resources 

based on their effectiveness in previous generations. 

For instance, Khan and Zhang (2010) used two 

crossover operators to produce offspring which 

probabilities of being applied were recalculated in 

each generation based on the success rate (how many 

times a new solution outperformed at least one of the 

Brester, C. and Ryzhikov, I.
Tuning Parameters of Differential Evolution: Self-adaptation, Parallel Islands, or Co-operation.
DOI: 10.5220/0008495502590264
In Proceedings of the 11th International Joint Conference on Computational Intelligence (IJCCI 2019), pages 259-264
ISBN: 978-989-758-384-1
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

259



parents). Alternatively, parameters of genetic 

operators might be included in a chromosome, evolve 

in iterations and be applied to generate the next 

candidate solution (Pellerin et al., 2004).  

However, a booming interest in self-adaptation 

has resulted in many proposed techniques and again 

caused a problem of choice. Moreover, in some 

approaches, self-adaptive operators use a number of 

thresholds to switch between different types of a 

genetic operator. These thresholds also should be 

selected properly. On the other hand, due to the 

impressive computing power available nowadays, it 

became possible to test various settings of the 

algorithm in parallel, which might be an alternative 

approach to self-adaptation.  

Nevertheless, in some studies, it has been shown 

that at different stages of optimization, certain types 

of genetic operators are beneficial for the search 

(Tanabe and Fukunaga, 2013). Self-adaptive EAs 

support this replacement of operators in generations, 

whereas EAs with diverse settings run in parallel do 

not provide this option. At the same time, 

incorporating a migration process into parallel EAs, 

i.e. the exchange of solutions, and creating a co-

operation of EAs with different settings allows 

introducing candidate solutions generated by various 

EAs operators in the population.  

Therefore, in this study, we compare several self-

adaptation techniques with parallel EAs and their co-

operation having three variants of its topology based 

on the example of a Differential Evolution (DE) 

algorithm, which needs tuning CR and F parameters 

(Storn and Price, 1997). Since DE is one of the most 

effective and widely used heuristics, it is essential to 

investigate different approaches to tune its key 

parameters.        

2 METHODS COMPARED 

The general DE scheme for a minimization problem 
contains the following steps: 
 Randomly initialize the population of size M: X 
= {x1, …, xM}; 
 Repeat the next operations until the stopping 
criterion is satisfied:  

- For each individual xi, 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ , in the 
population do:  
1. Randomly select three different individuals from 
the population a, b, c (which are also different from 
xi); 
2. Randomly initialize an index 𝑅 ∈ {1, … , 𝑛}, where 
n is the problem dimensionality; 

3. Generate a mutant vector. For each 𝑗 ∈ {1, … , 𝑛}, 

define 𝑟𝑗~𝑢𝑛𝑖𝑓(0, 1). Next, if 𝑟𝑗 < 𝐶𝑅 or 𝑗 = 𝑅, then 

𝑥𝑗
′= 𝑎𝑗 + 𝐹 ∙ (𝑏𝑗 − 𝑐𝑗), otherwise 𝑥𝑗

′ = 𝑥𝑖𝑗 . CR and F 

are the DE parameters. 

4. If 𝑓(𝐱′) < 𝑓(𝐱𝒊), then replace 𝐱𝒊 = 𝐱′. 

As a basis of this work, we used algorithms 

implemented in the PyGMO library (Biscani et al., 

2018). There are two self-adaptive versions of DE 

called SaDE and DE1220, wherein two variants of CR 

and F control and adaptation are available, 

particularly, jDE (Brest et al., 2006) and iDE (Elsayed 

et al., 2011). In SaDE, a mutant vector is produced 

using a DE/rand/1/exp strategy (by default and in our 

experiments too), whereas in DE1220 the mutation 

type is coded in a chromosome and also adapted.  

In addition to self-adaptive algorithms, we applied 

a conventional DE with different values of CR and F 

parameters: 𝐶𝑅 = [0.3, 0.5, 0.7, 0.9]  and 𝐹 =
[0.3, 0.5, 0.7, 0.9]. Using the island class of PyGMO, 

we could run DEs with different settings in parallel 

threads to save computational time.  

Next, we extended the PyGMO library with a set 

of functions implementing the migration process 

among the parallel islands. In this study, three 

topologies of the island co-operation are investigated: 

Ring, Random, and Fully Connected. After each Tm 

generations, Nbest individuals with the highest fitness 

from every population are sent to other islands to 

substitute Nworst solutions having the lowest fitness 

there.  

In the Ring topology (Figure 1), at every 

migration stage, solutions are sent along the same 

route, i.e. from the i-th island to the (i+1)-th one. 

Island numbers keep constant during the search. 

Every (i+1)-th accepts min(Nbest
i, Nworst

i+1) solutions 

to replace the worst individuals in its population. 

 

Figure 1: Ring topology. 

In the Random topology (Figure 2), at each 

migration stage, for every j-th island, where 𝑗 = 1, 𝑀̅̅ ̅̅ ̅̅  

and  𝑀  is the total number of islands in the co-

operation, the i-th island, sending the best individuals 

to it, is chosen randomly so that 𝑖 ≠ 𝑗. The j-th island 

accepts min(Nbest
i, Nworst

j) solutions.  
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Figure 2: Random topology. 

In the Fully Connected topology (Figure 3), every 

j-th island randomly selects Nworst
j solutions from the 

united set of the best individuals from all other 

islands. Thus, at each migration stage, every island is 

likely to get solutions from several other islands. 

These three groups of DE (self-adaptive, 

conventional with different CR and F, and co-

operative) were tested using the generalized n-

dimensional Rosenbrock function (n = 10, 30, 100): 

 

Figure 3: Fully Connected topology. 

𝐹(𝑥1, … , 𝑥𝑛) = ∑[100(𝑥𝑖
2 − 𝑥𝑖+1)2 + (𝑥𝑖 − 1)2]

𝑛−1

𝑖=1

, 

𝑥𝑖 ∈ [−5, 10].  (1) 

The global optimum is 𝑥𝑖 = 1, 𝐹(1, … ,1) = 0. 

 

Figure 4: Experimental results for the Rosenbrock function (n = 10). 
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3 EXPERIMENTAL RESULTS 

Four self-adaptive DEs, namely, SaDE and DE1220 

with the jDE variant of self-adaptation, SaDE and 

DE1220 with the iDE variant of self-adaptation, were 

applied to solve the Rosenbrock problem with 10 

(Figure 4), 30 (Figure 5), and 100 (Figure 6) 

variables. In the first experiment, the amount of 

resources for each algorithm was 20,000 function 

evaluations. Every algorithm was run 100 times.  

As one can see, these self-adaptive DEs 

demonstrate different effectiveness on the problems 

solved, which implies that there is also a necessity to 

choose an effective self-adaptive modification of the 

algorithm from various existing variants.  

Next, we ran 16 variants of the conventional DE 

algorithm in parallel (again 100 times), with different 

values of CR and F. Each island was provided with 

the same amount of resources: 20,000 function 

evaluations. In Figures 4–6, we denoted the following 

pairs of (CR; F) with numbers 0…15: 

 

Table 1: Values of CR and F parameters tested. 

ID CR F 

 

ID CR F 

0 0.3 0.3 8 0.3 0.7 

1 0.5 0.3 9 0.5 0.7 

2 0.7 0.3 10 0.7 0.7 

3 0.9 0.3 11 0.9 0.7 

4 0.3 0.5 12 0.3 0.9 

5 0.5 0.5 13 0.5 0.9 

6 0.7 0.5 14 0.7 0.9 

7 0.9 0.5 15 0.9 0.9 

Based on the results obtained, we may conclude 

that the conventional DE with many variants of the 

tested combinations of CR and F is able to compete 

with its self-adaptive modifications and even 

outperforms them in some cases. Moreover, due to 

available computing resources and possible 

parallelization, several conventional DE with various 

settings might be easily compared. Therefore, it is 

arguable and really depends on the situation, what to 

choose, multiple tests or one of self-adaptive 

modifications of the algorithm. 

Figure 5: Experimental results for the Rosenbrock function (n = 30). 
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Figure 6: Experimental results for the Rosenbrock function (n = 100). 

Then, we allowed the 16 parallel islands with 

different values of CR and F to exchange the best 

solutions among each other. We investigated three 

schemes of the migration process, in particular, Ring, 

Random, and Fully Connected Topology. Every 

island had the population of 20 individuals evolving 

for 1000 generations. The migration parameters were 

defined as follows: Tm = 20, Nbest = Nworst = 4. 

According to the experimental results, we may point 

out that interactions among parallel islands are 

favorable for the performance of the whole co-

operation since it typically outperforms the best 

island evolving in an isolated way. In the experiments 

conducted, the fully connected topology has shown 

the high performance steadily.  

Moreover, the effectiveness of the presented co-

operation is often comparable with the results of self-

adaptive modifications having the same amount of 

resources as the whole co-operation (16 x 20,000). In 

comparison with self-adaptive DEs, the co-operation 

of conventional DEs has a parallel structure and 

requires less computational time for the algorithm 

execution. Furthermore, it is quite interesting that 

using just primitive versions of DE and applying 

migration, we can achieve the same effectiveness as 

some recently developed and advanced self-adaptive 

modifications demonstrate.      

4 CONCLUSIONS 

In this study, we raised a question of tuning 

parameters of EAs and compared three approaches, 

which were self-adaptation, testing different settings 

in parallel islands, and co-operation. To ponder this 

question and investigate these approaches, we chose 

one of the most popular EAs nowadays, namely, 

Differential Evolution. 

Firstly, the self-adaptive modifications of DE 

showed different performances on the test problems. 

This implies that the solution quality depends on our 

choice of the self-adaptation strategy, which typically 

has some tuned parameters too.   

Next, due to possible parallelization, various 

settings of DE might be checked in parallel threads 

and the best combination of them is likely to provide 

better results than some self-adaptive modifications. 

However, without parallelization, it takes more time, 

and sometimes it is not the option.  
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Finally, we showed that the migration process 

among parallel islands of conventional DEs with 

different CR and F helped to achieve the higher 

performance than the best of these islands showed 

while working in an isolated way. The co-operation 

of conventional DEs has a parallel structure and 

allows reducing computational time, whereas some 

self-adaptive DEs do not show better results even 

having the same amount of resources as the whole co-

operation uses. Therefore, the co-operation of 

conventional DEs might be considered as an 

alternative to advanced self-adaptive DEs in some 

cases.  

In the future work, we are planning, firstly, to test 

co-operations of advanced self-adaptive DEs and, 

secondly, make islands compete for resources in the 

co-operation. More test problems will be used for that 

comparative analysis. 
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