
The Missing Link between Requirements Engineering
and Architecture Design for Information Systems

Karl-Heinz Krempels1,2, Fabian Ohler1,2 and Christoph Terwelp1

1Fraunhofer Institute for Applied Information Technology, Aachen, Germany
2RWTH Aachen University, Aachen, Germany

Keywords: Software Architecture, Architecture Design, Design Methodology, Information Systems, Requirements
Engineering, Software Engineering.

Abstract: Methodologies for the design of software architectures based on identified system requirements differ in pro-
cedure, phases, and artifacts. Furthermore, the consideration of functional and quality requirements during the
design process leads to diverse software architecture models varying in their capability regarding adaptivity
to new or changed user or quality requirements. The paper discusses a novel methodology for the design of
software architecture for information systems based on user and quality requirements. The distinctiveness
from methodologies discussed in the literature is given in the comprehensible and traceable deduction of a
domain model for the software system architecture from user requirements. The methodology was evaluated
and adapted iteratively in many R&D projects.

1 INTRODUCTION

Designing software architectures for large, distributed
information systems is a challenging and complex
task. To design the software architecture we have to
consider a high number of user and quality require-
ments, the application domain for the developed sys-
tem, and software architecture design patterns. There-
fore, we have to involve domain experts, requirements
engineers, system architects, system operators, and
users in the design process.

Due to the fact that every existing system is based
on an architectural plan and that we have a large num-
ber of existing systems, it seems that everybody is
able to design a system. However, even if this is
the case we can state that differences on architec-
tural structures exist regarding their clear functional
description of internal components, design paradigm
for interfaces, and the capability of the structure
to be used for different distributed systems design
paradigms (client-server, service orientation, agent
technology, cloud systems, etc.) for implementation
and deployment purposes. Due to the complexity
of the design task, resulting from the high number
of user and quality requirements, the diverse knowl-
edge background of the design team, and the different
design methodologies, it seems unrealistic to obtain
a comprehensible and traceable software architecture

structure with the same user and quality requirements.
So, we can feel that the design process of a good

software architecture is also a question of system
modeling, design expertise, and the system architects’
capability to express metaphorically. The result of
a design process is always a software architecture,
varying in structural readability, technical applicabil-
ity, and adaptability to new requirements. Designing
software architectures is the art of designing software
systems. Our experience in the development of infor-
mation systems lead to a methodology to design an
architecture for large information systems and plat-
forms (consisting of a business model and an infor-
mation system implementing it). The methodology
was designed based on existing findings in the litera-
ture and our expertise.

In this paper, we describe the novel methodology
for the design of architectures for large software sys-
tems. The distinctiveness from methodologies dis-
cussed in the literature is located in the comprehen-
sible and traceable deduction of a domain model for
the software system architecture from user require-
ments. To fulfill the given quality requirements the
resulting domain model is extended by suitable archi-
tectural design patterns for every quality requirement.
Section 2 discusses the state of the art for methodolo-
gies for requirements and software system engineer-
ing. In Section 3, the precursor method is introduced

Krempels, K., Ohler, F. and Terwelp, C.
The Missing Link between Requirements Engineering and Architecture Design for Information Systems.
DOI: 10.5220/0008381701610166
In Proceedings of the 15th International Conference on Web Information Systems and Technologies (WEBIST 2019), pages 161-166
ISBN: 978-989-758-386-5
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

161



which was already used and evaluated. Previous eval-
uation and validation steps are presented in Section 4.
In Section 5, the revised methodology is discussed fo-
cusing on the procedures leading to the artifacts. Sec-
tion 6 concludes the paper and addresses future eval-
uation scenarios.

2 STATE OF THE ART:
DESIGNING A SOFTWARE
SYSTEM ARCHITECTURE FOR
INFORMATION SYSTEMS

Pohl (Pohl, 2010) defines requirements engineering
as the process to find out and record what a planned
information system should do. He distinguishes
among functional requirements, quality requirements,
and regulations (technical, legal, organizational, eth-
ical, etc.). ISO25010 (ISO/IEC, 2011) defines the
quality requirements categories functional suitability,
performance efficiency, compatibility, usability, reli-
ability, security, maintainability, and portability. Re-
quirement records describe a goal of the planned in-
formation system, an interaction scenario between
the user and the planned system, an internal scenario
among the components of the planned system, or a
context scenario without user and information system
interaction, but capturing the regulations. These sce-
narios can be described using natural language, struc-
tured lists (enumerations, multi-level enumerations),
tables, UML sequence diagrams, UML activity dia-
grams, or any other suitable modeling language for
event and interaction flows.

Studying well known approaches from Agent
Technologies (Lind, 2001b; Lind, 2001a; Giorgini
et al., 2003; Zambonelli et al., 2003; Weiß et al.,
2009) we can state there is a common mapping pro-
cess between identified requirements for a software
system and system services. Lockemann et al. (Lock-
emann et al., 2006) deduce a design methodology fol-
lowing the divide and conquer paradigm for the de-
sign of software architectures for agent systems.

Lichter and Ludewig (Jochen Ludewig and Horst
Lichter, 2013) discuss a few architectural design
paradigms like information hiding, separation of con-
cerns, and hierarchical grouping. The paradigms are
discussed more with the objective to classify and de-
scribe resulting software architectures and not as a
how to instruction to design it.

Sommerville (Sommerville, 2016) discusses re-
quirements engineering, system modeling and ar-
chitectural design processes. System modeling is
discussed following event-driven, data-driven and

model-driven paradigms, mixing the software system
domain model and the system architecture design pro-
cess. The out-dated traditional abstraction views for
system architectures for information systems, namely
architecture in the large and architecture in the small,
are also discussed. Sommerville discusses the consid-
eration and implementation of quality requirements in
a system architecture using well known architectural
patterns for software systems for the requirement of
discourse. However, there is a missing link between
the requirements engineering phase and the software
system engineering phase for an information system,
especially a clear methodology.

Finally, in the ISO/IEC/IEEE 12207 Standard
(ISO/IEC/IEEE, 2017) describes and defines the soft-
ware life cycle processes for systems and software en-
gineering. In the architecture definition process, the
activities and tasks are defined. However, for the de-
sign of the software architecture, the task is defined as
Select, adapt, or develop models of the candidate ar-
chitectures of the software system. The methodology
is missing.

3 PRECURSOR METHOD

In this section a first approach to address the identi-
fied shortcomings of established methods for require-
ments engineering and software engineering is pre-
sented briefly. For a more detailed discussion of the
method, see (Beutel et al., 2018b). The additional
support for the development of a reference architec-
ture was incorporated as required by the projects the
method was to be used in. An overview over the
artifacts of this process is given in Figure 1. First
actor scenarios (interactions among actors), interac-
tion scenarios (interactions between actors and the
system), and system scenarios (system internal in-
teractions) are created in story form (Alexander and
Maiden, 2004) to describe the system requirements.
Based on the scenarios, user and system tasks are de-
duced. The tasks are grouped into roles and their re-
lationships. By analyzing possible role distributions
on actors, cooperation scenarios are defined. This
enables the development of a reference architecture
which can be adapted to the identified cooperation
scenarios and their hybrids. Based on the coopera-
tion scenarios, the limits of the system and points of
contact to external systems can be determined. Taking
the system limits into account, the tasks are detailed to
activity flows describing the steps required to achieve
a system task. The activities are again detailed into
function flows focusing on inputs and outputs of func-
tions. The components of the system architecture are

WEBIST 2019 - 15th International Conference on Web Information Systems and Technologies

162



cooperation
scenarios

tasksroles

role 
relationship

model

activity
sets

system
architecture

function
sets

system
components interfaces

actor
scenarios

system
scenarios

deployment
system
limits

interaction
scenarios

Figure 1: Artifacts of the method used in the development
of a reference architecture for open mobility platforms.

derived by grouping the functions by topic and the re-
quired information for execution. The interfaces be-
tween these components consist of all function calls
between them. The combination of components and
interfaces form the reference architecture.

4 EVALUATION SCENARIOS

In the projects econnect Germany (Krempels, 2015)
and Mobility Broker (Beutel et al., 2014; Beutel
et al., 2016), we realized the importance of separat-
ing the functional architecture of an information sys-
tem from its deployment architecture. Lacking a suit-
able method in the literature, we developed and ap-
plied the method presented in Section 3 during the
project DiMo-OMP for the development of a refer-
ence architecture for mobility platforms (Beutel et al.,
2018b). The artifacts of the development process
were published in (Steinert et al., 2018) (scenarios
and use cases) and (Beutel et al., 2018a) (roles, role
relationship model, cooperation scenarios). The re-
sulting components, system architecture, and inter-

faces are currently in the process of standardization by
the association of German transport companies (Ver-
band Deutscher Verkehrsunternehmen VDV) and will
be published accordingly. The method and its arti-
facts were evaluated during several workshops with
experts from mobility providers, potential platform
providers, large software companies, research insti-
tutes, and federal authorities (Terwelp, 2019). The
role relationship model, the identified components,
their functional description, and the identified inter-
faces were rated as very important by all participants;
they were able to match the concepts to their exist-
ing systems and use the artifacts for the planning of
future systems. The association of German transport
companies recommends the use of the resulting refer-
ence architecture in projects developing mobility plat-
forms. Summing up, our approach and results were
validated.

Afterwards, we reviewed and refined the method
with a special focus on the interaction protocol design
phase. The adapted method improves the separation
of the functional from the technological aspects of the
interaction protocols. It is presented in the next sec-
tion.

5 PROPOSED METHOD

The method presented in the following aims at devel-
oping a system architecture instead of a reference ar-
chitecture. An integration of the additional steps (e.g.,
involving cooperation scenarios) might be performed
in the future. An overview of the relevant steps and
artifacts to be presented is given in Figure 2.

Step 1: Use Case Development. Create use cases
(e.g., based on scenarios in story form) and docu-
ment them in a structured way (e.g., in tabular form or
using sequence or activity diagrams). Identify qual-
ity requirements (e.g., concerning suitability, perfor-
mance, efficiency, compatibility, usability, reliability,
security, maintainability, and portability) and general
requirements.
Main artifacts: use cases, quality requirements, gen-
eral requirements

Step 2: System Task Identification. Identify the
system tasks. Every interaction in the use cases in-
volves a system task. At this point, we have docu-
mented what the system offers to the user.
Main artifacts: system tasks

The Missing Link between Requirements Engineering and Architecture Design for Information Systems

163



tasks

use cases

general
requirements

quality
requirements

components activities

restrictions

system 
architecture

interaction
protocols

Use Case 
Development

System Task 
Identification

Topical 
Grouping

Task 
Decomposition

Integration of 
Quality and General 

Requirements

Interaction 
Protocol Definition

components

step

artifact

Figure 2: Steps and artifacts of the new method.

Step 3: Topical Grouping. Topically group the
tasks to components.
Main artifact: components and their tasks

Step 4: Task Decomposition. This step focuses on
the question of how the system offers its tasks. De-
compose the identified tasks into activities. An activ-
ity is characterized by its semantically graspable ef-
fect on the system. Analyze the activities with respect
to information needs and label them as internal or ex-
ternal to the component. Such a label is based on:

• does the activity belong to the component topi-
cally?

• is the information needed available within the re-
spective component when considering all of its
tasks?

Define new tasks for the new external activities to
meet the information needs or to support the com-
ponent. In case new tasks are identified, go back to
Step 3, otherwise continue with Step 5. The result

comprises a functional domain model that should be
re-usable for different contexts.
Main artifacts: set of activities and set of external
tasks

Step 5: Integration of Quality and General
Requirements. Following the ‘task dependency
graph’ resulting from the decomposition of tasks to
activities to creating new tasks, propagate the qual-
ity requirements (e.g., performance, reliability, secu-
rity, usability) and annotate tasks appropriately. Tasks
used by several other tasks (directly or indirectly)
may be annotated with different quality requirements.
Thus, the information sources should be noted, too.
The quality requirements can, for example, have im-
plications on the viable interaction type: e.g., tasks
have to provide a continuous up-to-date stream of in-
formation instead of fetching information on-demand.

Well known software architecture design pat-
terns (Sommerville, 2016; Hohpe and Woolf, 2004;
Thomas Erl, 2009; Erl, 2008) lend themselves to the
integration of quality requirements into the system ar-
chitecture. Evaluate and apply suitable patterns and
solve potentially emerging conflicts weighing the al-
ternatives with respect to the quality requirements.

In doing so, components may need to be anno-
tated with restrictions. These, for example, refer to
localization: components have to reside, e.g., on the
smartphone of the customer or within the own system
borders.

The application of design patterns should be struc-
tured in some manner. Aspects influencing the order
in which the requirements are addressed are, for ex-
ample, affected number of tasks, volatility of the re-
quirements in respect to future changes, and coarse-
ness of the applied patterns.

The previous design steps can be done in three dif-
ferent ways:
1. Postponing the general requirements, annotate

tasks with quality requirement and apply design
patterns to fulfill them.
Intermediate artifact: domain model satisfying the
functional and quality requirements
Integrate general requirements and apply design
patterns to fulfill them.
Benefit: The intermediate domain model can be
used as a basis for different general requirements
(e.g., to develop a system used in two different
parts of the world).

2. Postponing the quality requirements, annotate
tasks with general requirement and apply design
patterns to fulfill them.
Intermediate artifact: domain model satisfying the
functional and general requirements

WEBIST 2019 - 15th International Conference on Web Information Systems and Technologies

164



Integrate quality requirements and apply design
patterns to fulfill them.
Benefit: The intermediate domain model can be
used as a basis for different quality requirements
(e.g., in case the quality requirements are ex-
pected to be changing more drastically than the
general requirements).

3. Integrate general requirements and quality re-
quirements in a single step.
Benefit: Prevents working with the effects of pat-
terns in intermediate domain models that are dis-
carded when considering the postponed require-
ments.

Main artifacts: quality requirements per task and re-
strictions per component; components

Step 6: Interaction Protocol Definition. Settle the
interactions to respect the requirements regarding the
tasks and their encasing components. Define inter-
action protocols documenting the component interac-
tions. In case different components impose incom-
patible requirements on a task, different interaction
pattern may have to be used alongside each other re-
sulting in multiple implementations.
Main artifacts: interaction protocols and – since the
components are known, too – the system architecture

In case the system to be designed is supposed to
provide its services to the user via a mobile appli-
cation, the first two steps consider the interaction of
the user with this application and the system tasks are
tasks offered by the mobile application. This way,
the required flexibility to decide where a component
should reside is available in the follow-up steps.

6 CONCLUSION

This paper presents our current efforts to bridge the
gap between requirements engineering and software
engineering. It presents a refined method to develop a
system architecture based on requirements in a com-
prehensible and traceable way. Our work is supposed
to complement the existing literature, which describes
the requirements engineering and software engineer-
ing activities but leaves out a clear methodology for
the design of the system architecture. We thus present
the artifacts on the way to the architecture as well as
the steps needed to produce these.

Future research involves integrating the steps ad-
ditional to the development of a reference architecture
into the method. This has been deferred for evaluation

purposes, as most situations demand a system archi-
tecture. One is rarely lucky enough to be asked to
develop a reference architecture.

We are looking forward to employing and evalu-
ating the proposed method in the EU project Sharing
and Automation for Privacy Preserving Attack Neu-
tralization (SAPPAN), in the development of the next
version of the electronic fare management system ar-
chitecture for Germany and in augmenting the results
of the project DiMo-OMP with data and platform
management tasks. In our expectation, the main bene-
fit is the separation of the functional and the technical
(deployment, implementation) architecture. This is to
be confirmed in the upcoming evaluation. The expe-
rience gained during the planned applications of the
method will be integrated into a more detailed elabo-
ration of the process steps.

ACKNOWLEDGEMENTS

This work was funded by the German Federal Min-
istry of Economic Affairs and Energy (BMWi) for
the project Mobility Broker (Grant Id: 01ME12136),
by the German Federal Ministry of Transport and
Digital Infrastructure (BMVI) for the projects Digi-
talisierte Mobilität – Die Offene Mobilitätsplattform
(DiMo-OMP) (Grant Id: 19E16007B) and Digital-
isierte Mobilität – Fahrzeug und Haltestelle (DiMo-
FuH) (Grant Id: 19E16009G), and by Ford Motor
Company for the Projects Autonomy Mobility Living
Lab Aachen (Grant Id: 160812).

We would like to thank to all the industrial and
academic partners from the research projects Mobil-
ity Broker, DiMo-OMP, and DiMo-FuH for their co-
operation, support, problem related discussions, and
finally their great hospitality for project meetings and
visionary discussions. Special thanks to Sjef Janssen,
Elke Fischer, Michael Bauer, Oliver Waltes, Claus
Dohmen, Peter Kehren, Johan van Ieperen, Dirk
Weißer, Bert Lange, Tobias Steinert, Werner Kohl,
Berthold Radermacher, Detlef Kuck, Markus Beutel,
Christian Samsel, David Thulke, Felix Schwinger, as
well as all related contributors and project partners.

REFERENCES

Alexander, I. F. and Maiden, N. (2004). Scenarios, Stories,
Use Cases: Through the Systems Development Life-
Cycle. Wiley Publishing, 1st edition.

Beutel, M. C., Gökay, S., Ohler, F., Kohl, W., Krempels,
K.-H., Rose, T., Samsel, C., Schwinger, F., and Ter-
welp, C. (2018a). Mobility service platforms - cross-

The Missing Link between Requirements Engineering and Architecture Design for Information Systems

165



company cooperation for transportation service in-
teroperability. In Proceedings of the 20th Interna-
tional Conference on Enterprise Information Systems,
ICEIS 2018, Funchal, Madeira, Portugal, March 21-
24, 2018, Volume 1., pages 151–161.

Beutel, M. C., Gökay, S., Jakobs, E., Jarke, M., Kasugai,
K., Krempels, K., Ohler, F., Samsel, C., Schwinger, F.,
Terwelp, C., Thulke, D., Vogelsang, S., and Ziefle, M.
(2018b). Information system development for seam-
less mobility. In Donnellan, B., Klein, C., Helfert,
M., and Gusikhin, O., editors, Smart Cities, Green
Technologies and Intelligent Transport Systems - 7th
International Conference, SMARTGREENS, and 4th
International Conference, VEHITS 2018, Funchal,
Madeira, Portugal, March 16-18, 2018, Revised Se-
lected Papers, volume 992 of Communications in
Computer and Information Science, pages 141–158.
Springer.

Beutel, M. C., Gökay, S., Kluth, W., Krempels, K.-H., Sam-
sel, C., and Terwelp, C. (2014). Product oriented in-
tegration of heterogeneous mobility services. In In-
telligent Transportation Systems (ITSC), 2014 IEEE
17th International Conference On, pages 1529–1534.
IEEE.

Beutel, M. C., Gökay, S., Kluth, W., Krempels, K.-H., Sam-
sel, C., Terwelp, C., and Wiederhold, M. (2016). Het-
erogeneous travel information exchange. In Internet
of Things. IoT Infrastructures: Second International
Summit, IoT 360◦ 2015, Rome, Italy, October 27-29,
2015, Revised Selected Papers, Part II, pages 181–
187. Springer.

Erl, T. (2008). SOA – Principles of Service Design. Prentice
Hall.

Giorgini, P., Kolp, M., Mylopoulos, J., and Pistore, M.
(2003). The tropos methodology: an overview. In
Bergenti, F., Gleizes, M.-P., and Zambonelli, F., ed-
itors, Methodologies and Software Engineering For
Agent Systems, pages 1–20, New York. Kluwer Aca-
demic Publishing.

Hohpe, G. and Woolf, B. (2004). Enterprise Integration
Patterns. Addison-Wesley.

ISO/IEC (2011). Systems and software engineering – sys-
tems and software quality requirements and evalua-
tion (SQuaRE) – system and software quality models.
ISO/IEC 25010, European Committee for Standard-
ization.

ISO/IEC/IEEE (2017). Systems and software engineering –
software life cycle processes. ISO/IEC/IEEE 12207,
European Committee for Standardization.

Jochen Ludewig and Horst Lichter (2013). Software En-
gineering: Grundlagen, Menschen, Prozesse, Tech-
niken. Dpunkt.Verlag GmbH.

Krempels, K.-H., editor (2015). Abschlussbericht der
RWTH Aachen zum Verbundvorhaben ,,econnect Ger-
many”, Stadtwerke machen Deutschland Elektromo-
bil, von Aachen bis Leipzig, vom Allgäu bis Sylt. Ap-
primus.

Lind, J. (2001a). The conceptual framework of massive.
In Lind, J., editor, Iterative Software Engineering for
Multiagent Systems: The MASSIVE Method, volume

1994 of Lecture Notes in Computer Science, page 97.
Springer.

Lind, J. (2001b). Massive views. In Lind, J., editor, It-
erative Software Engineering for Multiagent Systems:
The MASSIVE Method, volume 1994 of Lecture Notes
in Computer Science, page 121. Springer.

Lockemann, P. C., Nimis, J., Braubach, L., Pokahr, A., and
Lamersdorf, W. (2006). Architectural design. In Kirn,
S., Herzog, O., Lockemann, P. C., and Spaniol, O.,
editors, Multiagent Engineering, Theory and Applica-
tions in Enterprises., pages 405–429. Springer.

Pohl, K. (2010). Requirements Engineering - Fundamen-
tals, Principles, and Techniques. Springer, Heidelberg
New York.

Sommerville, I. (2016). Software Engineering. Pearson, 9
edition.

Steinert, T., Koreng, R., Mayas, C., Cherednychek, N.,
Dohmen, C., Hörold, S., Krempels, K.-H., Kehren,
P., Kohl, W., Ohler, F., Terwelp, C., van Ieperen, J.,
and Wiegand, A. (2018). Definition und Dokumen-
tation der Nutzeranforderungen an eine offene Mo-
bilitätsplattform.

Terwelp, C. (2019). Development of a Reference Model for
Mobility Platforms. PhD thesis.

Thomas Erl (2009). SOA – Design Patterns. Prentice Hall.
Weiß, G., Pomberger, G., Beer, W., Buchgeher, G.,

Dorninger, B., Pichler, J., Prähofer, H., Ramler, R.,
Stallinger, F., and Weinreich, R. (2009). Software
Engineering – Processes and Tools, pages 157–235.
Springer Berlin Heidelberg, Berlin, Heidelberg.

Zambonelli, F., Jennings, N., and Wooldridge, M. (2003).
Developing multiagent systems: the gaia methodol-
ogy. ACM Transactions on Software Engineering and
Methodology, 12(3).

WEBIST 2019 - 15th International Conference on Web Information Systems and Technologies

166


