
Process Profiling based Synthetic Event Log Generation

Eren Esgin1,2 and Pinar Karagoz3
1MBIS R&D Center, AI Research, Istanbul, Turkey

2Middle East Technical University, Informatics Institute, Ankara, Turkey
3Middle East Technical University, Computer Engineering Department, Ankara, Turkey

Keywords: Case Identifier, Process Mining, Process Profile, Synthetic Log Generator (SynLogGen), Unlabeled Event
Log.

Abstract: The goal of process mining is to discover the process behavior from the runtime information of process
executions. Having labeled process logs is crucial for process mining research. However, real life event logs
at process-aware information systems are mostly partially assigned to case identifiers, known as unlabeled
event log problem. As a remedy to labeled data need in process mining research, we propose an approach to
generate synthetic event logs according to the provided process profile, which outlines the activity
vocabulary and structure of the corresponding business process. We evaluate the performance of our
prototypical implementation in term of compatible log generation under varying parameter setting
complexities.

1 INTRODUCTION

The impact of process-aware information systems is
limited by the difficulties encountered at process
design phase (Weijters & van der Aalst, 2003).
Respectively, reference process models are normative
in the sense that they reflect what should be done
rather than the actual process execution (van der Aalst
et al., 2003). Instead of manually designing the
corresponding process, it is proposed to reverse this
traditional design procedure by a more objective and
automated technique called process mining. Process
mining collects the process knowledge and distills the
process patterns from the low-level process history.
The major assumption about process mining is the
existence of event log, which contains a sequence of
process trails in the form <caseID, taskID> where
caseID identifies the process instance and taskID
specifies the activity that has been performed
(Walicki & Ferreira, 2011). A case identifier is
important to correlate different events recorded in the
event log and this orchestration of process instances is
called labeled event log (Bayomie et al., 2016).

In capability maturity levels at software
development process, providing event logs with
automatically assigned case identifiers is classified as
maturity level-4 or higher at logging (van der Aalst,
2011; Dustdar & Gombortz, 2006). However, the

process may execute in an environment of lower
logging maturity level. As stated in (van der Aalst,
2006), the event logs of most enterprise resource
planning (ERP) vendors are unable to monitor unique
and individual process cycles. Instead, they only log
the execution of transactions without referring the
corresponding case. This is due to the fact that, these
systems are mostly data centric such that the event
logs are staggered at the application tables with the
lack of case relations. Such kind of logs is called as
unlabeled event log (van der Aalst et al., 2006;
Gunther & van der Aalst, 2006). Limitations in
obtaining labeled data constitutes an important
drawback for process mining research, especially for
supervised learning-based approaches, which call for
labeled training data set.

In this paper, we address the challenge of
extracting and preparing event logs for analysis.
Rather than correlating the process instances with
case identifiers, we propose a synthetic log generator
namely synLogGen, that simulates the event log for a
given process profile according to Petri net firing rule.
Process profile composes activity vocabulary and
Petri net. While activity vocabulary holds all valid
activity labels in terms of activity type and occurrence
priority, Petri net converts the graphed-based
reference process model into tabular format.
Additionally, unexpected process terminations and

516
Esgin, E. and Karagoz, P.
Process Profiling based Synthetic Event Log Generation.
DOI: 10.5220/0008363805160524
In Proceedings of the 11th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2019), pages 516-524
ISBN: 978-989-758-382-7
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

noise effect that deteriorate the business rules are
considered as parameters at proposed synthetic event
log generation.

The remainder of this paper is organized as
follows: The literature review is given in Section 2. In
Section 3, we present the details of proposed
approach for process log generation, synLogGen. In
the following section, experimental analysis and
validation with respect to related approaches, i.e.
deducing case identifiers (DCI) in (Bayomie et al.,
2016) and expectation maximization (E-Max) in
(Ferreira & Gillblad, 2009), are analyzed for
benchmark business processes given in (Bayomie et
al., 2016). Finally, we conclude the paper in Section 5
with a discussion and an outlook on future work.

2 LITERATURE REVIEW

In this section, we summarize the previous efforts on
dealing with incomplete labeling in the process event
logs. In general, process-aware information systems
record a vast array of events without being able to
assign them to specific process instances. In such
environment, the case identifier attribute is mostly
absent and the event log becomes an unlabeled stream
of events. In (Bayomie et al., 2016), Bayomie et al.
propose an approach to automate the preprocessing
step by deducing the case identifiers (DCI) for the
unlabeled event log. In addition to the execution log,
DCI requires as input the reference process model and
heuristic data about the execution timestamp. As a
limitation, DCI does not support cyclic processes and
inaccurate heuristic data affects the number of
possible labeling.

The handling of unlabeled event log is also
addressed in (Walicki & Ferreira, 2011) and (Ferreira
& Gillblad, 2009). In (Ferreira & Gillblad, 2009), an
Expectation-Maximization approach (E-Max) is
introduced to estimate a Markov model from an
unlabeled event log. It is a greedy heuristic that finds
mostly a local maximum of the likelihood function.
The main limitation of the corresponding approach is
erroneous handling of loops and parallelism in the
unlabeled log.

Alternatively, a sequence partitioning approach is
presented to produce a set of partitions that represent
the minimum cover of the unlabeled log in (Walicki
& Ferreira, 2011). Respectively, the underlying
approach aims to traverse the complete search space
to enumerate all possible solutions within the concept
of minimum description length (MDL) stated in
(Rissanen, 1978). Similar limitation about handling

loops and parallelism is valid for (Walicki & Ferreira,
2011).

There are also other efforts to monitor, and
visualize logs, and to map low-level logs to higher-
level process tasks. The studies in (Doganata, 2011)
and (Doganata & Curbera, 2009) are based on
business provenance graph model to generate an
automated auditing tool. The main problems are to
create internal control points and business artifacts to
visualize the process progress. In (Rogge-Solti, 2014)
and (Rogge-Solti et al., 2013), a stochastic model is
proposed to recommend missing events in the log.
They apply path probabilities and Bayesian network
to reflect initial beliefs given at reference process
model at computing the most probable timestamp. In
(Burrett & Gent, 2008), Burrett and Geng propose an
iterative workflow mining approach that implements
expectation-maximization approach to associate low-
level events with high-level tasks.

The proposed work differs from these previous
studies such that, rather than handling the labeling
problems in the corresponding data set, we propose to
generate the event log according to the provided
process profile. We especially use the log generation
efforts in (Bayomie et al., 2016), (Ferreira & Gillblad,
2009) and (Esgin, Senkul & Cimenbicer, 2010) for
comparison.

3 PROPOSED APPROACH

When process mining techniques are applied to the
process-aware information systems, we confront the
problem about collecting the transactional data, i.e.
event log at the source systems. The transactional log
at process-aware information systems is not
appropriate to monitor the individual business cases.
Instead, these systems only monitor the execution log
of specific transactions without any relations within a
case identifier (van der Aalst, 2006). Indeed, process-
aware information systems are strongly data centric:
the transactional data is staggered through header and
line-item database tables with a many-to-many (M:N)
cardinality. Although SAP tools like Reverse
Business Engineering (RBE) log the transaction
frequencies, these transactions are linked to event
process chain (EPC) format reference process models
without any assignment to individual business cases
(van der Aalst, 2006).

According to these limitations at correlating the
process instances with case identifiers, we propose a
synthetic event log generator (synLogGen) that
simulates the event log from scratch according to

Process Profiling based Synthetic Event Log Generation

517

process profile and Petri net firing rule for a given
business process.

3.1 Preliminaries on Petri Net

This section introduces the basic Petri net
terminology and notation given in (Desel & Esparza,
1995) and (Reisig & Rozenberg, 1998). The classical
Petri net is a directed bidirectional graph with two
node types: places and transitions. The nodes are
connected via directed arcs and connections between
two nodes of the same type are restricted (Desel &
Esparza, 1995; Reisig & Rozenberg, 1998).

Definition (Petri net). A Petri net is a triple (P, T, F):
 P is a finite set of places. A place p is called an

input place of a transition t, i.e. denoted as •t or
p•, if and only if there exists a directed arc from p
to t otherwise it is called an output place of
transition t if and only if there exists a directed
arc from t to p, i.e. denoted as t• or •p.

 T is a finite set of transitions (P ∩ T = ∅).
 F ⊆ (P × T) ∪ (T × P) is a set of arcs.

At any time, a place contains any tokens that are
denoted as dots (van der Aalst et al., 2003). The state,
called as marking, holds the current distribution of
these tokens over places and the number of existing
tokens varies according to the process structure and
successors of the corresponding activity. The marking
procedure of Petri net is defined as firing rule as
follows (van der Aalst et al., 2003; van der Aalst,
2006):
 A transition t is said to be enabled if and only if

each input place contains at least one token.
 An enabled transition may fire. If a transition t is

fired, then t consumes one token from each input
place p and produces one token from each output
place p of t (van der Aalst et al., 2003; van der
Aalst, 2006).

3.2 Synthetic Log Generator

Synthetic log generator has a main input which
defines the process profile. Process profile composes
two data lists: activity vocabulary and Petri net.
Activity vocabulary holds all valid activities in terms
of activity type (i.e. I-initiator, O-ordinary, S-sink)
and the activity occurrence priority. This priority
represents the path probability of corresponding
activity occurrence changing at [0, 100] interval and
this factor is determined by the domain experts. Petri
net converts the graph-based reference process model

into tabular format, at which each transition ti is
listed in terms of predecessor, successor and
transition type (i.e. AND/OR/XOR join/split-type
gateway or direct succession). Table 1 exemplifies
the activity vocabulary and Petri net for the
combined xor-and process given in Figure 1.

Table 1: Activity Vocabulary and Petri net for combined
xor-and Process.

According to Petri net firing rule adaptation and
input requirements, synthetic event logs are
generated as the following steps. Terms in
parenthesis refer to the variables and constants
addressed in the pseudo-codes Algorithm 1 and 2
respectively.
(1) As the starting point, the initiator (I-typed)

activity of the corresponding process (e.g. activity
A for combined xor-and process) is tokenized
first. Since token list holds just this initiator, the
corresponding activity is selected
(selectedActivity) and fired at fire next activity
step. Then a new event log line is created with
respect to newly set time stamp, current process
instance (proIns) and the originator randomly
obtained from originator list.
Afterwards, the successors of initiator activity
(e.g. activity B and D for the initiator A) are
tokenized and added to the token list. According
to transition type, and-list and xor-list are also
updated.

(2) At the next iteration of fire next activity step,
firstly the occupancy of and-list is checked to
give priority to any tokenized successors with
AND-split transition type. In the case of XOR-
split, unfired successors are suppressed at the
current process instance (proIns). On the other
hand, OR-split successors are conditionally fired
according to the OR-threshold determined by the
domain experts.

(3) If and-list is initial, one of tokenized activities is
randomly selected from token list and fired with
respect to activity occurrence priority and then a
new event log line is created with respect to
newly set time stamp, current process instance
(proIns) and the originator randomly obtained

KDIR 2019 - 11th International Conference on Knowledge Discovery and Information Retrieval

518

from originator list. Due to this firing, the
successors of fired activity are tokenized.

(4) If any successive activity with AND-join
transition type is selected, it is checked whether
all predecessors of the corresponding activity are
priorly fired and untokenized at fire next activity
step (at lines 10-24 at Algorithm 2). According to
the tokenized flag, it propagates tokenization to
subsequent successors. This tokenization and
firing iteration continue up to a sink (S-type)
activity is fired (sinkActivityFired) or process
instance limit (maxProsIns) is reached.

In addition to the firing rule, various parameters are
used for handling exceptional cases:
 Surprise parameter (SURPRISE_PROB) is used

to evoke unexpected process terminations. For
instance, bankruptcy is a niche business case in a
banking financial process and this relatively least
probable case is held by the surprise effect. The
default value for surprise probability threshold is
5%.

 Noise parameter (NOISE_FACTOR) is used to
generate noisy event log that deteriorates the
business rules given in process profile. The default
value for noise factor threshold is 5%.

 OR-split gateway specifies that one or more
tokenized successors will be fired in the case of
OR-split. OR-threshold reflects this conditional
firing.

Pseudo-codes for event log generation and fire next
activity steps are given in Algorithm 1 and Algorithm
2, respectively.

Algorithm 1: Generate Logs(actListFile, pnFile,
maxProIns).

1: activityList  Read Activity List(actListFile)
2: petriNet  Read Petri Net(pnFile)
3: proIns  1
4: fireCount  0
5: while proIns ≤ maxProIns do
6: surprise  SURPRISE_PROB
7: Set sinkActivityFired as FALSE
8: currActivity  Get Initiator Activity(activityList)
9: Set tokenized attribute of currActivity as TRUE

10: Add currActivity to tokenList

11:
 while surprise ≥ SURPRISE_PROB AND
!sinkActivityFired do

12: Fire Next Activity(proIns) // Algorithm 2
13: Random Generate surprise from [0, 100]
14: if surprise < SURPRISE_PROB then
15: Reset Lists(andList, xorList, tokenList)

16:
 Reset Attributes(tokenized, fired) of all activity at
activityList

17: endif
18: endwhile
19: proIns++
20: endwhile

Algorithm 2: Fire Next Activity(proIns).

1: Set getFired as FALSE
2: while !getFired do
3: if andList IS NOT INITIAL then

4: selectedActivity  Random Select Activity wrt
priority attribute from andList

5: else

6: selectedActivity  Random Select Activity wrt
priority attribute from tokenList

7: endif
8: Get originator from originatorList

9:
 if predecessorList of selectedActivity IS NOT
INITIAL then

10: tokenized  Check Tokenization at predecessorList
of selectedActivity

11: Random Generate noise from [0, 100]
12: if !tokenized AND noise < NOISE_FACTOR then
13: fireCount++
14: Set timestamp wrt fireCount

15:
 Generate newEventLog wrt {timestamp,
originator, selectedActivity, proIns}

16:
 Set tokenized attribute of selectedActivity as
FALSE

17: Set fired attribute of selectedActivity as TRUE

18:
 Refresh Lists(andList, xorList, tokenList) wrt
selectedActivity and its successorList

19: Set getFired as TRUE
20: if selectedActivity IS SINK then
21: Set sinkActivityFired as TRUE
22: Reset Lists(andList, xorList, tokenList)

23:
 Reset Attributes(tokenized, fired) of all activity
at activityList

24: endif
25: endif
26: else
27: fireCount++
28: Set timestamp wrt fireCount

29:
 Generate newEventLog wrt {timestamp,
originator, selectedActivity, processInstance}

30:
 Set tokenized attribute of selectedActivity as
FALSE

31: Set fired attribute of selectedActivity as TRUE

32:
 Refresh Lists(andList, xorList, tokenList) wrt
selectedActivity and its successorList

33: Set getFired as TRUE
34: if selectedActivity IS SINK then
35: Set sinkActivityFired as TRUE
36: Reset Lists(andList, xorList, tokenList)

37:
 Reset Attributes(tokenized, fired) of all activity
at activityList

38: endif
39: endif
40: endwhile

4 EXPERIMENTAL ANALYSIS
AND DISCUSSION

As benchmark process models, we use the xor, and,
combined xor-and, and nested xor-and processes,
which are also referenced in (Bayomie et al., 2016).
According to the process models given in Figure 1,
process profiles are prepared and synthetic event log

Process Profiling based Synthetic Event Log Generation

519

Figure 1: Benchmark Processes for Evaluation as referenced in (Bayomie et al., 2016).

are generated according to given number of cases
(maxProIns) as given in Table 2.

Table 2: Benchmark Process Characteristics according to
Candidate (DCI and E-Max) and Proposed Approach
synLogGen.

As given in Section 4.2, we use two previous
studies, DCI (Bayomie et al., 2016) and E-Max
(Ferreira & Gillblad, 2009) that priorly worked on
the benchmark processes in (Bayomie et al., 2016),
for performance comparison. For this reason, we
present the process log generation parameters of
these works in Table 2. The basics of these two
studies are as follows:
 DCI (deducing case identifiers) generates a set of

labeled event log by considering all labeling
possibilities for each activity in the event log
(Bayomie et al., 2016). Additionally, a ranking
score that indicates the degree of trust in labeling
of events within each log is assigned (Bayomie et
al., 2016).

 E-Max (Expectation-Maximization) is a greedy
algorithm that mines the unlabeled event log
(Ferreira & Gillblad, 2009). It takes the local
maximum to generate one labeled event log.

4.1 Analysis on Compatibility of Event
Logs with Intended Process Model

After the event logs are generated by our solution, in
order to analyze the compatibility of the generated

logs with the target model, we extract the process
back from the generated logs and compare with the
target model. We used the process mining approach
given in (Esgin, Senkul & Cimenbicer, 2010). The
underlying process discovery approach is composed
of two components: from-to chart and process flow
branch discovery. From-to chart is an analytical tool,
which is basically used in monitoring material
handling routes between operations, machines,
departments or work centers on the production floor
(Esgin & Senkul, 2009). It is adapted to monitor
transitions among activities occurred in process
instances and to figure out if there exists any
specific order of the occurrences for representing in
process model (Esgin, Senkul & Cimenbicer, 2010).

We aim to compare the quality of mined process
models by completeness and soundness metrics,
which are defined as follows:
 Completeness of the process model is the ratio of

the traces in the event log that may be the result
of some enactment at the corresponding process
model (van Dongen, Dijkman & Mendling,
2008). The completeness metric is similar to
fitness defined in (Jagadeesh Chandra Bose &
van der Aalst, 2012), (Rozinat & van der Aalst,
2008) and recall defined in (Becker & Laue,
2012) and (Gerke, Cardoso & Claus, 2008).

 Soundness measures the ratio of the activity
enactments within the corresponding process
model that find some correspondence in the
event logs (van Dongen, Dijkman & Mendling,
2008). The soundness metric is similar to
minimality or behavioral appropriateness defined
in (Maruster, Weijters & van der Bosch, 2006)
and precision defined in (Jagadeesh Chandra
Bose & van der Aalst, 2012), (Becker & Laue,
2012) and (Gerke, Cardoso & Claus, 2008).

KDIR 2019 - 11th International Conference on Knowledge Discovery and Information Retrieval

520

Figure 3: Process Maps per Candidate Process Variant (candidatei) as referenced in (Yilmaz & Karagoz, 2015), (Buijs &
Reijers, 2014) and (van der Aalst, 2011).

As shown in Figure 2, the combination of
proposed approach synLogGen with the process
discovery approach introduced in (Esgin, Senkul &
Cimenbicer, 2010) captures the process behavior at a
high accuracy degree, having an average
completeness value over 95%. Respectively, XOR
gateways at nested xor-and process results in a more
spaghetti-like process model with a 38.8%
soundness value.

Figure 2: Completeness and Soundness Values per
Benchmark Process (according to proposed approach
synLogGen).

In addition to the benchmark process models
referenced in (Bayomie et al., 2016), we aim to
analyze the performance of proposed approach at
handling relatively complex business processes.
Hence the proposed approach synLogGen is applied
and evaluated on the Environmental Permit
Application business process in Configurable
Services for Local Governments (CoSeLoG) project,
which investigates the similarities and deviations
between processes of different municipalities in
Netherlands (Yilmaz & Karagoz, 2015; Buijs &
Reijers, 2014; van der Aalst, 2011).

According to the process maps of candidate
process variants given in Figure 3, process profiles
are designated, and event logs are generated
according to varying noise factor, i.e. noise in [%0.5,
%10] value range. Then process discovery is

performed for each noisy event log dataset.
As shown in Figure 4 and 5, the combination of

proposed approach synLogGen with the process
mining algorithm introduced in (Esgin, Senkul &
Cimenbicer, 2010) is robust to the noise factor effect
at event log generation and process discovery.
According to completeness metric, complex
candidate process variants with relatively deeper
process maps (i.e. candidate1 figured within 10-level
and candidate3 within 7-level process map) have a
%1.46 average loss per noise factor increment, while
candidate2 figured within a lasagna-like structured
process map has a %0.65 average loss.

Figure 4: Noise Factor Effect on Process Discovery with
respect to Completeness. Although spaghetti-like complex
process variants with deeper process maps are potentially
more vulnerable to the increments at noise factor in the
first glance, a %1.46 average loss at completeness values
implies a relatively robust approach that appropriately
extracts relatively dominant process behaviors at a noisy
process history.

Similar outcomes are valid for soundness metric
such that, while candidate1 and candidate3 have a
%1.36 average loss per noise factor increment,

Process Profiling based Synthetic Event Log Generation

521

candidate2 performs a mitigated average loss of
%0.43.

Figure 5: Noise Factor Effect on Process Discovery with
respect to Soundness.

4.2 Log Generation Analysis in
Comparison to the Literature on
Compatibility of Event Logs with
Intended Process Model

Since the process event logs generated by DCI and
E-Max in (Bayomie et al., 2016) are not available,
we follow an indirect way of performance
comparison. Therefore, process discovery
performance is evaluated according to mined Petri
nets given in (Bayomie et al., 2016). Although the
accuracy of the discovered process depends on both
log generation and process discovery method used, it
gives a hint as to the quality of the generated logs.

As the accuracy metric, dissimilarity metric
(dissim) introduced in (Esgin & Senkul, 2011) is
applied to measure the graph-based structural
deviance between reference process models and
mined process behaviors. Underlying dissimilarity
metric is built on a vector model from information
retrieval and an abstraction of process behavior
called process triple. Process triple is a set that covers
activity existence and interactions in terms of
successors and predecessors among activities (Esgin
& Senkul, 2011).

According to dissimilarity values given in Figure
6, DCI and the combination of proposed approach
synLogGen with the process discovery approach in
(Esgin, Senkul & Cimenbicer, 2010) are respectively
more accurate in distilling the process behavior given
in the reference process models than E-Max. While
average dissimilarity value of E-Max is

approximately 0.554, the average values of both DCI
and proposed approach synLogGen highlight less
discrepancies between the intended process
behaviors given at reference process model and
discovered behaviors (i.e. 0.151 and 0.14
respectively).

Figure 6: Dissimilarity Values per Benchmark Process.
Higher dissimilarity value implies a strong distinction
between reference and mined process model (i.e. 0:
exactly the same, 1: quite distinct).

In addition to dissimilarity metric, we aim to
analyze the understandability of mined process
models in terms of connectivity. Connectivity is the
average number of transitions (|T|) per activity (|A|)
at the corresponding process model (|T|/|A|). As
shown in Figure 7, candidate approaches, i.e. DCI
and E-Max, discover more spaghetti-like Petri nets
with higher connectivity values. Alternatively,
proposed approach synLogGen discovers more
structured and lasagna-like process models
according to less deviation with reference process
model.

Figure 7: Connectivity Values per Benchmark Process.
While higher connectivity values of candidate approaches,
DCI and E-Max, imply spaghetti-like process model
discovery, less deviance between reference and proposed
apparoach synLogGen emphasizes more structured
process models.

KDIR 2019 - 11th International Conference on Knowledge Discovery and Information Retrieval

522

5 CONCLUSION AND FUTURE
WORK

Process-aware information systems record detailed
process execution information concerning the
processes they support. Typically, the assignment of
case identifiers to the process instances is missing,
due to data centric architecture of the underlying
information systems (van der Aalst, 2006). In this
paper, we introduce an approach to simulate
synthetic event log from scratch rather than repairing
incomplete unlabeled event log. We use as input the
process profile that defines the activity vocabulary,
i.e. a list of valid activity labels, types and occurrence
priority, and Petri net in tabular form. Proposed
approach synLogGen also takes both noise and
surprise effects into account at applying Petri net
firing rule. According to completeness and soundness
outcomes obtained at the experimental runs with
varying noise factor values, the combination of
proposed approach synLogGen with the process
discovery approach introduced in (Esgin, Senkul &
Cimenbicer, 2010) is robust to the corresponding
noise effect at distilling the process behaviors in a
relatively noisy process execution environment.

In the evaluation step, four process models that
are referenced in (Bayomie et al., 2016) are
determined as benchmark processes. Two prior
approaches, i.e. DCI given in (Bayomie et al., 2016)
and E-Max given in (Ferreira & Gillblad, 2009),
which priorly handled the corresponding benchmark
processes, are selected as candidate. According to the
accuracy aspect, DCI and the combination of
proposed approach synLogGen with the process
discovery approach introduced in (Esgin, Senkul &
Cimenbicer, 2010) are respectively more accurate
than E-Max in terms of dissimilarity metric (Esgin &
Senkul, 2011), which measures the discrepancies
between reference process model and mined process
behaviors on a graph-based structural similarity
measurement. Additionally, proposed approach
synLogGen generates more structured and lasagna-
like process models with respect to moderate
connectivity values and less variance with reference
process model.

As the future work, we intend to implement an
integer-programming (IP) based synthetic log
generation, in which the process behaviors at
reference process model and the activity frequencies
at the unlabeled event log act as the main constraints.
The corresponding IP-based approach will simulate
maximal process traces without any relaxations at
these constraints.

REFERENCES

Bayomie, D., Helal, I. M. A., Awad, A., Ezat, E., &
Elbastawissi, A. (2016). Deducing Case IDs for
Unlabeled Event Logs. International Conference on
Business Process Management, vol. 256, 242-254.

Becker, M., & Laue, R. (2012). A Comparative Survey of
Business Process Similarity Measures. Computers in
Industry, vol. 63(2), 148-167.

Buijs, J.C., & Reijers, H.A. (2014). Comparing Business
Process Variants Using Models and Event Logs.
Enterprise, Business-Process and Information Systems
Modeling, 154-168.

Burrett, S., & Geng, L. (2008). Bayesian Classification of
Events for Task Labeling Using Work-Flow Models.
Proceedings of the 4th Workshop on Business Process
Intelligence.

Desel, J. & Esparza, J. (1995). Free Choice Petri Nets.
Cambridge Tracts in Theoretical Computer Science,
vol. 40, Cambridge University Press, Cambridge, UK.

Doganata, Y. N. (2011). Designing Internal Control Points
in Partially Managed Processes by Using Business
Vocabulary. ICDE Workshops. 267–272.

Doganata, Y. N., & Curbera, F. (2009). Effect of Using
Automated Auditing Tools on Detecting Compliance
Failures in Unmanaged Processes. BPM. LNCS, vol.
5701, 310-326.

Dustdar, S., & Gombotz, R. (2006). Discovering Web
Service Workflows Using Web Services Interaction
Mining. International Journal of Business Process
Integration and Management, vol. 1(4), 256.

Esgin, E., & Senkul, P. (2009). Hybrid Approach to
Process Mining: Finding Immediate Successors of a
Process by Using From-to Chart. International
Conference on Machine Learning and Applications,
664-668.

Esgin, E., & Senkul, P. (2011). Delta Analysis: A Hybrid
Quantitative Approach for Measuring Discrepancies
between Business Process Models. 6th International
Conference, Hybrid Artificial Intelligence Systems
(HAIS), vol. 6678, 296-304.

Esgin, E., Senkul, P., & Cimenbicer, C. (2010). A Hybrid
Approach for Process Mining: Using From-to Chart
Arranged by Genetic Algorithms. 5th International
Conference, Hybrid Artificial Intelligence Systems
(HAIS), vol. 6076, 178-186.

Ferreira, D. R., & Gillblad, D. (2009). Discovering
Process Models from Unlabelled Event Logs. BPM
LNCS, vol. 5701, 143–158.

Gerke, K., Cardoso, J., & Claus, A. (2009). Measuring the
Compliance of Processes with Reference Models. On
the Move to Meaningful Internet Systems: OTM 2009,
Confederated International Conferences: CoopIS, IS,
DOA and ODBASE, vol. 5870, 76-93.

Gunther, C. W., & van der Aalst, W. M. P. (2006).
Process Mining in Case Handling Systems.
Multikonferenz Wirtschaftsinformatik 2006.

Jagadeesh Chandra Bose, R. P., & van der Aalst, W. M. P.
(2012). When Process Mining Meets Bioinformatics.

Process Profiling based Synthetic Event Log Generation

523

CAISE Forum, IS Olympics: Information Systems in a
Diverse World, vol. 107, 202-217.

Maruster, L., Weijters, T., & van der Bosch, A. (2006). A
Rule-Based Approach for Process Discovery. Data
Mining and Knowledge Discovery, vol. 13(1), 67-87.

Reisig, W. & Rozenberg, G. (1998). Lectures on Petri
Nets I: Basic Models, vol. 1491 LNCS.

Rissanen. J. (1978). Modeling by Shortest Data
Description. Automatica, vol. 14 (5), 465–471.

Rogge-Solti, A. (2014). Probabilistic Estimation of
Unobservered Process Events. Phd, University of
Potsdam.

Rogge-Solti, A., Mans, R., van der Aalst, W. M. P. &
Weske, M. (2013). Repairing Event Logs Using
Timed Process Models. OTM Workshops. LNCS, vol.
8186, 705–708.

Rozinat, A., & van der Aalst, W. M. P. (2008)
Conformance Checking of Processes Based on
Monitoring Real Behavior. Information Systems, vol.
33(1), 64-95.

van der Aalst, W. M. P. (2006). Matching Observed
Behavior and Modeled Behavior: An Approach Based
on Petri nets and Integer Programming. Decision
Support Systems, vol. 42(3), 1843-1859.

van der Aalst W. M. P. (2011). Process Mining Manifesto.
BPM Workshops. LNBIP, vol. 99, 169–194.

van der Aalst, W. M. P. (2011). Intra and Inter-
Organizational Process Mining: Discovering Processes
within and between Organizations. IFIP Working
Conference on the Practice of Enterprise Modeling,
vol. 92, 1-11.

van der Aalst, W. M. P., Dongen, B. F., Herbst, J., L., M.,
Schimm, G., & Weijters, T. A. J. M. M. (2003).
Workflow Mining: A Survey of Issues and
Approaches. Data & Knowledge Engineering, vol.
47(2), 237-267.

van der Aalst, W. M. P., Gunther, C., Recker, J., &
Reichert, M. (2006). Using Process Mining to Analyze
and Improve Process Flexibility. BPMDS 2006.

van Dongen, B., Dijkman, R., & Mendling, J. (2008).
Measuring Similarity between Business Process
Models. Advanced Information Systems Engineering,
20th International Conference, CAISE, vol. 5074, 450-
464.

Walicki, M. & Ferreira, D. R. (2011). Sequence
Partitioning for Process Mining with Unlabeled Event
Logs. Data & Knowledge Engineering, vol. 70(10),
821–841.

Weijters, T. A. J. M. M., & van der Aalst, W. M. P.
(2003). Rediscovering Workflow Models from Event-
Based Data Using Little Thumb. Integrated Computer-
Aided Engineering, vol. 10(2), 151-162.

Yilmaz, O., & Karagoz, P. (2015). Generating
Performance Improvement Suggestions by using
Cross-Organizational Process Mining. 5th
International Symposium on Data-Driven Process
Discovery and Analysis, 3-17.

KDIR 2019 - 11th International Conference on Knowledge Discovery and Information Retrieval

524

