
Evaluation of Couchbase, CouchDB and MongoDB using OSSpal

André Calçada1 and Jorge Bernardino1,2 a
1Polytechnic of Coimbra – ISEC, Rua Pedro Nunes, Quinta da Nora, 3030-199 Coimbra, Portugal

2CISUC - Centre of Informatics and Systems of University of Coimbra, Pinhal de Marrocos, 3030-290 Coimbra, Portugal

Keywords: NoSQL, Document Store, OSSpal, CouchDB, Couchbase, MongoDB.

Abstract: Document stores are a NoSQL (Not Only Structured Query Language) database type, made to deal with big

amounts of data and considered to be very developer-friendly, but they have also attracted a large interest

from researchers and practitioners. In this paper, we analyze and evaluate three of the most popular document

stores Couchbase, CouchDB, and MongoDB, the evaluation is based on their functionalities. In this evaluation,

we use the OSSpal methodology, which combines quantitative and qualitative measures to evaluate the

software. We conclude that of these open-source document stores the best is MongoDB, followed by

Couchbase, and CouchDB.

1 INTRODUCTION

There are many applications of document stores, but

we do not know which one is better and so in this

document, we will compare and evaluate three

document stores (Couchbase, CouchDB, and

MongoDB) through OSSpal evaluation methodology,

this evaluation is based on their functionalities.

Document stores are a NoSQL database type.

NoSQL databases were developed to deal with big

amounts of data, there are four main types of NoSQL

databases, Key-Value Store, Column-Oriented

Database, Document Store and Graph Database

(Sareen & Kumar, 2015) (Abramova et al., 2014).

The OSSpal methodology combines quantitative and

qualitative measures for evaluating software in

several categories, resulting in a quantitative value

that allows the comparison between tools.

The objective of this study is to help users to know

what database application to choose, in a PC, through

the comparison and evaluation of these document

stores.

To choose these three documents stores we

resorted to db-engines ranking (https://db-

engines.com/en/ranking), a popularity ranking of

databases.

The rest of this paper is structured as follows.

Section 2 introduces document stores. Section 3

describes each document store and shows a

a https://orcid.org/0000-0001-9660-2011

comparison of these. Section 4 shows us the

evaluation of these three document stores. Finally,

section 5 presents the main conclusions and future

work.

2 DOCUMENT STORES

SQL databases (relational databases) were developed

in the 1970s to deal with the first data storage

applications and with the problems of navigational

databases that are easily not consistent (easily lose

data). The storage in this model is made by individual

records, stored in rows of a table, if there is the need

to add or change a type of data (table) we must change

the entire database, in these databases the scaling is

vertical (Abramova et al., 2015). Document stores are

dynamic unlike relational databases and the scaling is

horizontal which allows them to store more data,

keeping a high-performance level (Sareen & Kumar,

2015).

If the scaling is vertical it means that to improve

the performance of the database, we have to improve

our machine (computer or server) hardware otherwise

if the scaling is horizontal it means that to improve

the performance of the database, we have to distribute

the different tasks of the database into more machines

(computer or server) (Lourenco et al., 2015).

Calçada, A. and Bernardino, J.
Evaluation of Couchbase, CouchDB and MongoDB using OSSpal.
DOI: 10.5220/0008345104270433
In Proceedings of the 11th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2019), pages 427-433
ISBN: 978-989-758-382-7
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

427

A document store is a NoSQL database,

developed to store documents. NoSQL databases

were developed in 2000 to deal with the limitations of

SQL databases. In this paper, we are focused only on

document stores. These rely on the internal structure

of the document to extract data that the database

engine uses for further optimization. Document stores

store the data of an object is an instance of the

database, and every stored object can be different

from every other. This eliminates the need for object-

relational mapping while loading data into the

database (Nayak, Poriya, & Poojary, 2013).

2.1 Architecture

Documents are addressed in the database via a

unique key that represents that document. This key is

a simple identifier, typically a string, a URI (Uniform

Resource Identifier), or a path. The key can be used

to retrieve the document from the database. Typically,

the database retains an index on the key to speed up

document retrieval, and in some cases, the key is

required to create or insert the document into the

database.

Document stores implementations offer a variety

of ways of organizing documents, including notions

of:

 Collections: groups of documents, where

depending on implementation, a document may

be enforced to live inside a collection, or may be

allowed to live in multiple collections;

 Tags and non-visible metadata: additional data

outside the document content;

 Directory hierarchies: groups of documents

organized in a tree-like structure, typically based

on path or URI.

These databases offer an API or query language

that allows the user to retrieve documents based on

content (or metadata). For example, we may want a

query that retrieves all the documents with a certain

field set to a certain value. To update or edit the data

of a document, the database either allows the entire

replacement of the document or individual structural

pieces of the document (Nayak et al., 2013), (Sareen

& Kumar, 2015).

Figure 1 represents the architecture of a document

store. It is like a tree that has branches and each

branch as more branches, the root is the database

engine and the branches are the documents that the

database stores and each branch as its values/objects.

Figure 1: Document store architecture (“slideshare,” 2016).

2.2 Advantages and Disadvantages

The main advantages are the following:

 Storage of unstructured data becomes easy: This

happens because the document will have all the

keys and values required by application logic.

There is no heavily priced migration involved as

it does not need to know any information

beforehand;

 Efficiency at retrieving data: Efficient at

retrieving information about an object with a

minimum of disc operations;

 Flexibility: Document stores are very flexible,

they operate over a wide variety of data types,

like JSON (JavaScript Object Notation), HTTP

(Hypertext Transfer Protocol), REST

(Representational State Transfer), and

JavaScript;

 Big evolutionary rhythm: Due to the growing

amounts of data these needs to be constantly

improved and updated;

 Efficiency at writing data: Most efficient when

writing a new row if all the row data is provided

at the same time so the entire row can be written

with a single seek.

The main weaknesses are the following:

 Lack of efficiency: These systems are not

efficient at performing operations that apply to

the entire data set as opposed to specific records;

 Model limitations: Query model is limited to

keys and indexes, this means that to get a value

we have to access the document where it is

stored, and the document can only be reached by

their key or index;

 Lack of consistency: Document stores are

considered immature because they do not have to

use SQL.

KDIR 2019 - 11th International Conference on Knowledge Discovery and Information Retrieval

428

3 TOP 3 DOCUMENT STORES

In this section, we describe three popular document

stores: Couchbase, CouchDB, and MongoDB. These

were chosen according to a ranking (db-engines, the

ranking of February of 2019) (“db-engines,” 2019).

3.1 Couchbase

Couchbase is an open-source document store,

developed by CouchBase Inc. Couchbase first release

was in 2010, it is designed for interactive web

applications and mobile applications and the

documents are stored in JSON files. In support of

these kinds of application needs, Couchbase is

designed to provide easy-to-scale key-value or JSON

document, with integrated caching. Couchbase offers

low latency read and write operations, providing

linearly scalable throughput. Couchbase supports

live-cluster topology changes, this means that there is

no application downtime when updating the database.

Couchbase architecture consists of the following

core components: Cluster Manager, Data service,

Index service, and Query service, like it is described

in Figure 2. The runtime behaviors such as

replication, storage, caching, and so on, can be tuned

to the needs of the different services. Couchbase has

4 types of applications (web, mobile, cloud and

kubernetes) each with one application, each

application has a variation for each type of system it

will operate in, Couchbase can be downloaded at

https://www.couchbase.com/downloads

(“Couchbase,” 2019a), (Bazar & Iosif, 2014).

Figure 2: Couchbase Server architecture (“Couchbase

Server architecture,” 2018).

Couchbase uses Triggers (procedure used when a

determined action occurs), Secondary Indexes,

Server-Side Scripts and MapReduce (model to

process and generate big data sets with a parallel,

distributed algorithm on a cluster), to improve

database performance, it also has Typing and a SQL-

like query language (N1QL), and it is not ACID

compliant (ACID stands for

Atomicity, Consistency, Isolation, Durability, it is a

set of properties of database transactions) (“db-

engines,” 2019).

In Figure 3 we can see the interface of Couchbase

Enterprise Edition, as we can see in the upper side of

the interface there is a tab where we can access the

database features, like query and indexes, and that

the “overview” tab is open, and it shows us the

performance of the database.

Figure 3: Couchbase enterprise edition interface

(“Couchbase,” 2016).

3.2 CouchDB

CouchDB is an open-source document store,

developed by Apache Inc. CouchDB first release was

in 2005, it was developed in Erlang, which is a

language meant for distributed systems, it uses JSON

documents to store data and RESTful HTTP API to

create and update database documents and JavaScript

is used as a query language. CouchDB provides a

built-in web application called FULTON which can

be used for administration. CouchDB works with and

without a network connection, but the application

must keep on working. It is compatible with CRM

(Customer Relationship Management) and CMS

(Customer Management Systems) systems. Some of

the drawbacks of CouchDB are temporary views,

there is no support for ad-hoc queries. CouchDB

focuses on ease of use and having a scalable

architecture. CouchDB implements a form of multi-

version concurrency control (MVCC) so it does not

lock the database files during writes. Conflicts are left

to the application to resolve. Resolving a conflict

Evaluation of Couchbase, CouchDB and MongoDB using OSSpal

429

generally involves first merging data into one of the

documents, then deleting the stale one (Nayak et al.,

2013), (“CouchDB,” 2019).

CouchDB like Couchbase uses Triggers,

Secondary Indexes, Server-Side Scripts and

MapReduce, to improve database performance, but it

does not have Typing or a SQL-like query language,

and it is not ACID compliant (“db-engines,” 2019).

Figure 4: CouchDB interface (“masteringionic,” 2016).

In Figure 4 we can see the interface of CouchDB,

as we can see in the left side of the interface that we

have a tab where we can access the database features,

in Figure 7 the opened tab is “Databases” that shows

us the databases that we currently have and a few

details about them.

The application has one variation for each

operating system, that can be downloaded at

http://couchdb.apache.org.

3.3 MongoDB

MongoDB is a free open-source document store,

developed by MongoDB Inc. MongoDB was first

released in August of 2009 and it was developed in

C++. MongoDB is well suited for applications like

content management systems, archiving, real-time

analytics, etc, it has 4 different types applications

(cloud, analytics, services and software) and in each

type there are a few different applications and each

application have a variation for each type of system it

will operate in, MongoDB can be downloaded at

https://www.mongodb.com.

MongoDB is a schema-free database, that stores

data in JSON-like files (BSON), BSON is a binary

format of JSON that allows quick and easy

integration of data. MongoDB has a flexible structure,

its databases are very easily scalable, and it has a very

friendly interface.

MongoDB, unlike CouchDB and Couchbase,

does not use triggers, it uses Secondary Indexes

Server-Side Scripts and MapReduce, to improve

database performance, it also has Typing, it is ACID

compliant and does not have an SQL-like query

language (“db-engines,” 2019).

Figure 5: Replica set (“MongoDB Architecture Guide,”

2018).

MongoDB cluster is different from the

CouchBase cluster because it includes an arbiter, a

master node and multiple slave nodes.MongoDB

provides a replica set, a failover mechanism. There is

only one Primary database that allows a write

operation and multiple secondary servers only for

read operations. this mechanism needs three servers:

Primary, Secondary and, Arbiter. Arbiter does not

store any data; it is only used during failover to decide

which server will be the next primary server.

Figure 6: MongoDB Sharding (“MongoDB Architecture

Guide,” 2018).

MongoDB architecture is based on four essential

capabilities in meeting modern application needs:

Availability; Workload isolation; Scalability; Data

locality.

To fulfill these, each database is at least 3

databases as we can see in Figure 5. Unlike relational

databases, MongoDB sharding (Partition method that

separates the database horizontally) is automatic and

KDIR 2019 - 11th International Conference on Knowledge Discovery and Information Retrieval

430

built into the database. Developers do not face the

complexity of building sharding logic into their

application code, which then needs to be updated as

data is migrated across shards. They do not need to

integrate additional clustering software or expensive

shared-disk infrastructure to manage the process and

data distribution, or failure recovery. Figure 6 shows

us MongoDB sharding. One disadvantage of this

document store is that it can be unreliable (data can

easily be eliminated by mistake due to the lack of

relations) and indexing takes up a lot of RAM (Read

All Memory)(“MongoDB,” 2019), (“MongoDB

Architecture Guide,” 2018).

Figure 7: MongoDB Stitch interface (“Mongodb,” 2019).

In Figure 7 we can see the interface of MongoDB

Stich, which stores the database in machine where it

is running, as we can see on the left side of the

interface there is a tab where we can access the

database features, triggers, rules and others, in Figure

7 the “rules” tab is opened and as we can see that here

we can add a new collection or change the existing

ones.

3.4 Comparison

An advantage that Couchbase has over CouchDB and

MongoDB is that it uses a SQL like a query language

which makes it easier, for the user, to get the

data/information that he wants (“Couchbase,”

2019b). Figures 8 and 9 are a comparison of

MongoDB and Couchbase queries.

MongoDB big advantages over Couchbase and

CouchDB are that it supports transactions that make

it is data saver, and that, as referenced before, it uses

BSON files that are faster to load (“db-engines,”

2019).

MongoDB as two major disadvantages over

Couchbase and CouchDB, one is that the

performance of the database rapidly degrades as the

cluster size or number of users increases, the other is

that since it only uses master-slave replication it is

easier for it to lose data, another disadvantages are

that it has limited data size (documents cannot have

more than 16MB) and has limited nesting (maximum

nesting level is 100) (“data-flair,” 2018).

A big disadvantage of CouchDB over Couchbase

and MongoDB is that it uses arbitrary queries, which

are expensive, in terms of performance because these

queries need a temporary view to be executed (Atkin,

2014).

Figure 8: MongoDB query (“Couchbase,” 2019b).

Figure 9: Couchbase, N1QL, query (“Couchbase,” 2019b).

4 EVALUATION

In this section will be presented the evaluation of

these document stores through the OSSpal

methodology.

OSSpal is an evaluation that helps companies and

other organizations to find high-quality open-source

software to match their needs. It is the successor of

the Business Readiness Rating (BRR) methodology

(Marinheiro et al., 2015), classified as one of the best

methodologies to evaluate open-source software,

combining quantitative and qualitative measures

(Wasserman, 2017).

To do such an evaluation, we need to choose

features and weights.

Evaluation of Couchbase, CouchDB and MongoDB using OSSpal

431

Table 2: Weight assigned the categories.

Category Weight

Overall Quality 30%

Functionalities 20%

Stability 15%

Security 15%

Robustness 10%

Scalability 10%

Usability 10%

Table 2 summarizes the assigned weights to the

categories, we gave more weight to Overall Quality

than to all the other features because Overall Quality

has a bit of everything in the application. We

attributed more weight to Functionalities than

remaining features because it is more important what

the application can do then if it is stable or save. We

gave more weight to Security, Stability and Usability

because without these the Scalability and Robustness

is compromised.

After the features are chosen and the weights are

given, it is time to evaluate each feature in each

application. The values to be assigned will mostly be

based on g2crowd ranking, except for Robustness that

is evaluated by us, given the information, we have

about these document stores (“G2crowd,” 2019).

Table 3: Evaluation of the applications through the OSSpal

evaluation method.

In Table 3 we gave 5 to robustness in CouchDB

and Couchbase because both, has referred above,

support live-cluster topology changes and we gave

4.5 to MongoDB because it uses BSON files which

makes reading and writing operations faster, in the

other features we never attributed 5 values to any

because, we believe there is always space for

improvement in those features, in the evaluation we

only took in account these databases and so the

atributted values were given according to the data

presented above.

After the evaluation of each category, the last step

in this methodology is to calculate the final score. For

each category, it is necessary to multiply the score

with the respective weight assigned.

 Couchbase = 4*0.15 + 4.5*0.1 + 5*0.1 + 3*0.15

+4*0.1 + 3.5*0.2 + 4*0.3 = 4.3

 CouchDB = 4*0.15 + 4*0.1 + 5*0.1 + 3*0.15

+4*0.1 + 3.5*0.2 + 3.5*0.3 = 4.1

 MongoDB = 4*0.15 + 4.5*0.1 + 4.5*0.1 +

4*0.15 + 4*0.1 + 4*0.2 + 4.5*0.3 = 4.7

As we can see, MongoDB is the application that

obtained the best final score with the application of

the OSSpal methodology, with a final score of 4.7

(from 1 to 5), Couchbase with the score of 4.3 and

then CouchDB with the worst score of 4.1.

5 CONCLUSIONS AND FUTURE

WORK

In this paper we can conclude that MongoDB is best

open-source document store with a score of 4.7,

followed by Couchbase with the score of 4.3, and in

last we find CouchDB with the worst score of 4.1, but

we must take in consideration that these applications

were developed for different types of systems,

meaning that this evaluation is made according to

their evaluation on a computer operative systems like

Windows. These applications are not so different, the

main differences lie in what these applications were

designed for, for example, CouchDB was designed

for web/mobile while MongoDB was designed as a

PC application.

As future work, we intend to evaluate these

applications through their performance in each basic

operation (creation, updating and elimination of

data), through the YCSB benchmark, these tests will

have in consideration the number of records, number

of operations per second and the number of threads.

REFERENCES

Abramova, V, Bernardino, J and Furtado, P (2015).

Experimental evaluation of NoSQL databases.

International Journal of Database Management Systems

(IJDMS), Vol.6, No.3, pp. 1-16.

Abramova, A., Bernardino J., and Furtado, P. (2014).

Evaluating Cassandra scalability with YCSB,” in 25th

International Conference on Database and Expert

Systems Applications (DEXA), pp. 199–207, Munich,

Germany, September 1-4, 2014.

Atkin, B. (2014). Quora. Retrieved from

https://www.quora.com/What-are-the-pros-and-cons-

of-CouchDB

Bazar, C., & Iosif, C. S. (2014). The Transition from

RDBMS to NoSQL. A Comparative Analysis of Three

KDIR 2019 - 11th International Conference on Knowledge Discovery and Information Retrieval

432

Popular Non-Relational Solutions: Cassandra,

MongoDB and Couchbase. Database Systems Journal,

V(2), 49–59. Retrieved from

http://www.dbjournal.ro/archive/16/16_5.pdf

Couchbase. (2016). Retrieved from

https://blog.couchbase.com/wp-content/original-

assets/2016/november/getting-comfortable-with-

couchbase-mobile-installing-couchbase-

server/adminpanelstart.png

Couchbase. (2019a). Retrieved from

https://www.couchbase.com

Couchbase. (2019b). Retrieved from

https://www.couchbase.com/comparing-couchbase-vs-

mongodb

Couchbase Server architecture. (2018). Retrieved from

https://docs.couchbase.com/server/4.0/architecture/arc

hitecture-intro.html

CouchDB. (2019). Retrieved from http://

couchdb.apache.org

data-flair. (2018). Retrieved from https://data-

flair.training/blogs/advantages-of-mongodb/

db-engines. (2019). Retrieved from https://db-

engines.com/en

G2crowd. (2019). Retrieved from https://

www.g2crowd.com/categories/document-databases

Lourenço JR, Abramova V, Vieira M, Cabral B, Bernardino

J (2015) Nosql databases: A software engineering

perspective In: New Contributions in Information

Systems and Technologies, 741–750, Springer

Marinheiro, A., Bernardino, J. (2015). Experimental

evaluation of open source business intelligence suites

using OpenBRR. IEEE Latin Amewrica Transactions

13(3), 810–817.

masteringionic. (2016). Retrieved from

http://masteringionic.com/perch/resources/tutorials/co

uchdb-database-list.png

Mongodb. (2019). Retrieved from

https://www.mongodb.com/assets/images/index/stitch-

ss.png

MongoDB. (2019). Retrieved from https://www.mongodb.

com

MongoDB Architecture Guide. (2018). MongoDB White

Paper, (June), 1–16.

Nayak, A., Poriya, A., & Poojary, D. (2013). Type of

NoSQL Databases and its Comparison with Relational

Databases. International Journal of Applied

Information Systems, 5(4), 16–19.

https://doi.org/10.5120/ijais15-451326

Sareen, P., & Kumar, P. (2015). NoSQL Database and its

Comparison with SQL Database. Int J Comput Sci

Commun Networks, 5(5), 293–298. Retrieved from

http://www.ijcscn.com/Documents/Volumes/vol5issue

5/ijcscn2015050506.pdf

slideshare. (2016). Retrieved from https://image.

slidesharecdn.com/nosqlch4-160301045310/95/nosql-

data-architecturepatterns-53-638.jpg?cb=1456808054

Wasserman, A. (2017). Open Source Systems : Towards

Robust Practices.

Evaluation of Couchbase, CouchDB and MongoDB using OSSpal

433

