
Recovery in CloudDBAppliance’s High-availability Middleware

Hugo Abreu1,2, Luis Ferreira1,2, Fábio Coelho1,2, Ana Nunes Alonso1,2 and José Pereira1,2

1INESC TEC, Porto, Portugal
2Universidade do Minho, Braga, Portugal

Keywords: CloudDBAppliance, High-availability, Recovery.

Abstract: In the context of the CloudDBAppliance (CDBA) project, fault tolerance and high-availability are provided in
layers: within each appliance, within a data centre and between datacentres. This paper presents the recovery
mechanisms in place to fulfill the provision of high-availability within a datacentre. The recovery mechanism
takes advantage of CDBA’s in-middleware replication mechanism to bring failed replicas up-to-date. Along
with the description of different variants of the recovery mechanism, this paper provides their comparative
evaluation, focusing on the time it takes to recover a failed replica and how the recovery process impacts
throughput.

1 INTRODUCTION

CloudDBAppliance aims at delivering a database ap-
pliance (software and hardware), leveraging the ca-
pabilities of newer hardware by leveraging NUMA
awareness for terabyte-scale in-memory processing
with high-availability. High-availability requires a
recovery mechanism for failed or even new repli-
cas. This paper focuses on the intra-datacentre re-
covery mechanism for CloudDBAppliance. Simply
put, the goal is to ensure that if an appliance fails,
a standby is able to take over, powering a trans-
parent execution scenario for the client, thus hiding
faults and maintaining the perceived quality of ser-
vice. The operational database is the fulcrum of the
high-availability effort, as it holds the data that needs
to be persisted. The state of other components such
as of the in-memory many-core analytics framework
(also a part of the project) is considered volatile and
can be straightforwardly rebuilt from the data in the
operational database as needed, in the event of a fail-
ure.

In the context of the CDBA project, ensuring high
availability within a datacentre requires a replication
mechanism that, in case of failure, enables the failover
of the operational database to a consistent and up-to-
date standby replica, running in a different appliance.
There are a number of different models for database
replication that mainly differ on: whether transactions
are executed at each replica, or just at one while others
apply updates; and how (if at all) replicas are allowed

to diverge.
Recovery and replication capabilities work in

tandem to provide high-availability: the replica-
tion mechanism ensures there are multiple consistent
replicas of the data so that the system tolerates the loss
of some and the recovery mechanism makes it possi-
ble to bring failed or clean replicas up to a consistent
state.

In this paper we present the architecture of the re-
covery mechanism for CloudDBAppliance along with
the motivating design constraints. Section 2 covers
background on recovery and fault-tolerance mech-
anisms. Section 3 introduces the overall architec-
ture for the recovery and replication middleware, with
Section 4 showing some results on the selected recov-
ery approaches. Section 5 concludes the paper and
overviews the major takeaways.

2 BACKGROUND

Recovery, as discussed throughout this paper, refers to
the process of bringing failed or clean replicas up-to-
date, so that the set of available replicas is consistent
according to some criteria. Transactional recovery, in
the sense of recovering a single database from an in-
consistent (as in the C in ACID) state due to, for ex-
ample, a transaction being aborted, is out of the scope
of this discussion.

How to perform the recovery of failed replicas or

Abreu, H., Ferreira, L., Coelho, F., Alonso, A. and Pereira, J.
Recovery in CloudDBAppliance’s High-availability Middleware.
DOI: 10.5220/0008318304470453
In Proceedings of the 8th International Conference on Data Science, Technology and Applications (DATA 2019), pages 447-453
ISBN: 978-989-758-377-3
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

447



how to integrate clean replicas into a highly available
system should be a concern when designing replica-
tion mechanisms, even if this is often not the case
(Vilaca et al., 2009) in the literature (e.g., (Elnikety
et al., 2005; Kemme and Alonso, 2000)). However,
CDBA’s goal of providing highly available database
appliances, requires a suitable recovery mechanism to
be designed and implemented.

The replication approach (active vs passive) and
whether the replication protocol is synchronous or
asynchronous have a considerable impact on the de-
sign of the recovery protocol, namely to determine
when a recovered replica can be considered to be
available. For example, asynchronous replication pro-
tocols may accept a level of outdatedness in some
replicas which may enable less costly recovery strate-
gies or allow recovered replicas to be considered
available sooner without disrupting the expected con-
sistency level.

An important design decision is whether recov-
ery is to be done online (Kemme et al., 2001) or
offline (Amir, 1995). Offline recovery means that
the system somehow becomes unavailable whenever
a replica needs to be recovered. Online recovery, on
the other hand, means that the system remains avail-
able during a recovery process. Again, CDBA’s goal
of providing highly available database appliances re-
quires recovery to be done online.

The main goal of the recovery process requires
some kind of state transfer to the recovering replica.
Several approaches can be undertaken ranging from
transferring state in bulk or using an incremental ap-
proach, from a single or multiple donors. These ap-
proaches define trade-offs on how quickly a replica
is recovered and the impact on the performance of
the overall system. Different approaches may be se-
lected based on a multitude of factors: how far behind
the recovering replica is; whether its state is consis-
tent, even if outdated; the number of available donors,
etc. The impact of these factors on recovery has been
evaluated and analysed in (Vilaca et al., 2009). It
may also be possible to take advantage of workload
patterns and/or data partitioning to improve recovery,
namely when applying missing updates to a recover-
ing replica (Jiménez-Peris et al., 2002).

Intra-datacentre recovery, in the context of CDBA,
presents different challenges from the target models
generally considered when designing recovery proto-
cols. The main differences are: the substantial com-
puting power of each replica, due to the use of the
state-of-the-art, many-core Bullion hardware, as op-
posed to considering commodity or COTS servers;
a very low-latency, high-bandwidth communication
network connecting replicas, as opposed to higher la-

tency LAN or WAN networks; and the number of
available replicas, which is restricted to two, the min-
imum to provide high-availability, as opposed to quo-
rum based solutions, which require a minimum of 3
replicas. These differences have a fundamental im-
pact on the design of the replication mechanism and
consequently, the recovery mechanism, as these open
up the possibility of exploring unusual trade-offs on
throughput and availability.

2.1 Replication in CloudDBAppliance

Due to the interdependence of the replication and re-
covery mechanisms, this section presents an overview
of CDBA’s intra-datacentre replication protocol. Fur-
ther details can be found in (Ferreira et al., 2019).

The recovery mechanisms considered were de-
signed and implemented as part of the replication
middleware layer that provides isolation between
users and the underlying operational database. To
achieve this, the middleware layer is placed as a top
tier layer, intercepting SQL statements and perform-
ing all required steps to accommodate the replication
mechanisms. The replication middleware removes
non-determinism from requests and ensures these are
totally-ordered. The middleware approach simplifies
integration and extends the possibility of considering
this replication mechanism beyond the CloudDBAp-
pliance project, by offering a completely decoupled
solution. This can be done by embedding the mid-
dleware in the JDBC driver used for communication
between clients and database servers.

The replication middleware relies on a JDBC-
enabled API, that contains key interfaces between a
client proxy and server side stub. Key interfaces were
selected by reusing V-JDBC for JDBC request in-
terception and hand-over between client proxies and
server. As detailed and assessed in (Ferreira et al.,
2019), choosing V-JDBC allowed for a flexible en-
vironment where the transport protocol can be cus-
tomised according to the application itself.

The replication architecture, depicted in Figure 1
is based on a set of reliable distributed logs. These
enable decoupling clients from the replication man-
ager instances and the operational databases. The log
allows requests to be stored reliably and with total
order guarantees. Briefly, when a client application
sends a SQL request, the request is sent to a write-
proxy that acts as a handler for the distributed log
structure. After being reliably stored, the distributed
log structure is used by the replication manager in-
stances that pull the requests and push these for exe-
cution at its local operational database instance. The
distributed log, conceptually considered as part of the

ADITCA 2019 - Special Session on Appliances for Data-Intensive and Time Critical Applications

448



Failure
Detector

Operational Database

Replication Manager

Application

Application

primary

SQL
data/acks

V-JDBC 
client

V-JDBC Server

Failure
Detector

Operational Database

Replication Manager

standby

V-JDBC Server

…

Figure 1: Replication in CloudDBAppliance.

replication mechanism, allows for a customisable de-
ployment, making it possible to launch as many in-
stances as required. Storing requests reliably in the
distributed log makes it possible to keep processing
in the critical write path to a minimum and, therefore,
minimizing the performance impact of the replication
middleware on the operational database. Addition-
ally, read and write paths are decoupled.

Also, judiciously partitioning requests among dif-
ferent logs, makes it possible to create independent
request queues, establishing distinct shards, and thus
enabling requests from different shards to be pro-
cessed in parallel leading to performance gains.

3 FAILOVER AND RECOVERY
FOR HIGH AVAILABILITY

The recovery mechanism and the replication mecha-
nism overviewed in Section 2 are complementary.

The failover and recovery mechanisms depends
on the replication manager’s failure detector compo-
nent. Briefly, the failure detector exchanges heart-
beats through a reliable communication channel and
monitors that channel for the presence of heartbeats
from the other replication manager instance. The ab-

sence of heartbeats from a given replication manager
instance triggers recovery and/or failover procedures
as appropriate: a failed primary replica triggers the
failover procedure; as a failed replica reboots and re-
integrates the system, a recovery process takes place
before it is able to enter the standby state.

Next, a description of the recovery process is pro-
vided.

1. The replication manager requests a state transfer
from the live appliance to the restarted replica, in
order to bring it up to a consistent state.

2. The transferred state is installed in the recovering
replica.

3. The recovering replica checks the distributed log
for outstanding requests and determines the point
from which it can enter the standby state.

4. The recovering replica reaches the designated out-
datedness point and enters the standby state, end-
ing the recovery process.

Because replication is asynchronous, the point of
outdatedness at which the recovering replica can enter
the standby state can be configurable. One possibility
is to allow the recovering replica to enter the standby
state as soon as step 3 is performed.

In fact, different requirements can be defined to
end the recovery process depending on whether it was
the standby or the primary that failed. The failover
mechanism additionally requires the standby replica
to determine from the log the point (state) from which
it can start answering clients assuming the role of pri-
mary. Missing updates are reconstructed from the in-
formation in the distributed log. Thus, both the intra-
datacentre failover and recovery mechanisms take ad-
vantage of the persistence of the distributed log.

Because of the decoupling between clients and
replicas, neither recovery nor failover are visible, in
general, to client applications. This property depends
on the ability of the recovering replica to catch up.
The low-latency, high-bandwidth network connection
and the high computing capacity of the Bullion are
instrumental to providing it. Results in Section 4.2
support this ability.

4 EVALUATION

The evaluation for the recovery process of the intra-
datacentre high-availability mechanisms assesses the
time to identify, request, transfer and reintegrate state
on the new or faulty replica. The most relevant metric
to observe is the Mean Time To Recovery (MTTR).
One major factor of the MTTR metric is expected to

Recovery in CloudDBAppliance’s High-availability Middleware

449



Bullion 1

Bullion 2

Login node

D
ist

rib
ut

ed
Lo

g
D

ist
rib

ut
ed

Lo
gTPC-C RM

D
ist

rib
ut

ed
Lo

g

Operational
Database

JDBC 
proxy

JDBC 
proxy

TPC-C JDBC 
proxy RM

Operational
Database

JDBC 
proxy

Figure 2: Configuration for the evaluation campaign.

be the amount of data to transferred, which depends
on overall database size and the type of failure. For
example, if the failed replica has consistent data snap-
shots available, it may only need to pull and synchro-
nise over any missing snapshots. Otherwise, recover-
ing the replica requires a full state transfer. However,
remote file sharing protocols can be used to comple-
ment and improve data transfer. We focus on tech-
niques for state transfer: full state transfer using a
backup mechanism and using rsync to minimize the
transferred data. The impact of the recovery process
on transactional activity is also analysed.

4.1 Benchmarking Campaign

Experiments were conducted in the scenario depicted
in Figure 2. Each appliance is a standalone state-of-
the-art Bullion machine, tailored for CloudDBAppli-
ance.

The hardware specification for the machines con-
sidered is detailed in Table 1.

The industry-standard TPC-C benchmark was
used to induce a transactional load on the system. The
TPC-C specification models a real-world scenario
where a company, comprised of several warehouses
and districts, processes orders placed by clients. The
workload is defined over 9 tables operated by a trans-
action mix comprised of five different transactions,
namely: New Order, Payment, Order Status, Deliv-
ery and Stock-Level. Each transaction is composed
of several read and update operations, where 92% are
update operations, which characterizes this as a write
heavy workload. The benchmark is divided into a
load and an execution stage. During the first stage,
the database tables are populated and during the sec-
ond stage, the transaction mix is executed over that

dataset. TPC-C defines how these tables are popu-
lated and also defines their size and scaling require-
ments, which is indexed to the number of configured
warehouses in the system. The outcome of this bench-
mark is a metric defined as the maximum qualified
throughput of the system, tpmC, or the number of
New Order transactions per minute.

In order to evaluate the scalability of the recovery
mechanism, the TPC-C benchmark was in two load
configurations, featuring 100 and 1000 warehouses.

In these experiments, execution starts with two
live appliances executing the requests of the running
benchmark. At some point, a fault is induced. Be-
cause our focus is on evaluating the impact of differ-
ent techniques for state transfer, in these experiments,
recovery is manually triggered. This makes it pos-
sible to evaluate different recovery scenarios, induc-
ing different degrees of divergence between the live
replica and the failed replica. As such, we measured
the MTTR from the time the recovery process is trig-
gered until the state has been installed on the replica.

4.2 Results

Figure 3 reports on the MTTR and the impact
of recovering a failed standby on the benchmark’s
throughput using the default backup process. Us-
ing the default backup process creates a full copy
of all data handled by a replica. This process will
create a base copy, incrementally expanded as the
database grows. A recovery mechanism using the de-
fault backup process must do a full state transfer in
the event of a failure.

The recovery process was triggered 20 seconds
after the replica failed. As the failed replica tries
to resume activity, its replication manager requests a

ADITCA 2019 - Special Session on Appliances for Data-Intensive and Time Critical Applications

450



Table 1: Hardware description for the evaluation campaign.

Machine Login node Bullion 1 Bullion 2
CPU Vendor Intel Intel Intel
CPU Model Xeon E5-2667 v3 3.2GHz Xeon Platinum 8150 3.00GHz Xeon Platinum 8153 2.00GHz

CPU Number 16 192 256
Memory 65.69GB 4.2 TB 3.16 TB

Storage type SSD SSD (shared)
Storage capacity 250 GB 4.9 TB (shared)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

18:04 18:05 18:06 18:07 18:08 18:09 18:10 18:11 18:12 18:13 18:14

TH
RO

U
G

H
PU

T 
(T

PM
C)

TIME

State tra
nsfer complete

Failed
Recovery Started

State installed, ready to receive 

requests

Figure 3: Recovery using the default backup process for 100 warehouses.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

14:41 14:42 14:43 14:44 14:45 14:46 14:47 14:48 14:49 14:50 14:51

TH
RO

U
G

H
PU

T 
(T

PM
C)

TIME

State tra
nsfer complete

Failed
Recovery Started

State installed, ready to receive 

requests

Figure 4: Recovery using rsync for 100 warehouses.

state transfer from the live replica, which completed
during the following 3 minutes. After installing the
transferred state, the replica determines the last (glob-
ally identified) transaction to be processed and then
resumes normal transaction execution from the dis-
tributed log. Overall, the Mean Time To Recovery
was approximately 4 minutes. During the entire re-
covery process, the observed throughput did not suf-
fer a significant impact, as depicted by the blue line in
Figure 3

Figure 4 showcases the same configuration as in

Figure 3, but the rsync protocol is used instead to
bring the recovering database instance up-to-date with
the donor. The rationale is that using rsync may
avoid a full state transfer. Again, overall, the through-
put performance during the recovery process did not
present a considerable impact. However, using rsync
actually caused state transfer to take longer, over 5
minutes, actually having a negative impact on the
MTTR, which increased to just below 7 minutes. Be-
cause the Bullions communicate through a high speed
connection, the overhead of having to determine ex-

Recovery in CloudDBAppliance’s High-availability Middleware

451



0

20000

40000

60000

80000

100000

120000

140000

21:59 22:00:00 22:01:00 22:02:00 22:03:00 22:04:00 22:05:00 22:06:00 22:07:00 22:08:00 22:09:00 22:10:00 22:11:00 22:12:00

TH
RO

U
G

H
PU

T 
TP

M
C

TIME

State Transfer Complete

Failed Recovery Started

State installed, ready to receive 

requests

Figure 5: Recovery using the default backup process for 1000 warehouses.

actly which data need to transferred, particularly con-
sidering the operational database instance remains on-
line during the process, actually outweighs the impact
of sending more data through the network.

Figure 5 depicts the same scenario as Figure 3 but
for a configuration with 1000 warehouses. The main
goal was to evaluate what the impact on the MTTR
would be, when considering a larger dataset. Also, the
recovery process was only triggered after a consider-
able delay (over 5 minutes) to make sure the recov-
ering replica is significantly behind the live replica.
While it might be expected for state transfer to take
significantly longer than the previous experiment, re-
sults show that using the default recovery mechanism
is scalable providing that the replicas communicate
through a high-speed network connection. Again, re-
garding throughput, the impact was minimal, as in
average the throughput remained stable at around 96
thousand tpmC, even if a small throughput decay was
registered during state transfer and installation.

5 CONCLUSION

This paper introduced CloudDBAppliance’s intra-
datacentre recovery mechanism, essential to its intra-
datacentre high-availability framework. It takes ad-
vantage of the middleware architecture of the repli-
cation mechanism and of the persistence provided
by the distributed log. This framework takes advan-
tage of differentiating characteristics of the Cloud-
DBAppliance project, stemming from its state-of-the-
art hardware. The recovery process was evaluated
using two alternative state transfer techniques. Re-
sults show that the impact of the recovery process
on a transaction workload induced by running the
TPC-C benchmark is negligible. Moreover, results
show the recovery mechanism scales well regarding
an increased transactional workload and increased di-

vergence of the recovering replica. The proposed
replication, failover and recovery mechanisms pro-
vide high-availability while still decoupling clients
from database instances, enabling its applicability to
other scenarios. Regarding future work, we plan to
accomdate the inter-datacentre configuration, where
the recovery mechanisms need to accomodate updates
via the WAN.

ACKNOWLEDGMENTS

The research leading to these results has received
funding from the European Union’s Horizon 2020
– The EU Framework Programme for Research and
Innovation 2014-2020, under grant agreement No.
732051 and by the ERDF – European Regional De-
velopment Fund through the Operational Programme
for Competitiveness and Internationalization - COM-
PETE 2020.

REFERENCES

Amir, Y. (1995). Replication using group communication
over a partitioned network. PhD thesis, Citeseer.

Elnikety, S., Pedone, F., and Zwaenepoel, W. (2005).
Database replication using generalized snapshot isola-
tion. In 24th IEEE Symposium on Reliable Distributed
Systems (SRDS’05), pages 73–84. IEEE.

Ferreira, L., Coelho, F., Alonso, N., and Pereira, J. (2019).
Towards intra-datacentre high-availability in cloud-
bappliance. In CLOSER (1).

Jiménez-Peris, R., Patiño-Martı́nez, M., and Alonso, G.
(2002). Non-intrusive, parallel recovery of replicated
data. In 21st IEEE Symposium on Reliable Distributed
Systems, 2002. Proceedings., pages 150–159. IEEE.

Kemme, B. and Alonso, G. (2000). A new approach to de-
veloping and implementing eager database replication

ADITCA 2019 - Special Session on Appliances for Data-Intensive and Time Critical Applications

452



protocols. ACM Transactions on Database Systems
(TODS), 25(3):333–379.

Kemme, B., Bartoli, A., and Babaoglu, O. (2001). Online
reconfiguration in replicated databases based on group
communication. In 2001 International Conference on
Dependable Systems and Networks, pages 117–126.
IEEE.

Vilaca, R. M. P., Pereira, J. O., Oliveira, R. C., Armendariz-
Inigo, J. E., and de Mendivil, J. R. G. (2009). On
the cost of database clusters reconfiguration. In 2009
28th IEEE International Symposium on Reliable Dis-
tributed Systems, pages 259–267. IEEE.

Recovery in CloudDBAppliance’s High-availability Middleware

453


