Do We Really Need Another Blockchain Framework? A Case for a
Legacy-friendly Distributed Ledger Implementation based on Java EE

Keywords:

Abstract:

Web Technologies

Philipp Brune!?
Neu-Ulm University of Applied Sciences, Wileystrafie 1, Neu-Ulm, Germany
2QWICS Enterprise Systems, Taunustor 1, 60310 Frankfurt/Main, Germany

Blockchain, Distributed Ledger Technology, Web Services, Web Technologies, Java EE, Enterprise Computing.

Cryptocurrencies, blockchain technology and smart contracts could fundamentally change the way how finan-
cial products and financial services are implemented and operated. While many frameworks for implementing
such blockchain applications already exist, these are usually implemented using languages either considered
“fancy” today, like e.g. Go, or are traditionally used for system software, such as C++. On the other hand,
the core business applications e.g. in financial services are typically implemented using enterprise platforms
such as Java Enterprise Edition (EE) and/or COBOL. Therefore, to improve the integration of blockchain
technology in such applications, in this paper we argue in favor of a legacy-friendly distributed ledger solution
by introducing QWICSchain, an implementation build on web services using established open-source enter-
prise technologies such as Java EE and PostgreSQL. It supports the parallel execution of transactions on the
blockchain and in existing legacy applications, thus enabling the blockchain-based modernization of existing

IT infrastructures.

1 INTRODUCTION

Since the appearance of Bitcoin (Nakamoto et al.,
2008), blockchain technology has become highly
popular among the public as well as in research and
practice (Wiist and Gervais, 2018). In particular
for the banking and financial servics industries, it is
widely considered as one of the pillars of digital trans-
formation (The Financial Brand, 2018).

However, the current IT systems in banking fre-
quently do not match the requirements of the digi-
tal age, as the typical traditional monolithic “legacy”
COBOL enterprise applications are too inflexible
and not open enough (Abbany, 2018; The Financial
Brand, 2018). However, their underlying mainframe
platform is by no means an outdated technology and
probably will remain an important part of the enter-
prise IT landscape for a long time (Khadka et al.,
2014; Nelson, 2018; Wilkes, 2018). And despite its
age, together with Java, COBOL still plays an im-
portant role in enterprise application development on
the mainframe (Suganuma et al., 2008; Vinaja, 2014;
Farmer, 2013; Abbany, 2018) (with “mainframe” in
this paper denoting IBM’s S/390 platform and its de-
scendants).

Brune, P.

Therefore, the new blockchain-based banking
technologies need to be integrated with the tradi-
tional “legacy” enterprise applications to both pre-
serve their business value and to modernize the bank-
ing IT landscape and enable new types of digital busi-
ness. To achieve this, a blockchain implemenation
which seamlessly fits in traditional enterprise IT land-
scapes is required.

To support this claim, in this paper QWICSchain'
is presented, an enterprise- and legacy-friendly, Java
Enterprise Edition(EE)?-based distributed ledger im-
plementation for financial services, enabling its users
to exchange and trade all kinds of digital assets be-
tween counterparties.

Since Open Source Software (OSS) has recently
been suggested as an important concept for modern
banking applications (FinTech Futures, 2018), it is
built using established OSS components. In partic-

Thttps://qwicschain.com

ZRecently, Java EE has been handed over to the Eclipse
Foundation to manage its future development, and there-
fore re-labeled as Jakarta EE (https://jakarta.ee/about/).
However, for sake of simplicity in this paper still only the
term Java EE is used to denote both Java EE and Jakarta
EE.

301

Do We Really Need Another Blockchain Framework? A Case for a Legacy-friendly Distributed Ledger Implementation based on Java EE Web Technologies.

DOI: 10.5220/0008344403010306

In Proceedings of the 15th International Conference on Web Information Systems and Technologies (WEBIST 2019), pages 301-306

ISBN: 978-989-758-386-5

Copyright © 2019 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

WEBIST 2019 - 15th International Conference on Web Information Systems and Technologies

ular, it also integrates the recently proposed Quick
Web-Based Interactive COBOL Service (QWICS)?
(Brune, 2018) to achieve the simultaneous modern-
ization of “legacy” COBOL applications.

The rest of this paper is organized as follows: In
section 2 the related work is discussed in more detail,
which leads to the concept and design of the solution
described in section 3. In section 4, the actual imple-
mentation is described. We conclude with a summary
of our findings.

2 RELATED WORK

Since the cryptocurrency hype originally initiated
by Bitcoin (Nakamoto et al., 2008), numerous
OSS frameworks have been released to implement
blockchain solutions, both for open permissionless
systems (typical for crytocurrencies) as well as per-
missioned ones (used mostly for business blockchain
networks) (Wiist and Gervais, 2018).

Most notably, these range from Ethereum* (Wood,
2014) for permissionless to Hyperledger’ or Rip-
ple® (Schwartz et al., 2014) for building permis-
sioned blockchain solutions. For building business
blockchain applications, further frameworks exist,
like e.g. Corda’ or NEO?.

Typically, these frameworks are written either in
languages which are considered modern or “fancy”
by many, such as Go (e.g. for Hyperledger) or
Kotlin (Corda), or in C and its derivates (C++, C#).
Also, with the exception of Corda, they mostly use
their own, non-relational data stores. On the other
hand, typical large-scale online transaction process-
ing (OLTP) enterprise applications e.g. in banks to-
day still are mainly written in Java Enterprise Edition
(EE) or even COBOL (Abbany, 2018).

So while the existing blockchain frameworks
mentioned above are currently evaluated in many
prototypical projects, these frequently are standalone
“green field” approaches, often run separately by cor-
porate innovation labs, and only weakly integrated
with the traditional core enterprise applications. It
could be expected that their usage of new and partially
“exotic” languages and technologies (from an enter-
prise IT perspective) in this context will limit their
adoption and maintainability in the long run.

3https://qwics.org
“https://www.ethereum.org/
Shttps://www.hyperledger.org/
Shttps:/ripple.com/
Thttp://www.corda.net/
8https://neo.org/

302

For building enterprise blockchain solutions
which could be seamlessly integrated with existing
enterprise IT landscapes, it would therefore be ben-
eficial if these would be built using an enterprise plat-
form such as Java EE. Of the existing frameworks,
only Corda follows a similar approach, but it uses the
Kotlin language instead of Java. In addition, the inte-
gration with existing OLTP applications and in partic-
ular “legacy” COBOL applications has not been ad-
dressed by other frameworks so far.

Therefore, to address the question whether a new,
legacy-friendly distributed ledger implementation us-
ing established, open-source enterprise technologies
such as Java EE could enable the blockchain-based
modernization of existing legacy IT infrastructures,
in this paper the implementation of a Java EE-based
enterprise blockchain framework is demonstrated,
which uses established, enterprise-ready OSS compo-
nents and integrates the previously proposed QWICS
framework (Brune, 2018) for “legacy”” modernization.

3 DESIGN OF THE DISTRIBUTED
LEDGER FRAMEWORK

3.1 Peer-to-peer Network

As usual for blockchain solutions, the proposed so-
lution is implemented as a peer-to-peer network of
nodes (servers), which represent e.g. banks or their
counterparties (Wiist and Gervais, 2018). Each node
runs an instance of the software and keeps its own,
private copy or replica of the distributed ledger data
structure. Nodes know of and are connected to some
number other nodes (but typically not all others).

Every change to the ledger is performed only by
adding transactions to it. Every node therefore dis-
tributes every valid transaction it receives to all other
nodes it is connected to (leading in effect to repli-
cating every change to all nodes, but with a delay.
The ledger is only eventually consistent among the
nodes). Every modification is made immutable by
cryptographic hashing. Every node may inspect the
content of the ledger on other nodes at any time for
verification (Wiist and Gervais, 2018).

3.2 Distributed Ledger Structure

The proposed distributed ledger data structure focuses
on integrity and consistency of the transactions stored
init. Asillustrated in figure 1, it uses the basic entities
account and transaction.

Account 0 Account 1 Account ...
TA (0,0) TA (1,0) TA(...,0)
Action: 3 Action: 3 Action: 3
Receiver: 0 Receiver: 1 Receiver: ...
Amount: 100.0 Amount: 10.0 Amount: 5.0
Asset: - Asset: - Asset: -
Hash Hash Hash
TA (0,1) TA(1,1)
Action: 3 Action: 3
Receiver: 1 Receiver: ...
Amount: -10.0 Amount: -5.0
Asset: - Asset: -
Hash Hash
TA (0,2) TA(1,2)
Action: 1 Action: 3
Receiver: 0 Receiver: ...
Amount: 100.0 Amount: -5.0
Asset: EUR Asset:
Hash Hash

Do We Really Need Another Blockchain Framework? A Case for a Legacy-friendly Distributed Ledger Implementation based on Java EE

Web Technologies

Figure 1: Concept of the proposed distributed ledger data structure consisting of accounts and their respective transactions,

representing changes to the accounts.

An account contains an amount of coins and a set
of digital assets. It is represented by a numerical ac-
count id. Ownership of an account is represented by
a private-public cryptographic key pair, of which the
public key is stored in the account, while the private
key remains kept secret by the account owner. The
account id is a hash value of this public key.

Every transaction belongs to an account and repre-
sents one of the three possible elementary operations
on it: The creation of assets or the transfer of coins or
assets to another account. A valid transaction needs
always to be signed using the private key of the ac-
count owner, before it is added to the ledger. This en-
sures that “transferring away” coins or assets from an
account may only be initiated by the account owner.

New accounts are created by transferring an ini-
tial amount of coins to a so far non-existent account
id from an existing account (the “spender”). This
requires the ab-initio existence of a genesis account
(id=0), which serves as a ‘“central bank”, and in the
beginning owns all available coins. This account is
controlled by the manager of the blockchain. This
approach is similar to e.g. Ripple (Schwartz et al.,
2014).

Therefore, different from other distributed ledger
implementations, the transactions here in fact do
not form an actual “chain”, but a tree-like structure.
While it has some similarities with the “tangle” used

by IOTA® (Popov, 2016), there are also fundamen-
tal differences to IOTA, e.g. regarding the order and
approval of the transactions. In QWICSchain, every
transaction needs to have exactly one predecessor, and
contains the hash value of it. The first transaction of
each account contains the hash value of the account-
creating transaction in the “spender” account. Thus,
still a manipulation of an earlier transaction could be
easily detected as it affects most (but not all) subse-
quent transactions.

In addition, the tree-like structure at any time
allows to delete all transactions of an account (ex-
cept the account-creating transaction) without violat-
ing the integrity of the rest of the ledger. This enables
the deletion of person-related information from the
ledger e.g. upon request, therefore improving com-
pliance of the solution with data privacy regulations
such as EU GDPR!?,

Each transaction is validated separately before be-
ing added to the ledger, they are not grouped into
blocks. Thus, a block is identical to a transaction in
this approach.

A set of rules guarantees that it is as difficult as
possible to inject fraudulent transactions to the net-
work: A valid transaction needs to be signed by the
account owner, needs to transfer coins or assets which
the transaction’s account contains before, needs to

%https://www.iota.org/
10https://eur-lex.europa.eu/eli/reg/2016/679/0j

303

WEBIST 2019 - 15th International Conference on Web Information Systems and Technologies

Web
Client
A
RESTful ARl (JAX-RS)
Java/Jakarta EE
Application Server
(e.g. OpenLiberty)
A
Distributed OWICS
Ledger EIBA
EJB App pp QWICS
tpmserver
Hibernate QwWICS ||
JPA JDBC Driver COBOL
Code
PostgreSQL
JDBC Driver \

PostgreSQL

RDBMS

Figure 2: Architecture overview of the proposed Java EE-based distributed ledger implementation including the integration
with legacy COBOL applications using the QWICS framework (Brune, 2018).

have a valid transaction as its predecessor, and so on.

3.3 Consensus Scheme

Consensus about the validity of every new transac-
tion added to the ledger needs to be obtained among
all nodes, at least the non-fraudulent ones. In Bitcoin
(Nakamoto et al., 2008) and other popular blockchain
frameworks like e.g. Ethereum (Wood, 2014), this
consensus about new transactions is obtained by the
so-called Proof-of-Work (PoW) algorithm, which is
highly criticised for wasting a lot of energy and there-
fore not being sustainable.

In case of the proposed solution, PoW is not
necessary, since it is designed as a permissioned
blockchain (Wiist and Gervais, 2018). In the latter,
it is not easily possible for an adversary to add a large
number of fraudulent nodes, which could be used then
to manipulate the ledger. Therefore, the majority of
the nodes can be assumed to be trustful. In this case,
the problem of determining if a new transaction is
valid is equivalent to the Byzantine Generals problem
(Lamport et al., 1982).

304

Here, the proposed approach uses the algorithm
with signed messages as described in section 4 in the
work of Lamport et al. (Lamport et al., 1982). The
choice function in that algorithm here is implemented
in such a way that a transaction is considered valid by
a node if more then 80% of a node’s neighbours con-
sider it valid as well. This is similar to the approach
taken by Ripple (Schwartz et al., 2014).

3.4 Software Architecture

The software architecture of the platform is designed
to fit well in a traditional enterprise IT landscape, e.g.
of financial institutions, by using established, mature,
enterprise-ready components and frameworks. On the
other hand, it still should be as lightweight, open and
flexible as possible.

Therefore, as illustrated in figure 2, each node of
the network is implemented using Java EE, based on
the lightweight, open-source OpenLiberty'! applica-
tion server (currently version 18.0.0.4). The latter
was selected due to its small memory footprint, high

Uhttps://openliberty.io

Do We Really Need Another Blockchain Framework? A Case for a Legacy-friendly Distributed Ledger Implementation based on Java EE

Node X

Web
Client

Y
RESTHul AP (JAX-RS)
JavalJakarta EE

Application Server
(¢.9. OpenLiberty)
v

Distributed

Web Technologies

Node Y

Web
Client

Y
RESTful API (JAX-RS)

Java/Jakarta EE

Application Server

(e.g. OpenLiberty)
v

\4

QWICS ¢

EBApp || EIBAPP QWICS
tpmserver

Hibernate o
JPA coBoL
Code

Qwics ||

JDBC Driver

PostgreSQL

JDBC Driver .
X

.

PostgreSQL
RDBMS

Distibuted || e
E'f:g” EJB App
App

QWICS

tpmserver

Hiberate
JPA

S N
JDBC Dnver}- CoBoL
Code

PostgreSQL
JDBC Driver ‘
Iy

)

PostgreSQL «
RDBMS

Node Z

Web
Client
RESTful APl (JAX-RS)

Distributed
Ledger
EJB App
Hibernate
JPA
PostgreSQL
JDBC Driver
X

__a

PostgreSQL L«
RDBMS

Java/Jakarta EE

Application Server

(¢.9. OpenLiberty)
i

QwICS
EJB App

Qwics ||,
JDBC Driver

QWICS
tpmserver

coBoL
Code

3

Figure 3: Examplified network consisting of three nodes X, Y and Z, each running a separate node.

speed, easy configuration and cloud-readiness, while
being well integrateable in enterprise environments.

To persistently store the distributed ledger, the Hi-
bernate!? Java Persistence API (JPA) provider im-
plementation is used in conjunction with the Post-
greSQL!3 relational database. PostgreSQL has been
selected since it is the most mature, enterprise-quality
open source database available, e.g. due to features
such as full transaction support (Karremans, 2018).

In figure 2, also the optional integration with a
“legacy” COBOL application modernized by integrat-
ing it into Java EE is illustrated in an examplified way.
Every transaction booked on the distributed ledger is
forwarded optionally to another Enterprise Java Bean
(EJB) application for handling it there as well. In
this case, an EJB application is used, which embeds
COBOL code in Java EE applications.

Each node in the network runs its own instance
of the described software. The nodes communicate
with each other using a RESTful web service API im-
plemented using JAX-RS. This is illustrated in fig-
ure 3 for an examplified network of three nodes X,
Y and Z. Of course, all counterparties (nodes) join-
ing the network may run their copy of the distributed
ledger on premises, in their own cloud environment
or as a Software-as-a-Service solution (Mell et al.,
2011) as provided by QWICS Enterprise Systems at

2http://hibernate.org/
Bhttps://www.postgresql.org/

https://qwicschain.com.

A new transaction is initially sent to one node by
an account owner, and after validation by this node
distributed to its neighbouring nodes, which distribute
it further. Every node adds its cryptographic signa-
ture to the transaction before distributing it. Thus,
the path on which a transaction propagates through
the network is always known and traceable. Fraud-
ulent nodes may be detected more easily due to this
scheme. This corresponds to the algorithm using
signed messages as described in section 4 in the work
of Lamport et al. (Lamport et al., 1982).

4 IMPLEMENTATION

In the architecture described in section 3, the actual
distributed ledger functionality on one hand is imple-
mented using Java JPA entity classes to map the basic
data structures transaction, account and asset as illus-
trated in figure 1.

On the other hand, EJB session beans are used
to implement the actual functionality of adding and
validating transactions, obtaining consensus between
nodes and managing the local node. Also the web
service API for inter-node communication and adding
transactions is implemented in that way.

Currently, the demo and trial implementa-
tion available online at https://qwicschain.com/

305

WEBIST 2019 - 15th International Conference on Web Information Systems and Technologies

QwicsChain/login.html runs inside Docker'* contain-
ers and using OpenJDKS8 in conjunction with the
Eclipse OpenJ9'> Java Virtual Machine (JVM). The
latter has been selected to run smoothly not only on
x86 architecture, but also on enterprise platforms such
as the mainframe (S/390 architecture).

QWICSchain is publicly available for a free trial
on https://qwicschain.com to evaluate and further pro-
mote its concepts. While this already demonstrates
the feasibility and strengths of the approach, ongoing
real-world evaluation will led to further insights and
improvements.

5 CONCLUSION

In conclusion, in this paper a legacy-friendly dis-
tributed ledger implementation has been presented,
to address the question about the possibility of a
blockchain-based modernization of existing legacy I'T
infrastructures.

The respective software architecture and imple-
mentation have been described, which are based on
mature web and enterprise technologies used in tra-
ditional transaction processing applications, such as
Java EE and the PostgreSQL RDBMS. The usage of
these established, open-source technologies promises
to simplify the integration of distributed ledger tech-
nology with traditional enterprise applications.

In particular, by integrating the previously pro-
posed QWICS framework. it also supports the mod-
ernization of “legacy” online transaction processing
(OLTP) applications like they are typical for financial
service providers.

By means of a free online trial implementation,
the proposed approach is currently evaluated in a pub-
lic beta test. While the first results are promising and
indicate that indeed the described approach might be
beneficial for future enterprise applications, further
research is needed to evaluate it in greater depth in
lab and field tests.

REFERENCES

Abbany, Z. (2018). Fail by design: Banking’s legacy of dark
code. https://m.dw.com/en/fail-by-design-bankings-
legacy-of-dark-code/a-43645522. Accessed: 2019-
01-05.

Brune, P. (2018). A hybrid approach to re-host and mix
transactional cobol and java code in java ee web ap-
plications using open source software. In Proceedings

https://www.docker.com/
Bhttps://www.eclipse.org/openj9/

306

of the 14th International Conference on Web Informa-
tion Systems and Technologies - Volume 1: WEBIST,,
pages 239-246. INSTICC, SciTePress.

Farmer, E. (2013). The reality of rehosting: Understanding
the value of your mainframe.

FinTech Futures (2018). How open will your bank be-
come? https://www.bankingtech.com/2018/11/how-
open-will-your-bank-become/. Accessed: 2019-01-

05.
Karremans, J. (2018). Postgres in the enter-
prise: Real world reasons for adoption.

https://www.enterprisedb.com/blog/postgres-
enterprise-real-world-reasons-adoption. Accessed:
2019-01-05.

Khadka, R., Batlajery, B. V., Saeidi, A. M., Jansen, S., and
Hage, J. (2014). How do professionals perceive legacy
systems and software modernization? In Proceedings
of the 36th International Conference on Software En-
gineering, pages 36-47. ACM.

Lamport, L., Shostak, R., and Pease, M. (1982). The
byzantine generals problem. ACM Transactions on
Programming Languages and Systems (TOPLAS),
4(3):382-401.

Mell, P, Grance, T., et al. (2011). The nist definition of
cloud computing.

Nakamoto, S. et al. (2008). Bitcoin: A peer-to-peer elec-
tronic cash system.

Nelson, J. (2018). Why banks didn’t ‘rip and replace’
their mainframes. https://www.networkworld.com/
article/3305745/hardware/why-banks-didnt-rip-
and-replace-their-mainframes.html. Accessed:
2019-01-05.

Popov, S. (2016). The tangle. http://tanglereport.com/wp-
content/uploads/2018/01/IOTA_Whitepaper.pdf. Ac-
cessed: 2019-07-26.

Schwartz, D., Youngs, N., Britto, A., et al. (2014). The
ripple protocol consensus algorithm. Ripple Labs Inc
White Paper, 5.

Suganuma, T., Yasue, T., Onodera, T., and Nakatani, T.
(2008). Performance pitfalls in large-scale java ap-
plications translated from COBOL. In Companion
to the 23rd ACM SIGPLAN conference on Object-
oriented programming systems languages and appli-
cations, pages 685-696. ACM.

The Financial Brand (2018). The four pil-
lars of digital transformation in banking.
https://thefinancialbrand.com/71733/four-pillars-
of-digital-transformation-banking-strategy/. Ac-
cessed: 2019-01-05.

Vinaja, R. (2014). 50 th aniversary of the mainframe com-
puter: a reflective analysis. Journal of Computing Sci-
ences in Colleges, 30(2):116-124.

Wilkes, A. (2018). The mainframe evolution: Banking
still needs workhorse tech. https://www.finextra.
com/blogposting/16067/the-mainframe-evolution-
banking-still-needs-workhorse-tech. Accessed:
2019-01-05.

Wood, G. (2014). Ethereum: A secure decentralised gen-
eralised transaction ledger. Ethereum project yellow
paper, 151:1-32.

Wiist, K. and Gervais, A. (2018). Do you need a
blockchain? In 2018 Crypto Valley Conference on
Blockchain Technology (CVCBT), pages 45-54. IEEE.

