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Abstract: Conditional Value-at-Risk (CVaR) is a well-known measure of risk that has been directly equated to robust-
ness, an important component of Artificial Intelligence (AI) safety. In this paper we focus on optimizing CVaR
in the context of Reinforcement Learning (RL), as opposed to the usual risk-neutral expectation. As a first
original contribution, we improve the CVaR Value Iteration algorithm (Chow et al., 2015) in a way that reduces
computational complexity of the original algorithm from polynomial to linear time. Secondly, we propose a
sampling version of CVaR Value Iteration we call CVaR Q-learning. We also derive a distributional policy
improvement algorithm, and later use it as a heuristic for extracting the optimal policy from the converged
CVaR Q-learning algorithm. Finally, to show the scalability of our method, we propose an approximate Q-
learning algorithm by reformulating the CVaR Temporal Difference update rule as a loss function which we
later use in a deep learning context. All proposed methods are experimentally analyzed, including the Deep
CVaR Q-learning agent which learns how to avoid risk from raw pixels.

1 INTRODUCTION

Lately, there has been a surge of successes in machine
learning research and applications, ranging from vi-
sual object detection (Krizhevsky et al., 2012) to
machine translation (Bahdanau et al., 2014). Rein-
forcement learning has also been a part of this suc-
cess, with excellent results regarding human-level
control in computer games (Mnih et al., 2015) or
beating the best human players in the game of Go
(Silver et al., 2017). While these successes are cer-
tainly respectable and of great importance, reinforce-
ment learning still has a long way to go before be-
ing applied on critical real-world decision-making
tasks (Hamid and Braun, 2019). This is partially
caused by concerns of safety, as mistakes can be
costly in the real world.

Robustness, or distributional shift, is one of the
identified issues of AI safety (Leike et al., 2017) di-
rectly tied to the discrepancies between the environ-
ment the agent trains on and is tested on. (Chow et al.,
2015) have shown that risk, a measure of uncertainty
of the potential loss/reward, can be seen as equal to
robustness, taking into account the differences during
train- and test-time.

While the term risk is a general one, we will fo-

cus on one particular risk measure called Conditional
Value-at-Risk (CVaR). Due to its favorable computa-
tional properties, CVaR has been recognized as the
industry standard for measuring risk in finance (Com-
mittee et al., 2013) and it also satisfies the recently
proposed axioms of risk in robotics (Majumdar and
Pavone, 2017).

The aim of this paper is to consider reinforcement
learning agents that maximize Conditional Value-at-
Risk instead of the usual expected value, hereby
learning a robust, risk-averse policy. The word dis-
tributional in the title emphasizes that our approach
takes inspirations from the recent advances in dis-
tributional reinforcement learning (Bellemare et al.,
2017) (Dabney et al., 2017).

Risk-sensitive decision making in Markov Deci-
cion Processes (MDPs) have been studied thoroughly
in the past, with different risk-related objectives. Due
to its good computational properties, earlier efforts fo-
cused on exponential utility (Howard and Matheson,
1972), the max-min criterion (Coraluppi, 1998) or
e.g. maximizing the mean with constrained variance
(Sobel, 1982). Some attempts were done with non-
parametric VaR optimization (Macek, 2010). A com-
prehensive overview of the different objectives can
be found in (Garcıa and Fernández, 2015), together
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with a unified look on the different methods used in
safe reinforcement learning. From the more recent
investigations, we can mention the approach consid-
ering safety as primary objective whereas the reward
is secondary in the lexicographical sense (Lesser and
Abate, 2017). Among CVaR-related objectives, some
publications focus on optimizing the expected value
with a CVaR constraint (Prashanth, 2014).

Recently, for the reasons explained above, sev-
eral authors have investigated minimization of CVaR
in Markov Decision Processes. A considerable effort
has gone towards policy-gradient and Actor-Critic al-
gorithms with the CVaR objective. (Tamar et al.,
2015) present useful ways of computing the CVaR
gradients with parametric models and have shown the
practicality and scalability of these approaches on in-
teresting domains such as the well-known game of
Tetris. An important setback of these methods is their
limitation of the hypothesis space to the class of sta-
tionary policies, meaning they can only reach a local
minimum of our objective. Similar policy gradient
methods have also been investigated in the context of
general coherent measures, a class of risk measures
encapsulating many used measures including CVaR.
(Tamar et al., 2017) present a policy gradient algo-
rithm and a gradient-based Actor-Critic algorithm.

Some authors have also tried to sidestep the time-
consistency issue of CVaR by either focusing on a
time-consistent subclass of coherent measures, lim-
iting the hypothesis space to time-consistent poli-
cies, or reformulating the CVaR objective in a time-
consistent way (Miller and Yang, 2017).

(Morimura et al., 2012) were among the first to
utilize distributional reinforcement learning with both
parametric and nonparametric models and used it to
optimize CVaR. (Dabney et al., 2018) also formulated
a sampling-based approach for distributional RL and
CVaR. However, all mentioned authors used only a
naive approach that does not take into account the
time-inconsistency of the CVaR objective.

(Bäuerle and Ott, 2011) used a state space exten-
sion and showed that this new extended state space
contains globally optimal policies. Unfortunately, the
state-space is continuous which brings more com-
plexity.

The approach of (Chow et al., 2015) also uses a
continuous augmented state-space but unlike (Bäuerle
and Ott, 2011), this continuous state is shown to have
bounded error when a particular linear discretization
is used. The only flaw of this approach is the require-
ment of running a linear program in each step of their
algorithm and we address this issue in the next sec-
tion.

The paper is organized as follows: In Section 2,

we introduce the notation and define the addressed
problem: the maximization of CVaR of the MDP re-
turn. Subsequent sections provide the original theo-
retical contributions: Section 3 improves a faster ver-
sion of the state-of-art CVaR Value Iteration; Sec-
tion 4 applies similar principles to situations where
an exact model is not known and introduces CVaR
Q-learning and describes CVAR policy improvement
that can be used for the efficient extraction of policies;
Section 5 extends CVaR Q-learning to its approximate
variant using deep learning. Section 6 describes the
conducted experiments that support the outlined orig-
inal contributions. Finally, Section 7 concludes the
paper and outlines the direction for further research.

All proofs and further materials can be found on-
line1.

2 PRELIMINARIES

2.1 Basic Notation

P(·) denotes the probability of an event. We use p(·)
and p(·|·) for the probability mass function and con-
ditional probability mass function respectively. The
cumulative distribution function is defined as F(z) =
P(Z ≤ z). For the random variables we work with the
expected value E[Z], Value at Risk

VaRα(Z) = F−1(α) = inf{z|α≤ F(z)} (1)
with confidence level α ∈ (0,1) and Conditional
Value at Risk as

CVaRα(Z) =
1
α

∫
α

0
F−1

Z (β)dβ =
1
α

∫
α

0
VaRβ(Z)dβ

(2)
Note on notation: In the risk-related literature, it

is common to work with losses instead of rewards.
The Value-at-Risk is then defined as the 1−α quan-
tile. The notation we use reflects the use of reward
in reinforcement learning and this sometimes leads to
the need of reformulating some definitions or theo-
rems. While these reformulations may differ in no-
tation, they are based on the same underlying princi-
ples.

CVaR as Optimization: (Rockafellar and Uryasev,
2000) proved the following equality

CVaRα(Z) = max
s

{
1
α
E
[
(Z− s)−

]
+ s
}

(3)

where (x)−=min(x,0) represents the negative part of
x and in the optimal point it holds that s∗ = VaRα(Z)

CVaRα(Z) =
1
α
E
[
(Z−VaRα(Z))−

]
+VaRα(Z).

(4)
1https://bit.ly/2EkXS0F
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CVaR Dual Formulation: CVaR can be expressed
also as:

CVaRα(Z) = min
ξ∈UCVaR(α,p(·))

Eξ[Z] (5)

where

UCVaR(α, p(·)) =
{

ξ :ξ(z) ∈
{

0, 1
α

}
,∫

ξ(z)p(z)dz = 1
} (6)

We provide basic intuition behind the dual variables
as these will become important later: In case of a dis-
crete probability distribution, the optimal values are
ξ(z) = min

(
1
α
, 1

p(z)

)
for the lowest possible values

z, as these values influence the resulting CVaRα(Z).
Values above VaRα(Z) are not taken into account so
their ξ is 0. If there exists an atom (i.e. a single z
with non-zero probability) at VaRα(Z), the variables
are linearly interpolated to fit the constraints.

2.2 Markov Decision Process

Markov Decision Process (MDP, (Bellman, 1957)) is
a 5-tuple M = (X ,A ,r, p,γ), where X is the finite
state space, A is the finite action space, r(x,a) is a
bounded deterministic reward generated by being in
state x and selecting action a, p(x′|x,a) is the prob-
ability of transition to new state x′ given state x and
action a. γ ∈ [0,1) is a discount factor. A stationary
policy /pi is a mapping from states to probabilities of
selecting each possible action π : X ×A → [0,1]. For
indexing the time, we use t = 0,1, . . . ,∞.

The return is defined as discounted sum of re-
wards over the infinite horizon, given policy π and
initial state x0:

Zπ(x0) =
∞

∑
t=0

γ
tr(xt ,at)

Note that the return is a random variable.

2.3 Problem Formulation

The problem tackled in this article considers rein-
forcement learning with optimization of the CVaR ob-
jective. Unlike the expected value criterion, it is in-
sufficient to consider only stationary policies, and we
must work with general history-dependent policies:

Definition (History-Dependent Policies). Let the
space of admissible histories up to time t be
Ht = Ht−1 × A × X for t ≥ 1, and H0 = X .
A generic element ht ∈ Ht is of the form ht =
(x0,a0, ...,xt−1,at−1). Let ΠH,t be the set of all

history-dependent policies with the property that at
each time t the distribution of the randomized con-
trol action is a function of ht . In other words, ΠH,t =
{π0 : H0→ P(A), ...,πt : Ht → P(A)}. We also let
ΠH = limt→∞ ΠH,t be the set of all history-dependent
policies.

The risk-averse objective we wish to address for a
given confidence level α is

max
π∈ΠH

CVaRα(Zπ(x0)) (7)

We emphasize the importance of the starting state
since, unlike the expected value, the CVaR objective
is not time-consistent (Pflug and Pichler, 2016). The
time inconsistency in this case means that we have to
consider the space of all history-dependent policies,
and not just the stationary policies (which is sufficient
for maximizing e.g. the expected value objective).

2.4 Distributional Bellman Operators

The return can be considered not only for the first state
x, but also for a given first action a. Denoting it as
Z(x,a), we can define it recursively as follows:

Z(x,a) D
= r(x,a)+ γZ(x′,a′)

x′ ∼ p(·|x,a),a∼ π,x0 = x,a0 = a
(8)

where D
= denotes that random variables on both

sides of the equation share the same probability dis-
tribution. Analogously to the policy evaluation (Sut-
ton and Barto, 1998, p. 90) which estimates the value
function V π for a given π, we speak about value dis-
tribution Zπ.

We define the transition operator Pπ : Z→ Z as

PπZ(x,a) D
= Z(x′,a′)

x′ ∼ p(·|x,a),a′ ∼ π(·,x)
(9)

and the distributional Bellman operator T π : Z → Z
as

T distZ(x,a) D
= r(x,a)+ γPπZ(x,a). (10)

These operators are described in more detail in
(Bellemare et al., 2017).

2.5 Value Iteration with CVaR

Value iteration (Sutton and Barto, 1998, p. 100)
is a RL algorithm for maximizing the expected dis-
counted reward.(Chow et al., 2015) present a dynamic
programming formulation for the CVaR MDP prob-
lem (7). As CVaR is a time-inconsistent measure,
their method requires an extension of the state space.
A Value Iteration type algorithm is then applied on
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this extended space and (Chow et al., 2015) proved
its convergence.

We repeat their key ideas and results below, as
they form a basis for our contributions presented in
later sections.

2.6 Bellman Equation for CVaR

The results of (Chow et al., 2015) heavily rely on
the CVaR decomposition theorem (Pflug and Pichler,
2016):

CVaRα (Zπ(x)) =

min
ξ∈UCVaR(α,p(·|x,a))

∑
x′

p(x′|x,π(x))ξ(x′)·

·CVaRξ(x′)α
(
Zπ(x′)

) (11)

where the risk envelope UCVaR(α, p(·|x,a)) coincides
with the dual definition of CVaR (6).

The theorem states that we can compute the
CVaRα (Zπ(x,a)) as the minimal weighted combina-
tion of CVaRα (Zπ(x′)) under a probability distribu-
tion perturbed by ξ(x′). Notice that the variable ξ both
appears in the sum and modifies the confidence level
for each state.

Also note that the decomposition requires only the
representation of CVaR at different confidence levels
and not the whole distribution at each level, which
we might be tempted to think because of the time-
inconsistency issue.

(Chow et al., 2015) extended the decomposition
theorem by defining the CVaR value function C(x,y)
with an augmented state-space X × Y where Y =
(0,1] is an additional continuous state that represents
the different confidence levels.

C(x,y) = max
π∈ΠH

CVaRy (Zπ(x)) (12)

Similar to standard dynamic programming, it is con-
venient to work with operators defined on the space
of value functions. This leads to the following defini-
tion of the CVaR Bellman operator T cvar : X ×Y →
X ×Y :

T cvarCVaRy(Z(x)) =max
a

[
r(x,a)+

+ γCVaRy(Pπ∗Z(x,a))
] (13)

where Pπ denotes the transition operator (9) with an
optimal policy π∗ for all confidence levels.

(Chow et al., 2015, Lemma 3) further showed that
the operator T cvar is a contraction and also preserves
the convexity of yCVaRy. The optimization problem
(11) is a convex one and therefore has a single solu-
tion. Additionally, the fixed point of this contraction

is the optimal C∗(x,y) = maxπ∈Π CVaRy(Zπ(x,y))
(Chow et al., 2015, Theorem 4).

Naive value iteration with operator T cvar is un-
fortunately unusable in practice, as the state space is
continuous in y. The approach proposed in (Chow
et al., 2015) is then to represent the convex yCVaRy
as a piece-wise linear function.

2.7 Value Iteration with Linear
Interpolation

Given a set of N(x) interpolation points Y(x) ={
y1, . . . ,yN(x)

}
, we can approximate the yC(x,y) func-

tion by interpolation on these points, i.e.

Ix[C](y) =yiC(x,yi)+

+
yi+1C(x,yi+1)− yiC(x,yi)

yi+1− yi
(y− yi)

where yi = max{y′ ∈ Y(x) : y′ ≤ y}. The interpolated
Bellman operator T I is then also a contraction and has
a bounded error ((Chow et al., 2015), Theorem 7).

T IC(x,y) = max
a

[
r(x,a)+

+ γ min
ξ∈UCVaR(α,p(·|x,a))

∑
x′

p(x′|x,a)Ix′ [C](yξ(x′))
y

]
(14)

This algorithm can be used to find an approximate
global optimum in any MDP. There is however the is-
sue of computational complexity. As the algorithm
stands, the straightforward approach is to solve each
iteration of (14) as a linear program, since the prob-
lem is convex and piecewise linear, but this is not
practical, as the LP computation can be demanding
and is therefore not suitable for large state-spaces.

3 FAST CVaR VALUE ITERATION

We present our original contributions in this section,
first describing a connection between the yCVaRy
function and the quantile function of the underlying
distribution. We then use this connection to formulate
a faster computation of the value iteration step, result-
ing in the first linear-time algorithm for solving CVaR
MDPs with bounded error.

Lemma 1. Any discrete distribution has a piecewise
linear and convex yCVaRy function. Similarly, any
piecewise linear convex function can be seen as rep-
resenting a certain discrete distribution.
Particularly, the integral of the quantile function is the
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Figure 1: Comparison of a discrete distribution and its ap-
proximation according to the CVaR linear interpolation op-
erator.

yCVaRy function

yCVaRy(Z) =
∫ y

0
VaRβ(Z)dβ (15)

and the derivative of the yCVaRy function is the quan-
tile function

∂

∂y
yCVaRy(Z) = VaRy(Z) (16)

3.1 CVaR Computation via Quantile
Representation

We propose the following procedure: instead of using
linear programming for the CVaR computation, we
use Lemma 1 and the underlying distributions repre-
sented by the yCVaRy function to compute CVaR at
each atom. The general steps of the computation are:

1. Transform yCVaRy(Z(x′)) of each reachable state
x′ to a discrete probability distribution using (16).

2. Combine these to to a distribution representing the
full state-action distribution

3. Compute yCVaRy for all atoms using (15)

See Figure 2 for a visualization of the procedure.
Note that this procedure is linear (in number of tran-
sitions and atoms) for discrete distributions. The only
nonlinear step in the procedure is the sorting step in
mixing distributions. Since the values are pre-sorted
for each state x′, this is equivalent to a single step of
the Merge sort algorithm, which means it is also linear
in the number of atoms.

We show the explicit computation of the proce-
dure for linearly interpolated atoms in Algorithm 1 in
the bonus materials.

To show the correctness of this approach, we for-
mulate it as a solution to problem (11) in the next
paragraphs. Note that we skip the reward and gamma
scaling for readability’s sake. Extension to the Bell-
man operator is trivial.

Figure 2: Visualization of the CVaR computation for a sin-
gle state and action with two transition states. Thick arrows
represent the conversion between yCVaRy and the quantile
function.

3.2 ξ-computation

Similarly to Theorem 5 in (Chow et al., 2015), we
need a way to compute the yt+1 = ytξ

∗(xt) to ex-
tract the optimal policy. We compute ξ∗(xt) by us-
ing the following intuition: yt+1 represents portion of
the tail of Z(xt+1) that has values present in the com-
putation of CVaRyt (Z(xt)). In the continuous case,
it is the probability in Z(xt+1) of values less than
VaRyt (Z(xt)) as we show below.

Theorem 1. Let x′1,x
′
2 be only two states reachable

from state x via action a in a single transition. Let the
cumulative distribution functions of the state’s under-
lying distributions Z(x′1),Z(x

′
2) be strictly increasing

with unbounded support. Then the solution to mini-
mization problem (11) can be computed for i = 1,2
by setting

ξ(x′i) =
FZ(x′i)

(
F−1

Z(x,a)(α)
)

α
(17)

The theorem is straightforwardly extendable to
multiple states by induction.

4 CVaR Q-LEARNING

While value iteration is a useful algorithm, it only
works when we have complete knowledge of the
environment - including the probability transitions
p(x′|x,a). This is often not the case in practice and
we have to rely on different methods, based on direct
interaction with the environment. One such algorithm
is the well-known Q-learning (Watkins and Dayan,
1992) that works by repeatedly updating the action
value estimate according to the sampled rewards and
states using a moving exponential average.

As a next contribution, we formulate a Q-learning
like algorithm for CVaR.
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4.1 CVaR Estimation

Before formulating a CVaR version of Q-learning, we
must first talk about simply estimating CVaR, as it is
not as straightforward as the estimation of expected
value.

Given the primal definition of CVaR (3), if we
knew the exact s∗ = VaRα, we could estimate the

CVaR as a simple expectation of the
1
α
(Z− s∗)−+ s∗

function. As we do not know this value in advance, a
common approach is to first approximate VaRα from
data, then use this estimate to compute its CVaRα.
This is usually done with a full data vector, requiring
the whole data history to be saved in memory.

When dealing with reinforcement learning, we
would like to store our current estimate as a scalar
instead. This requires finding a recursive expression
whose expectation is the CVaR value. Fortunately,
similar methods have been thoroughly investigated in
the stochastic approximation literature by (Robbins
and Monro, 1951).

The Robbins Monroe theorem has also been ap-
plied directly to CVaR estimation by (Bardou et al.,
2009), who used it to formulate a recursive impor-
tance sampling procedure useful for estimating CVaR
of long-tailed distributions.

First let us describe the method for one step esti-
mation, meaning we sample values (or rewards in our
case) r from some distribution and our goal is to esti-
mate CVaRα. The procedure requires us to maintain
two separate estimates V and C, being our VaR and
CVaR estimates respectively.

Vt+1 =Vt +βt

[
1− 1

α
1(Vt≥r)

]
(18)

Ct+1 = (1−βt)Ct +βt

[
Vt +

1
α
(r−Vt)

−
]

(19)

βt represents the learning rate at time t. An observant
reader may recognize a standard equation for quan-
tile estimation in equation (18) (see e.g. (Koenker
and Hallock, 2001) for more information on quan-
tile estimation/regression). The expectation of the up-

date E
[

1− 1
α
1(Vt≥r)

]
is the inverse gradient of the

CVaR primal definition, so we are in fact performing
a Stochastic Gradient Descent on the primal.

Equation (19) then represents the moving expo-
nential average of the primal CVaR definition (3). The
estimations are proven to converge, given the usual re-
quirements on the learning rate (Bardou et al., 2009).

4.2 CVaR Q-learning

We first define two separate values for each state, ac-
tion, and atom V,C : X ×A×Y →R where C(x,a,y)
represents CVaRy(Z(x,a)) of the distribution2, sim-
ilar to the definition (12). V (x,a,y) represents the
VaRy estimate, i.e. the estimate of the y−quantile of
a distribution recovered from CVaRy by Lemma 1.

A key to any temporal difference (TD) algorithm
is its update rule. The CVaR TD update rule extends
the improved value iteration procedure and we present
the full rule for uniform atoms in Algorithm 1.

Let us now go through the algorithm step by step.
We first construct a new CVaR (line 3), representing
CVaRy(Z(x′)), by greedily selecting actions that yield
the highest CVaR for each atom.

The new values C(x′, •) are then transformed to the
underlying distribution (line 5) d and used to create
the target T d = r + γd. A natural Monte Carlo ap-
proach would be then to generate samples from this
target distribution and use these to update our esti-
mates V,C.

Since we know the target distributions exactly, we
do not have to actually sample; instead we use the
quantile values proportionally to their probabilities (in
the uniform case, this means exactly once) and apply
the respective VaR and CVaR update rules (lines 7, 8).

Algorithm 1: CVaR TD update.

1: input: x,a,x′,r
2: for each i do
3: C(x′,yi) = maxa′C(x′,a′,yi)
4: end for
5: d = extractDistribution(C(x′, •),y)3

6: for each i, j do
7: V (x,a,yi) =

V (x,a,yi)+β

[
1− 1

yi
1(V (x,a,yi)≥r+γd j)

]
8: C(x,a,yi) = (1−β)C(x,a,yi)+

β

[
V (x,a,yi)+

1
yi
(r+ γd j−V (x,a,yi))

−
]

9: end for

If the atoms aren’t uniformly spaced (log-spaced
atoms are motivated by the error bounds of CVaR
Value Iteration), we have to perform basic importance

2We can read (x,y) as extended state - combining the in-
formation about (i) environment and (ii) risk perception. In
this sense, the extension is similar to extended reinforce-
ment Q learning as described in (Obayashi et al., 2015)
where the new component expresses the expresses the emo-
tional state of the agent.

3Extracts the underlying distribution from CVaR, see
Algorithm 1 in bonus materials.
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sampling when updating the estimates . In contrast
with the uniform version, we iterate only over the
atoms and perform a single update for the whole tar-
get by taking an expectation over the target distribu-
tion. This is done by replacing lines 7, 8 with

V (x,a,yi) =V (x,a,yi)+βE
j

[
1− 1

yi
1(V (x,a,yi)≥r+γd j)

]
C(x,a,yi) = (1−β)C(x,a,yi)+

+βE
j

[
V (x,a,yi)+

1
yi
(r+ γd j−V (x,a,yi))

−
]

(20)
The explicit computation of the expectation term for
VaR would then look like

E
j

[
1− 1

yi
1(V (x,a,yi)≥r+γd j)

]
=

∑
j

p j

[
1− 1

yi
1(V (x,a,yi)≥r+γd j)

]
where p j = y j−y j−1 represents the probability of d j.
The CVaR update expectation is computed analogi-
cally.

4.3 VaR-based Policy Improvement

CVaR Q-learning helps us to find the CVaRy function,
but does not help us with retrieving the optimal policy.
Below we formulate an algorithm that allows us to get
the optimal policy.

Let us assume that we have successfully con-
verged with distributional value iteration and have
available the return distributions of some stationary
policy for each state and action. Our next goal is to
find a policy improvement algorithm that will mono-
tonically increase the CVaRα criterion for selected α.

Recall the primal definition of CVaR (3)

CVaRα(Z) = max
s

{
1
α
E
[
(Z− s)−

]
+ s
}

Our goal (7) can then be rewritten as

max
π

CVaRα(Zπ) = max
π

max
s

1
α
E
[
(Zπ− s)−

]
+ s

As mentioned earlier, the primal solution is equivalent
to VaRα(Z)

CVaRα(Z) = max
s

{
1
α
E
[
(Z− s)−

]
+ s
}

=
1
α
E
[
(Z−VaRα(Z))−

]
+VaRα(Z)

The main idea of VaR-based policy improvement
is the following: If we knew the value s∗ in advance,
we could simplify the problem to maximize only

max
π

CVaRα(Zπ) = max
π

1
α
E
[
(Zπ− s∗)−

]
+ s∗ (21)

Given that we have access to the return distribu-
tions, we can improve the policy by simply choos-
ing an action that maximizes CVaRα in the first
state a0 = argmaxπ CVaRα(Zπ(x0)), setting s∗ =
VaRα(Z(x0,a0)) and focus on maximization of the
simpler criterion.

This can be seen as coordinate ascent with the fol-
lowing phases:

1. Maximize 1
α
E [(Zπ(x0)− s)−] + s w.r.t. s while

keeping π fixed. This is equivalent to computing
CVaR according to the primal.

2. Maximize 1
α
E [(Zπ(x0)− s)−] + s w.r.t. π while

keeping s fixed. This is the policy improvement
step.

3. Recompute CVaRα(Zπ∗) where π∗ is the new pol-
icy.

Since our goal is to optimize the criterion of the dis-
tribution starting at x0, we need to change the value
s while traversing the MDP (where we have only ac-
cess to Z(xt)). We do this by recursively updating the

s we maximize by setting st+1 =
st − r

γ
. See Algo-

rithm 2 for the full procedure which we justify in the
following theorem.

Algorithm 2: VaR-based policy improvement.

a = argmaxa CVaRα(Z(x0,a))
s = VaRα(Z(x0,a))
Take action a, observe x,r
while x is not terminal do

s =
s− r

γ

a = argmaxaE [(Z(x,a)− s)−]
Take action a, observe x,r

end while

Theorem 2. Let π be a stationary policy, α ∈ (0,1].
By following policy π∗ from algorithm 2, we improve
CVaRα(Z) in expectation:

CVaRα(Zπ)≤ CVaRα(Zπ∗)

Note that while the resulting policy is nonstation-
ary, we do not need an extended state-space to follow
this policy. It is only necessary to remember our pre-
vious value of s.

The ideas presented here were partially explored
by (Bäuerle and Ott, 2011) although not to this extent.
See Remark 3.9 in (Bäuerle and Ott, 2011) for details.

4.3.1 CVaR Q-learning Extension

We would now like to use the policy improvement al-
gorithm in order to extract the optimal policy from
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CVaR Q-learning. This would mean optimizing
E [(Zt − s)−] in each step. A problem we encounter
here is that we have access only to the discretized dis-
tributions and we cannot extract the values between
selected atoms.

To solve this, we propose an approximate heuris-
tic that uses linear interpolation to extract the VaR of
given distribution.

The expression E [(Zt − s)−] is computed by tak-
ing the expectation of the distribution before the value
s. We are therefore looking for value y where VaRy =
s. This value is linearly interpolated from VaRyi−1 and
VaRyi where yi = min{y : VaRy ≥ s}. The expecta-
tion is then taken over the extracted distribution, as
this is the distribution that approximates CVaR the
best.

See Algorithm 2 and Figure 1 in the bonus mate-
rials for more intuition behind the heuristic.

5 DEEP CVAR Q-LEARNING

A big disadvantage of value iteration and Q-learning
is the necessity to store a separate value for each state.
When the size of the state-space is too large, we are
unable to store the action-value representation and the
algorithms become intractable. To overcome this is-
sue, it is common to use function approximation to-
gether with Q-learning. (Mnih et al., 2015) proposed
the Deep Q-learning (DQN) algorithm and success-
fully trained on multiple different high-dimensional
environments, resulting in the first artificial agent ca-
pable of learning a diverse array of challenging tasks.

In this section, we extend CVaR Q-learning to its
deep Q-learning variant and show the practicality and
scalability of the proposed methods.

The transition from CVaR Q-learning to Deep
CVaR Q-learning (CVaR DQN) follows the same
principles as the one from Q-learning to DQN. First
significant change compared to DQN or QR-DQN
(Dabney et al., 2017) is that we need to represent two
separate values - one for V , one for C. As with DQN,
we need to reformulate the updates as arguments min-
imizing some loss function.

5.1 Loss Functions

The loss function for V (x,a,y) is similar to QR-DQN
loss in that we wish to find quantiles of a particu-
lar distribution. The target distribution however is
constructed differently - in CVaR-DQN we extract
the distribution from the yCVaRy function of the next

state T V = r+ γd.

LVaR =

N

∑
i=1

E
j

[
(r+ γd j−Vi(x,a))(y j−1(Vi(x,a)≥r+γd j))

]
(22)

where d j are atoms of the extracted distribution.
Constructing the CVaR loss function consists of

transforming the running mean into mean squared er-
ror, again with the transformed distribution atoms d j

LCVaR =
N

∑
i=1

E
j

[(
Vi(x,a)+

+
1
yi
(r+ γd j−Vi(x,a))

−−Ci(x,a)
)2
] (23)

Putting it all together, we are now able to construct
the full CVaR-DQN loss function.

L = LVaR +LCVaR (24)

Combining the loss functions with the full DQN
algorithm, we get the full CVaR-DQN with experi-
ence replay4. Note that we utilize a target network C′

that is used for extraction of the target values of C,
similarly to the original DQN. The network V does
not need a target network since the target is con-
structed independently of the value V .

6 EXPERIMENTS5

6.1 CVaR Value Iteration

We test the proposed algorithm on the same task as
(Chow et al., 2015). The task of the agent is to navi-
gate on a rectangular grid to a given destination, mov-
ing in its four-neighborhood. To encourage fast move-
ment towards the goal, the agent is penalized for each
step by receiving a reward -1. A set of obstacles is
placed randomly on the grid and stepping on an ob-
stacle ends the episode while the agent receives a re-
ward of -40. To simulate sensing and control noise,
the agent has a δ = 0.05 probability of moving to a
different state than intended.

For our experiments, we choose a 40× 60 grid-
world and approximate the αCVaRα function using
21 log-spaced atoms. The learned policies on a sam-
ple grid are shown in Figure 3.

4See Algorithm 3 in the bonus materials.
5All code is publicly available at https://bit.ly/

2YFCDyE
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While (Chow et al., 2015) report computation
time on the order of hours (using the highly optimized
CPLEX Optimizer), our naive Python implementation
converged under 20 minutes.
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Figure 3: Grid-world simulations. The optimal determinis-
tic paths are shown together with CVaR estimates for given
α.

6.2 CVaR Q-learning

We use the same gridworld for our experiments. Since
the positive reward is very sparse, we chose to run
CVaR Q-learning on a smaller environment of size
10× 15. We trained the agent for 10,000 sampled
episodes with learning rate β = 0.4 that dropped each
10 episodes by a factor of 0.995. The used policy
was ε−greedy and maximized expected value (α = 1)
with ε = 0.5. Notice the high value of ε. We found
that lower ε values led to overfitting the optimal ex-
pected value policy as the agent updated states out of
the optimal path sparsely.

With said parameters, the agent was able to learn
the optimal policies for different levels of α. See
Figure 4 for learned policies and Figure 5 for Monte
Carlo comparisons.
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Figure 4: Grid-world Q-learning simulations. The optimal
deterministic paths are shown together with CVaR estimates
for given α.
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Figure 5: Histograms from 10000 runs generated by Q-
learning and CVaR Q-learning with α = 0.1.

6.3 Deep CVaR Q-learning

To test the approach in a complex setting, we applied
the CVaR DQN algorithm to environments with vi-
sual state representation, which would be intractable
for Q-learning without approximation.

6.3.1 Ice Lake

Ice Lake is a visual environment specifically designed
for risk-sensitive decision making. Imagine you are
standing on an ice lake and you want to travel fast to a
point on the lake. Will you take the a shortcut and risk
falling into the cold water or will you be more patient
and go around? This is the basic premise of the Ice
Lake environment which is visualized in Figure 6.

The agent has five discrete actions, namely go
Left, Right, Up, Down and Noop. These correspond
to moving in the respective directions or no operation.
Since the agent is on ice, there is a sliding element
in the movement - this is mainly done to introduce
time dependency and makes the environment a little
harder. The environment is updated thirty times per
second.

The agent receives a negative reward of -1 per sec-
ond, the episode ends with reward 100 if he reaches
the goal unharmed or -50 if the ice breaks. This par-
ticular choice of reward leads to about a 15% chance
of breaking the ice when taking the shortcut and it is
still advantageous for a risk-neutral agent to take the
dangerous path.

6.3.2 Network Architecture

During our experiments we used a simple Multi-
Layered Perceptron with 64 hidden units for a base-
line experiment and later the original DQN architec-
ture with a visual representation. In our baseline ex-
periments, the state was represented with x- y- posi-
tion and velocity.

The architecture used in our experiments differs
slightly from the original one used in DQN. In our
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Figure 6: The Ice Lake environment. The agent is black and
his target is green. The blue ring represents a dangerous
area with risk of breaking the ice. Grey arrow shows the
optimal risk-neutral path, red shows the risk-averse path.

case the output is not a single value but instead a vec-
tor of values for each action, representing CVaRy or
VaRy for the different confidence levels y. This issue
is reconciled by having the output of shape |A | ×N
where N is the number of atoms we want to use and
|A | is the action space size.

Another important difference is that we must work
with two outputs - one for C, one for V . We have ex-
perimented with two separate networks (one for each
value) and also with a single network differing only
in the last layer. This approach may be advantageous,
since we can imagine that the information required
for outputting correct V or C is similar. Furthermore,
having a single network instead of two eases the com-
putation requirements.

We tested both approaches and since we didn’t
find significant performance differences, we settled
on the faster version with shared weights. We also
used 256 units instead of 512 to ease the computation
requirements and used Adam (Kingma and Ba, 2014)
as the optimization algorithm.

The implementation was done in Python and the
neural networks were built using Tensorflow (Abadi
et al., 2016) as the framework of choice for gradient
descent. The code was based on OpenAi baselines
(Dhariwal et al., 2017), an open-source DQN imple-
mentation.

6.3.3 Parameter Tuning

During our experiments, we tested mostly with α = 1
so as to find reasonable policies quickly. We noticed
that the optimal policy with respect to expected value
was found fast and other policies were quickly aban-
doned due to the character of ε-greedy exploration.
Unlike standard Reinforcement Learning, the CVaR
optimization approach requires to find not one but in
fact a continuous spectrum of policies - one for each
possible α. This fact, together with the exploration-
exploitation dilemma, contributes to the difficulty of
learning the correct policies.

After some experimentation, we settled on the fol-
lowing points:

• The training benefits from a higher value of ε than
DQN. We settled on 0.3 as a reasonable value
with the ability to explore faster, while making the
learned trajectories exploitable.

• Training with a single policy is insufficient in
larger environments. Instead of maximizing
CVaR for α = 1 as in our CVaR Q-learning ex-
periments, we change the value α randomly for
each episode (uniformly over (0,1]).

• The random initialization used in deep learning
has a detrimental effect on the initial distribution
estimates, due to the way how the target is con-
structed and this sometimes leads to the introduc-
tion of extreme values during the initial training.
We have found that clipping the gradient norm
helps to mitigate these problems and overall helps
with the stability of learning.

6.3.4 Results

With the tweaked parameters, both versions (baseline
and visual) were able to converge and learned both the
optimal expected value policy and the risk-sensitive
policy, as in Figure 66.

Although we tested with the vanilla version of
DQN, we expect that all the DQN improvements such
as experience replay (Hessel et al., 2017), dueling
(Wang et al., 2015), parameter noise (Plappert et al.,
2017) and others (combining the improvements mat-
ters, see (Hessel et al., 2017)) should have a positive
effect on the learning performance. Another practical
improvement may be the introduction of Huber loss,
similarly to QR-DQN.

7 CONCLUSION

In this paper, we tackled the problem of dynamic
risk-averse reinforcement learning. Specifically we
focused on optimizing the Conditional Value-at-Risk
objective.

The work mainly builds on the CVaR Value Iter-
ation algorithm (Chow et al., 2015), a dynamic pro-
gramming method for solving CVaR MDPs.

Our first original contribution is the proposal of a
different computation procedure for CVaR value iter-
ation. The novel procedure reduces the computation
time from polynomial to linear. More specifically, our
approach does not require solving a series of Linear

6See videos in the bonus materials.
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Programs and instead finds solutions to the internal
optimization problems in linear time by appealing to
the underlying distributions of the CVaR function. We
formally proved the correctness of our solution for a
subset of probability distributions.

Next we proposed a new sampling algorithm we
call CVaR Q-learning, that builds on our previous re-
sults. Since the algorithm is sample-based, it does
not require perfect knowledge of the environment.
In addition, we proposed a new policy improvement
algorithm for distributional reinforcement learning,
proved its correctness and later used it as a heuris-
tic for extracting the optimal policy from CVaR Q-
learning. We empirically verified the practicality of
the approach and our agent is able to learn multiple
risk-sensitive policies all at once.

To show the scalability of the new algorithm, we
extended CVaR Q-learning to its approximate variant
by formulating the Deep CVaR loss function and used
it in a deep learning context. The new Deep CVaR
Q-learning algorithm is able to learn different risk-
sensitive policies from raw pixels.

We believe that the CVaR objective is a practical
framework for computing control policies that are ro-
bust with respect to both stochasticity and model per-
turbations. Collectively, our work enhances the cur-
rent state-of-the-art methods for CVaR MDPs and im-
proves both practicality and scalability of the avail-
able approaches.

7.1 Future Work

Our contributions leave several pathways open for fu-
ture work. Firstly, our proof of the improved CVaR
Value Iteration works only for a subset of proba-
bility distributions and it shall be at least theoreti-
cally beneficial to prove the same for general distri-
bution. The result may also be necessary for the con-
vergence proof of CVaR Q-learning. Another miss-
ing piece required for proving the asymptotic conver-
gence of CVaR Q-learning is the convergence of re-
cursive CVaR estimation. Currently the convergence
has been proven only for continuous distributions and
more general proof is required to show the CVaR Q-
learning convergence.

We also highlighted a way of extracting the cur-
rent policy from converged CVaR Q-learning values.
While the method is consistent in the limit, for prac-
tical purposes it serves only as a heuristic. It remains
to be seen if there are better, perhaps exact ways of
extracting the optimal policy.

The work of (Bäuerle and Ott, 2011) shares a con-
nection with CVaR Value Iteration and may be of
practical use for CVaR MDPs. The relationship be-

tween CVaR Value Iteration and Bauerle’s work is
very similar to the c51 algorithm (Bellemare et al.,
2017) and QR-DQN (Dabney et al., 2017). Bauerle’s
work is also a certain ’transposition’ of CVaR Value
Iteration and a comparison between the two may be
beneficial. Of particular interest is the ease of extract-
ing the optimal policy in a sampling version of the
algorithm.

Lastly, our experimental work focused mostly on
toy problems that demonstrated the basic function-
ality of the proposed algorithms. Since we believe
our methods are practical beyond these toy settings,
we would like to apply the techniques on relevant
problems from the financial sector and on practical
robotics, and other risk-sensitive applications, includ-
ing interdisciplinary reasearch on emotional percep-
tion of risk (Obayashi et al., 2015).
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