Prediction and Classification of Heart Disease using AML and Power BI

Debmalya Chatterjee1 and Saravanan Chandran2
1Software Engineer, GGK Technologies Hyderabad, India
2Department of Computer Science and Engineering, National Institute of Technology Durgapur, India

Keywords: Machine Learning, Heart Disease Prediction, Heart Disease Classification.

Abstract: Machine Learning (ML) is transforming the industries from delivering normal products to deliver intellect products. Large sets of data points are analysed by the computers and the relationship modelling is applied in a predictive way in real time to obtain accurate results. Machine Learning is adopted in healthcare problems for increasing efficiencies, saving money, and saving lives. The cost of medical treatment is reduced and the healthcare processes are optimized throughout the organization with the support of ML. ML improves healthcare delivery and patient health. Machine learning improves diagnosis and treatment options, also empowers individuals to take control of their health. Diagnosis advancements, predictive healthcare, medicines, and helping patients through ML interface produces better results. Heart Disease relates to many numbers of medical complications related to the heart. In recent years, ML has spread its knowledge in every field. In healthcare, the usage of ML has been significantly increased. This research work aims at the prediction of heart disease and classification of heart disease using Machine Learning algorithms. The experimental results are classified into five heart disease stages using values 0, 1, 2, 3, and 4, value 0 for no heart disease and 4 for severe heart disease. The Area Under the Curve (AUC) values depict the accuracy level of the prediction using this proposed model. The results are displayed using the data set in the form of charts that is easy to analyse the number of people having chest pains. The ML analytical report added up in the form of charts or other visuals, the results are reported informatively. This analysis is helpful for doctors and the medical industry for several case studies.

1 INTRODUCTION

Heart disease affects the circulatory system which is associated with several illness. Two common categories of the heart diseases are Cardiomyopathy and Cardiovascular Disease (CVD). CVD results in severe illness, disability, and even casualty. Coronary Heart Disease (CHD) caused by narrow coronary arteries which in result reduce the supply of blood and oxygen supply to the heart. CHD encompassed myocardial infarctions, generally known as heart attacks and angina pectoris or chest pain. Also, a blood clot cause a blockage in the coronary artery develops heart attack. Some of the common factors of the heart disease are High cholesterol, High blood pressure, Smoking, Diabetes, Heredity, Obesity, usage of steroid and similar stimulants, etc. According to the World Health Statistics 2012 report, one in three adults has raised blood pressure which causes around half of all deaths from heart disease and strokes. In healthcare sector, efficient automated heart prediction system and heart disease classification system is essential.

Machine Learning have been utilized in various application in the recent years. Machine learning algorithms are used in language processing, robot control, combinatorial optimization, speech recognition, handwriting recognition, face recognition, medical data analysis, etc. In healthcare, machine learning algorithm are utilised to identify disease and diagnose the stages of a disease. Several research works utilised machine learning algorithms to identify Heart Disease and stages of the heart disease. The chest pain is the common symptom of a heart disease, the chest pain can be of either typical angina, atypical angina, non-anginal pain or asymptomatic. The machine learning algorithm is a tool to assist the medical practitioners. The healthcare industry is enhanced by machine learning algorithms which improved the treatment accuracy, reduced time, reduced cost, and reduced complexity.
2 RELATED WORKS

Over the last 10 years, more number of people died because of heart disease (Jaymin Patel et al., 2016). The researchers analyse the classification tree techniques in data mining. WEKA tool is an open source software tool used by the researchers for this research work. This software consists of the various machine learning algorithms for Data Mining applications. The objective of this research was to compare different classification techniques perform for a heart disease dataset. The J48 algorithm, logistic model trees algorithm, and Random Forest algorithm were used to perform the classification on UC Irvine (UCI) repository. The J48 achieved train error 0.1423221 and test error 0.1666667, logistic model tree algorithm achieved train error 0.1656716 and test error 0.237931, and random forest algorithm achieved train error 0 and test error 0.2. The J48 technique turned out as the best classifier for predicting heart disease. The building time of this algorithm was much less and achieved higher accuracy.

Another research work was published using machine learning algorithms (Prerana et al., 2015). They elaborated the research work in five sections, first one described the theoretical knowledge about reducing attributes from dataset, second was the implementation of the machine learning algorithms Naive Bayes and PAC Algorithm for predicting heart disease, big data was processed using Hadoop Map-Reduce programming in the third section, in the fourth section deployment of centralized system, happened on cloud platform and conclusion along with the future scope came in the fifth phase. The UCI dataset was considered for the experiment and 13 attributes were involved in the experiment. As an input, the big data file containing patient records was used and the dataset fed into the classification model. Two models were used namely Naive Bayes Classifier and Probabilistic Analysis and Classification. These algorithms were implemented to determine the heart disease risk and then the comparison was made in the form of graph. The experimental analysis revealed that the NaiveBayes continuous variable achieved accuracy 89.80%, NaiveBayes Discrete variable achieved 95.21% accuracy, and Probabilistic Analysis achieved better accuracy 97.48%.

Heart disease prediction system was introduced with different classifier techniques (Sonam Nikhar et al., 2015). This article focus on analysis of algorithms comparing accuracy of the algorithms. The techniques used were ID3 decision tree algorithm, Naive Bayes classifier and K-means clustering. Decision tree handles missing values and removes outliers. The decision tree can be built even the data is not cleaned. Main disadvantage of ID3 algorithms is over-fitting and difficult to implement. The Naive-Bayesian classifier considers the variables as independent variable and predicts without proper relation cases. K-means clustering clusters dataset on nearest-neighbor principle with the help of data similarity. They used R tool for the experiment. They observed decision trees produces inaccurate results, Naive Bayes results accurate if the data is cleaned and maintained well. The ID3 can clean dataset but unable to produce accurate results. But combination of Naive Bayes and K-means produces accuracy results.

This article focused on different algorithms, where combinations of several target attributes were predicted (K Srinivas et al., 2011). Effective heart attack prediction methods were presented using data mining techniques. The authors have provided an efficient approach to extract the significant patterns from the data warehouse of heart disease to predict the heart attack efficiently based on calculated significant weightage. Those patterns were frequent and having the value greater than predefined threshold were selected. The study used National Behavioural Risk Factor Surveillance System (BRFSS) data to assess CVD rates. This research was performed in coal mining areas after and before the control for individual level covariates. This includes smoking, obesity, alcohol consumption, and others. They tested the hypothesis checked that CVD rates will be significantly elevated around the coal mining region residents after controlling for covariates.

In this article (Niti Guru et al., 2007), authors proposed a system based on neural networks. Further, it is trained using Back Propagation algorithm. The system proposed was trained for 78 patient’s records. The doctor provided the patient data then the system generated a list of all possible diseases from which the patient may suffering. This system assists doctor to avoid human mistakes.

This article (Sellappan Palaniappan, 2008) proposed a prototype Intelligent Heart Disease Prediction System (IHDPS) using Decision Tree, Naive Bayes, and Neural Network models. It had six major phases: business understanding, data understanding, data preparation, modeling, evaluation, and deployment. Two data mining classification modelling techniques were used in developing this system. DMX query language and functions were used for building and accessing the models. They used for model training, model creation, prediction, and content access of the model.
They used Cleveland Heart Disease database, which has 909 records with 15 medical attributes. The dataset is split into training (455 records) and testing (454 records) datasets. Test dataset is used for validating and train the models. The purpose of using the Classification matrix method was to evaluate the effectiveness of the models. Test datasets were evaluated with the trained models to check the accuracy and effectiveness before they were deployed in HDPS. In this article, authors used pie charts, lift charts, and bar charts to explain the performance level of each technique for Naïve Bayes, Decision tree, and Neural Network. Five mining goals were defined, Naïve Bayes complied 4, decision trees complied 3, and neural network complied 2. This system serves as a training tool to train the medical students for diagnosing purposes of the patients with heart disease. Also, provide decision support to assist the doctors in making better clinical decisions.

Naïve Bayes learning and C4.5 decision trees are the most commonly used classifier algorithms. In this article (Chotirat “Ann” Ratanamahatana et al.), the authors used 10 data sets from UC1 repository and used Gaussian distribution for creating one synthetic dataset which contains 1,200,000 instances with 20 attributes and 2 classes. Among the 10 datasets, in 5 datasets, Naïve Bayesian classifier outperformed C4.5 and for the other 5 datasets C4.5 outperformed Naïve Bayesian classifier. In this article to improve Naïve Bayesian learning, authors used C4.5 decision trees to select features. This method proved to be very fast and successful. The selective Bayesian classifier proved to be at least as accurate as C4.5, Naïve Bayes, and Augmented Bayes. Learning was faster than both C4.5 and Naïve Bayes for each of the domains. This article suggested that C4.5 decision trees select noble features for Naïve Bayesian classifier by avoiding redundant attributes. With 10% training examples the high accuracy SBC achieved which shown indication of the fact that for probabilistic induction, these features lead to higher accuracy for both in Bayesian classifier and C4.5.

3 PROPOSED WORK

In this research work, Two-Class Boosted Decision Tree classification algorithm is used. This machine learning algorithm is used to create a machine learning model based on the boosted decision trees algorithm. Following figure 1 and 2 shows flow of machine learning and Azure Machine Learning (AML) algorithm.

This is an ensemble learning method where the second tree corrects the errors of the first tree, the third tree corrects errors of the first and second tree. The process depends on the number of trees. Entire ensemble of the trees produces the prediction. The following is the configuration of the boosted decision tree algorithm:

- Boosted Decision tree is added to the experiment.
- Based on the training model, trainer mode is set as
 — Single Parameter – configuration is defined - a set of values provided as arguments.
 — Parameter Range – multiple values are specified to calculate the optimal parameters and Tune Model Hyper parameters are used to find the optimal configuration. Combination of values are determined that produces the best model.
• Maximum number of terminal nodes are specified those are created in a tree by Maximum number of leaves per tree option. The size of the tree increases by maximizing this value. This results better precision but requires higher training time.

• To create any terminal node in a tree, the number of cases required is defined in Minimum number of samples per leaf node. Increasing this value results in increasing the threshold for creating new rules. For example, if the value is 5, the minimum test cases is 5 that meet the same conditions.

• Step size is defined in the learning rate as a number between 0 and 1. This rate defines converging rate on the optimal solution. The optimal solution is higher if the step size is too big. If it’s too small, training takes longer time to converge on the solution.

• The total number of trees to be created is defined in number of trees to be created in the ensemble. Creating more decision trees will inversely affect the training time but better coverage is achieved. This value controls the number of trees displayed while visualizing the training model. For example to produce a tree the value is set to 1. This shows n iterations with 1 tree.

• A non-negative integer is used as random seed value. Reproducibility across run is ensured that have same data and parameters. The default value is 0. The initial value is obtained from the system clock.

• To create a group of unknown values in the training and validation sets, allow unknown categorical levels option is selected. The model will accept only the contained values in the dataset if this option is not select.

• The model is trained
 — If the Create trainer mode is set to Single Parameter, a tagged dataset and the Train Module is connected.
 — If the Create trainer mode is set to Parameter Range, a tagged dataset, and the Train Module is connected using Tune Model Hyper parameters.

• The set of trees generated are visualized from the Tune Model Hyper parameters.
 Tune Model hyper parameters is used to determine the optimum parameter settings by performing a parameter sweep on a trained model. The choice for the parameter sweep are Entire Grid, Random Sweep, and Random Grid.

 Two methods supported by TMH to find the optimum settings:
 • Integrated train and tune: Parameter sweep is used to train a model. The parameters are selected while the others remain fixed.

 • Cross validation with tuning: The data is divided into number of folds prior to testing. Best accuracy achieved but take longer time to train.

In the properties pane of this model, two different drop-down box presents, one for classification algorithms and another for regression. The metrics for regression is ignored for classification algorithm. There are basically two ways to tweak parameters in TMH, by hand or by parameter-sweep. Parameters tuned by hand is either slow or long but it provides direct feedback about how algorithm works. Parameter sweep won’t set hard coded values for the ML model. It provides range by selecting “Parameter Range” as trainer mode. Here the label is selected.

There are three parameter sweeping mode:

• Random sweep: In this case, n random guesses happened from all the possible parameter provided with the model.

• Entire grid: This option is best for limited number of parameter sets. It takes lot of time as it covered all parameter combinations. It calculates all the possibilities.

• Random grid: With all the possibilities, a grid is created. From that limited number of random tries out instead of all. It provides great insight of how the combinations of parameters perform.

For maximum experiments with TMH, Random sweep or Random grid is selected instead of entire grid as it is very slow in computation.

4 RESULTS AND DISCUSSION

Azure machine learning is used for performing the research experiment. The UCI Machine Learning repository is used to train this model. The original dataset contains 76 attributes among which 14 attributes are considered for the research analysis. Cleveland database has been considered from where all these attributes are captured.

Attribute Information:

The data has been imported from the URL via HTTP, as AML provides flexibility to import data from different places. The format of the data is in CSV format. While importing the data via URL, the URL must have the site full path with the filename and extension. Cached results has been checked to avoid reloading the data every time. Following figure 3
shows the data set where 8 columns are visible among the 14. The dataset has 303 rows.

![Figure 3: Heart Disease Dataset (Raw Table).](image)

Edit metadata to assign column names to all the columns. Again, performed edit metadata into the dataset to categorize the dataset. In this step, the categorical option is selected and the columns are arranged in categorical.

There are columns which have some values missing. Thus, those rows having missing values are removed if there are many numbers of rows. Otherwise, those missing values have been replaced with the mode value with minimum and maximum missing value ratio being correspondingly 0 and 1. Few values of ‘ca’ and ‘thal’ columns is missing which replaced by the mode values.

The main part of this system is using R Script to set the heart disease diagnosis. The 1-based optional input ports are mapped to variables. The two values 0 and 1 of the ‘num’ column which used for diagnosis of heart disease is then evaluated considering the dataset. Then the corresponding dataset is selected to send the Output to Dataset Port.

The model is trained in two ways. In one flow, Convert to Indicator value is enabled and in another it is not enabled. The use of Convert to Indicator value is to make the dataset more granular. The gender column is divided into gender-0 and gender-1. The cp (chest pain) column divided into cp-1, cp-2, cp-3 and cp-4. Likewise, other columns are divided. Following figure 4 shows the resultant table.

The data is split into two parts 80% and 20%. On the 80% data, the machine learning algorithm is applied and the remaining 20% data is considered in score model to check the accuracy. The algorithms applied are: Two Class Boosted Decision Tree and Tune Model Hyper parameters. On using of Two Class Boosted Decision Tree and applying it on Tune Model Hyper parameters the following figure 5 is the results achieved.

![Figure 4: Granular Level Data.](image)

![Figure 5: Permutation Feature Dataset Result.](image)

The result that achieved after this step, fed into score model and permutation feature importance. Based on the test dataset (20%) and the trained model, the permutation feature importance computes a set of feature importance scores. Score model produces scored labels and scored probabilities. Scored labels contain values 0 and 1. These values are based on scored probabilities. If the scored probabilities are > 0.50 then scored label is 1 and when < 0.50 then it is 0. The value 0 and 1 depicts that in which class the feature is falling into, whether class 0 or class 1.

Following figure 6 shows the result of score model. The actual result is achieved from Evaluate Model. This generates several information like True Positive, False Positive, True Negative, False Negative, Accuracy, Precision, Recall, and F1 Score. True Positive means the prediction of the ML system and the actual result is same. False Positive means the
prediction of ML system is false but the patient has a heart disease. True negative means the ML system predict correctly that the patient has a heart disease. False Negative means the prediction of the ML system is incorrect.

<table>
<thead>
<tr>
<th>Scored Labels</th>
<th>Scored Probabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.01711</td>
</tr>
<tr>
<td>1</td>
<td>0.999998</td>
</tr>
<tr>
<td>0</td>
<td>0.000133</td>
</tr>
<tr>
<td>1</td>
<td>0.819551</td>
</tr>
<tr>
<td>0</td>
<td>0.03986</td>
</tr>
<tr>
<td>0</td>
<td>0.000175</td>
</tr>
<tr>
<td>1</td>
<td>0.999275</td>
</tr>
<tr>
<td>0</td>
<td>0.85934</td>
</tr>
</tbody>
</table>

Figure 6: Score Model Result.

Accuracy is defined as the proportion of the total number of correct predictions (Fawcett, Tom, 2006).

\[
\text{Accuracy} = \frac{(TP + TN)}{(TP + TN + FP + FN)}
\]

Precision is the percentage of selected items that are correct.

\[
\text{Precision} = \frac{TP}{(TP+FP)}
\]

The recall is the percentage of correct items that are selected.

\[
\text{Recall} = \frac{TP}{(TP+FN)}
\]

F1 Score is the harmonic mean of Recall and Precision.

\[
\text{F1 Score} = \frac{2TP}{(2TP + FP + FN)}
\]

According to the Predicted Result data, the accuracy of the prediction system is 82%, Precision is 84%, Recall is 75%, and F1 score is 79.2%. The AUC curve of the same has been shown in the following figure 7. The AUC value is 90% which is a very good value for a threshold of 5. All the values above the threshold value belong to a first class and all the values below that belong to a second class.

For this experiment, \(TP=19, TN=30, FN=9, FP=3 \)

Accuracy\(\approx\frac{(TP+TN)}{(TP+TN+FP+FN)}=0.803\approx80.3\%

\[
\text{Precision} = \frac{TP}{(TP+FN)} = 0.863 = 86.3\%
\]

Recall\(\approx\frac{TP}{(TP+FN)} = 0.6785 = 67.8\%

F1 Score\(\approx\frac{2TP}{(2TP + FP + FN)} = 0.76 = 76\%

Following figure 8 shows a detailed results, the positive examples, negative examples, fraction above threshold, accuracy and other details.

4.1 Analytical Study using Bi

After successful completion of the machine learning, power bi is used to create reports for analysis purposes in the form of bar charts and clustered column charts. The following figure 9, shows the comparison result of the count of the number of people those having chest pains.

The chest pain has been categorized into four, i.e. cp-0 is typical angina, cp-1 is atypical angina, cp-2 is non anginal pain and cp-3 is asymptomatic.

From the chart, it is noticed the number of people having typical angina, the number of people having atypical angina and furthermore. For the current dataset, maximum number of people, i.e., 23 peoples are having asymptomatic chest pains followed by 20 peoples who are having non-anginal pain. Following figure 10 shows the number of people are in a
particular age. The yellow bar specifies a value dealing with number of people with angiographic heart problem. For e.g., there are three people of age 44, among them one of the person do have this problem. The maroon bar shows the data of fasting blood sugar. There are three people of age 71, from the chart it is noticed that one of the three persons have very high blood sugar in fasting.

Figure 9: Number of people vs. Chest pain.

Figure 10: Number of people with Cholesterol, Fbs, Heart Disease by age.

These are the analysis performed on that data set taken from UCI machine learning heart disease data set. The score probabilities are shown in the following figure 11 in comparison with the number of people. The total BI report is shown in the following figure 12 that includes all the chart in the same page helps any doctor or any medical person to analyse the data without much effort.

The report contains the count of the number of people having what Chest Pain, the count of the number of people based on their age having cholesterol, fbs, heart disease diagnosis data and the resultant data with the number of peoples.

This experimental results are compared with Prerana et al., 2015 experimental results. In their experiment, Naivebayes continuous variable achieved accuracy 89.80%, Naivebayes Discrete variable achieved 95.21% accuracy, and Probabilistic Analysis achieved better accuracy 97.48%. In this experiment 86.3% precision is achieved. Thus, in the future a hybrid model will be developed to achieve better accuracy.

Figure 11: Resultant Data with Number of People.

Figure 12: Total Power BI Report.

5 CONCLUSION

There are several data source from where healthcare related data are availed for processing, predicting, and analysis of various diseases. The dataset are selected based on the criteria to be predicted. The main part of machine learning is data, the more data produces better results. In this research work, AML has been used for processing and identifying the person has heart disease or not. The 80% of the dataset are chosen randomly for training and the remaining 20% data are used to check how much the prediction was accurate. Here, the classification algorithm has been used for machine learning. Power BI has been used in order to make some analytical study which proves to be very much helpful for the healthcare and medical studies. The AML is a very latest technology. Still,
research is going on machine learning using AML. The comparison has been done on Naive Bayes and ANN. This work can be extended by using any other classification algorithms to achieve much better accuracy and also try to get better predictive result from the system.

REFERENCES

Chotirat “Ann” Ratanamahatana and Dimitrios Gunopulos, “Scaling up the Naïve Bayesian Classifier: Using Decision Trees for Feature Selection”, Computer Science Department University of California Riverside, CA 92521 1-909-787-5190