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Abstract: Applications and services hosted in the mobile edge/fog networks today (e.g., augmented reality, self-driving, 

and various cognitive applications) may suffer from limited network coverage and localized congestion due 

to dynamic mobility of users and surge of traffic demand. Mobile opportunistic caching at the edges is 

expected to be an effective solution for bringing content closer and improve the quality of service for mobile 

users. To fully exploit the edge/fog resources, the most popular contents should be identified and cached. 

Emerging research has shown significant importance of predicting content traffic patterns related to users’ 

mobility over time and locations which is a complex question and still not well-understood. This paper tackles 

this challenge by proposing K-order Markov chain-based fully-distributed multi-layer complex analytics and 

heuristics to predict the future trends of content traffic. More specifically, we propose the multilayer real-time 

predictive analytics based on historical temporal information (frequency, recency, betweenness) and spatial 

information (dynamic clustering, similarity, tie-strength) of the contents and the mobility patterns of contents’ 

subscribers. This enables better responsiveness to the rising of newly high popular contents and fading out of 

older contents over time and locations. We extensively evaluate our proposal against benchmark (TLRU) and 

competitive protocols (SocialCache, OCPCP, LocationCache) across a range of metrics over two vastly 

different complex temporal network topologies: random networks and scale-free networks (i.e. real 

connectivity Infocom traces) and use Foursquare dataset as a realistic content request patterns. We show that 

our caching framework consistently outperforms the state-of-the-art algorithms in the face of dynamically 

changing topologies and content workloads as well as dynamic resource availability. 

1 INTRODUCTION 

User mobile devices today are increasingly intelligent 

which leads to the explosive development of new 

applications involving distributed real-time mobile 

processing and increasing traffic demands (e.g. HD 

video streaming, remote health care, critical 

applications for public safety communications, 

augmented/virtual reality apps and automatic 

driving/traffic control). Varying mobility patterns, 

network topology changes, potential disconnections 

and resource restrictions in mobile environments pose 

many challenges for the design and implementation 

of future mobile network algorithms, particularly 

content caching with an aim to bring contents 

proactively as close as possible to the users and 

improve the reliability and efficiency of mobile 

edge/fog networks and users’ services. Typical 
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edge/fog networks consist of heterogeneous nodes 

which can include end users and edge devices with 

different computing resources and communication 

capabilities (Liu et al., 2018). Our architecture design 

assumes that the communication between edge/fog 

nodes is handled in mobile opportunistic multi-hop 

manner. 

Existing opportunistic caching policies in mobile 

edge/fog networks such as (Wang et al., 2014; Fricker 

et al., 2012) typically cannot capture, predict and 

adapt to the spatial-temporal locality of content 

requests needed for more accurate content popularity-

based caching decisions because they rely on 

assumptions that content interests occur 

independently of users’ mobility and resources. More 

specifically, when content caching predictions are not 

sufficiently fine-grained, they result in increased 

cache miss (i.e. the content request needs to traverse 
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from subscribe to publisher), delay and resource 

consumption. In order to tackle this complex 

challenge, we propose a next-generation content 

caching approach that is able to capture more 

accurately the dynamic spatial-temporal correlation 

of mobility and traffic patterns as well as the 

mobility-content traffic interplay needed to support 

more reliable, adaptive caching algorithms. Previous 

research (Wang et al., 2017; Radenkovic et al., 2018) 

has shown that  the centralised solution is not scalable 

in mobile complex heterogeneous network topologies 

due to its high complexity and single point of failure 

problem. Moreover, distributed solution technique 

(Wang et al., 2017) may still cause high connectivity 

overheads although it provides a cheaper computable 

lower bound compared to the centralised solution. In 

addition, previous research has also shown that 

collaborative caching usually outperforms both 

locally and centrally optimized algorithms (Saha et 

al., 2013). Therefore, we propose a fully-distributed 

predictive analytic and heuristic-based caching 

approach which comprises of multi-layer 

complementary real-time distributed predictive 

heuristics to maintain the best possible trade-off 

between caching performance and resource 

consumption. Note that our focus is not to build a 

protocol that forces nodes to cooperate to achieve 

mutual benefit, but rather to design an underlying 

algorithm that ensures no node attains lower utility by 

collaborating with others, similarly to (Radenkovic 

and Huynh, 2017; Wang et al., 2017; Radenkovic et 

al., 2018). Existing research utilizes different 

approaches to deal with trend prediction such as 

reinforcement learning, Bayesian learning, Markov 

chain (Ruan et al., 2019), or Exponential Moving 

Average (Radenkovic and Huynh, 2017; Radenkovic 

et al., 2018;  Huynh and Radenkovic, 2018). Due to 

the continuous nature of users’ mobility and content 

requests, in this paper, we propose to apply the 

concept of high-order Markov chain to our complex 

real-time analytics to more accurately predict the 

content traffic trends based on the historical 

information of content traffics related users’ mobility. 

This paper extends the multilayer 

multidimensional predictive heuristics integrated in 

CafRepCache (Radenkovic and Huynh, 2017; 

Radenkovic et al., 2018) which is an predictive 

adaptive collaborative cognitive forwarding and 

caching framework in heterogeneous opportunistic 

mobile networks. We propose a novel prediction 

model that allows improved congruency with both the 

underlying network and users demands, more 

accurately capture the temporal and spatial locality of 

mobility and content requests as well as mobility-

content traffic patterns interplay. We build on two 

integral complementary multidimensional predictive 

analytics and heuristics: i) temporal predictive 

analytics and heuristics that captures the temporal 

locality of content requests upon request access time, 

enables more responsiveness to the rising trend of 

newly high popular contents and fading out of older 

contents over time as well as avoid one-timer contents 

and mitigate flash crowd effect; ii) spatial predictive 

analytics and heuristics that capture the spatial 

locality of user mobility and content requests as well 

as balance the trade-off between serving different 

regions of contents’ subscribers. We exploit mobility-

content traffic patterns interplay and do not focus on 

resource analytics (Radenkovic and Huynh, 2017; 

Radenkovic et al., 2018) in this paper. 

The paper begins by providing an overview of the 

related work in section 2, section 3 describes and 

discusses our models and multilayer novel predictive 

heuristics, section 4 evaluates the effect of each 

complement heuristic on caching performance in 

mobile DTN across a range of metrics over two 

different network topologies and a real-world 

location-based service dataset for content workloads. 

Section 5 gives a conclusion. 

2 RELATED WORK 

Authors in (Le et al., 2015) propose a forwarding and 

cache replacement policy for SocialCache based on 

content popularity driven by frequency and freshness 

of content requests. As part of its replacement policy, 

SocialCache may remove a cached content from the 

network, thus reduce the cache hit ratio and increase 

delays. This problem is exacerbated when the 

resource is limited and the replacement rate is high as 

(Le et al., 2015) is not resource and congestion aware. 

Authors in (Zhang et al., 2014) propose Optimal 

Cache Placement Based on Content Popularity 

(OCPCP) that takes a caching decision based on the 

frequency of content requests at a caching node. That 

is, the more frequent requests for content, the higher 

chance that content will be requested again. Time 

Aware Least Recent Used (TLRU) (Bilal and Kang, 

2014) is an extension of the simple LRU in which the 

time stamp of an arriving content is recorded locally 

by a single node. The arriving content is cached if the 

average request time is smaller than the time stamps 

of the stored contents. Authors in (Mardham et al., 

2018) propose Location-based Caching that uses 

decay function measured by the function of distances 

between subscribers and caching points and some 

varying attributes, such as time or number of requests 
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to classify contents and replace them when cache 

memory is full. (Mardham et al., 2018) considers the 

fairness problem that some contents belonging to 

some specific location may be more important and is 

cached often across the network, even if it is not very 

popular. Authors in (Flores et al., 2017) proposed a 

social-aware hybrid offloading strategy for load 

balancing and computation sharing based on node's 

stability which is measured by contact frequency and 

duration in order to improve the availability of 

offloading support for mobile users. However, 

(Flores et al., 2017) does not support high topology 

dynamics with intermittent disconnections and 

dynamically changing publishers and subscribers 

workload patterns. 

Existing opportunistic caching policies such as 

(Wang et al., 2014; Fricker et al., 2012) rely on an 

assumption that the content distribution in the 

networks approximately follows Zipf's law (Yoneki 

et al., 2008; Breslau et al., 1999) or the 

characterisation of content requests have been based 

on Independent Reference Model (IRM) which 

assumes that content requests occur independently. 

However, authors in (Dabirmoghaddam et al., 2014; 

Dán and Carlsson, 2010) have questioned the validity 

of the IRM model and Zipf’s law model. According 

to the proposal in (Dabirmoghaddam et al., 2014), 

content requests often exhibit both temporal locality 

and spatial locality. Researches on today’s social 

networks (Dabirmoghaddam et al., 2014; D’Silva et 

al., 2018) suggest that if content is requested at a 

certain period in time, more likely it will be requested 

again in the near future. In fact, the content is not 

requested scattered randomly and independently over 

time; but rather particular contents are interested at a 

certain time interval, while its popularity gradually 

fades out. Spatial locality of content requests is based 

on the fact that content requests of the same content 

are more likely to be issued by geographically close 

areas. More precisely, the requests coming from a 

specific region in space are more likely to be similar 

than those collected over regions far apart (D’Silva et 

al., 2018). 

3 FULLY-DISTRIBUTED 

PREDICTIVE MOBILE EDGE 

AND FOG CACHING 

In this section, we briefly describe CafRepCache 

(Radenkovic and Huynh, 2017; Radenkovic et al., 

2018) framework, then we propose to extend its 

integral multilayer fully-distributed predictive 

heuristics. 

CafRepCache (Radenkovic and Huynh, 2017; 

Radenkovic et al., 2018) is a multi-path content and 

interest forwarding and replication with adaptive 

collaborative caching framework in heterogeneous 

opportunistic mobile networks. It utilises fully-

localised and ego networks multi-layer predictive 

heuristics about dynamically changing topology, 

resources and content popularity to manage dynamic 

trade-offs between minimizing the end-to-end latency 

and maximising content delivery while enabling 

resource efficiency and congestion avoidance. 

CafRepCache relies on three theory foundation: 

network science, social science and information 

science as shown in Fig. 1. 

 

Figure 1: CafRepCache theory foundation. 

CafRepCache system is modelled as a network G 

that consists of a set N of nodes 𝑛𝑖   (𝑛𝑖  ∈ 𝑁) and a set 

E of edges, G = (N, E). As the connectivity of the 

network and the state of the nodes change over time, 

each of these sets is modelled as time series, thus N = 

{𝑁𝑡: t ∈ T} and E = {𝐸𝑡 : t ∈ T}. We denote with 𝑂 

a set of content files that can be requested by the 

network. Each content 𝑜𝑘
𝑡 ∈ 𝑂 (or 𝑜𝑘  for simplicity) 

is published at time t. Node 𝑛𝑖 ∈ 𝑁 may act as either 

a subscriber of content 𝑜𝑘 , denoted by  𝑆𝑖,𝑘
𝑡  or a 

publisher 𝑃𝑖,𝑘
𝑡  or a caching point 𝐶𝑖,𝑘

𝑡  at any time t 

from any location while being mobile. Thus for any 

content 𝑜𝑘, a set of subscribers who are interested in 

𝑜𝑘 is denoted as 𝑆𝑘
𝑡 = {𝑆𝑖,𝑘

𝑡 | 𝑛𝑖 ∈ 𝑁} and so on. Each 

node in the network is able to perform predictive 

analytics of multivariate mixed data (e.g. content and 

mobility) as well as collaborate and exchange its local 

observations with other neighbour nodes when two 

nodes are in contact in order to capture and detect 
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various events (e.g. user connectivity patterns, 

request patterns) in more accurate and responsive 

manner without the need of global knowledge. We 

define “ego network” of each node 𝑛𝑖 : 𝐸𝑁𝑖  as a 

network consisting of 𝑛𝑖 together with the nodes they 

are connected most recently (i.e. k-hops neighbours) 

or nodes it meets at regular interval (most frequently) 

over the time duration ∆T and all the links among 

those nodes. In this way, ego network allows each 

node to give its own regional or temporal perspective 

of the network (or both are included). 

3.1 Dynamic Complex  
Temporal-Graph Heterogeneous 
Network Topologies 

In order to provide insights of users’ content traffic-

related mobility, connectivity patterns, this section 

analyses CafRepCache in different underlying 

network topologies with different degree of mobility, 

connectivity patterns which helps us to better design 

novel modelling analytics to capture and predict the 

spatial-temporal correlations of content request 

patterns with underlying network topologies. 

Empirical evidence shows fixed and wired networks 

are mostly scale-free, whereas mobile and 

opportunistic networks can be either random or scale-

free. Thus, we analyse theoretically CafRepCache in 

extremely heterogeneous random topologies as well 

as scale-free topologies to understand fundamental 

performance limitations of CafRepCache in different 

realistic networks. 

3.1.1 Complex Temporal Random Network 
Topologies 

In random networks, the majority of previous studies 

in mobile networks assume Poisson contact processes 

and model user encounters as independent Poisson 

processes with rate λ due to the time between two 

consecutive contacts of a pair of nodes follows 

exponential distribution (Bornholdt and Schuster, 

2006). The probability of some node 𝑛𝑖 ∈ 𝑁 

connecting with some other node 𝑛𝑗 (Bornholdt and 

Schuster, 2006) is: 𝑃(𝑛𝑖) =  
1

𝑁
∫ 𝑃(𝑣𝑖𝑗)𝑑𝑛𝑖. 

The probability that node 𝑛𝑖  ∈ 𝑁 connects with 

exactly n other nodes (Bornholdt and Schuster, 2006) 

within time T: P(n encounters) ≈  
𝑒−λT(λT)𝑛

𝑛!
. Let 𝑝′𝑘 

be the probability that content 𝑜𝑘  is stored in the 

cache of an arbitrary nodes, then the probability of the 

cache miss in random network is: 

Prob(content 𝑜𝑘  is not in the cache) * 

Prob(interest request never reaches correct caching 

points within time T) 
= (1 − 𝑝′𝑘) * ∑ Prob(n encounters) ∗𝑁

𝑛

P(none of the n encounters has requested contents) 

= (1 − 𝑝′𝑘)*∑
𝑒−λT(λT)𝑛

𝑛!

𝑁
𝑛 (1 − ′𝑝𝑘)𝑛. 

3.1.2 Complex Temporal Scale-free Network 
Topologies 

Complex temporal scale-free networks are 

characterized by a highly heterogeneous degree 

distribution, which follow a power-law distribution 

(Yoneki et al., 2008). Although the network may 

change significantly over time, the degrees of its 

nodes obey the power-law model at any time (Yoneki 

et al., 2008). 

The probability P(n encounters) of a node in the 

network goes for large values of n as: 𝑓(𝑛) ~ 𝑛−𝛾 

where 𝛾  is the shape parameter of the power-law 

distribution and represents the degree of the power-

tail. 

Then the probability of a cache miss of content 𝑜𝑘 

in scale-free networks is ( 1 − 𝑝′𝑘) * ∑ 𝑛−𝛾𝑁
𝑛 (1 −

𝑝′𝑘)𝑛. 

3.2 Spatial-temporal Analytics and 
Heuristics for Content Caching 

In this section, we describe two non-trivial predictive 

analytics and heuristics (i.e. K-order Markov 

chained-based temporal heuristics and spatial 

clustering heuristics) that cover different dimensions 

of the spatial-temporal dynamics and mobility-

content traffic interdependence problem. When 

combined together, they allow forming dynamic 

transient interest and data dissemination topologies 

based on predictive analysis and commonalities 

between their interests, caches and retrieval histories 

as well as connectivity histories. 

3.2.1 Dynamic K-order Markov  
Chained-based Temporal Heuristics 

Each node in the network resolves the request 

frequency, recency and betweenness in fully-

localised distributed manner. When two nodes are in 

contact, they exchange their local observations and 

continuously resolve the value of dynamically 

changing predictive heuristic based on both its local 

observation and the collaborative observations it gets 

from others. We apply the concept of K-order Markov 

chain on our complex analytics to predict the content 

traffic trends based on the historical information of 
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content traffics related users’ mobility. When K = 1, 

a lot of historical state information is ignored and only 

the information of the current moment is used. Such 

limitations make the practical application of 1-order 

Markov chain prediction method lack of prediction 

accuracy. In line with (Ruan et al., 2019), compared 

with other existing time-order-based prediction 

methods, the K-order Markov chain performs much 

better when the order number K = 2. We apply K-

order Markov chain to leverage efficiently historical 

information of content requests and subscribers’ 

mobility to predict the future trends of content 

traffics. The K-order is defined as: 

𝑃(𝐶𝑡 =  𝑖𝑡  |𝐶𝑡−1 =  𝑖𝑡−1, … , 𝐶0 =  𝑖0) =  
𝑃(𝐶𝑡 =  𝑖𝑡  |𝐶𝑡−1 =  𝑖𝑡−1, … , 𝐶𝑡−𝑘 =  𝑖𝑡−𝑘) 

We then introduce our method to measure the 

temporal heuristics based on request frequency, 

recency and betweenness as below. 

Request frequency counters are additively 

increased upon the arrival of a content request and 

decreased through time. This is in order to ensure that 

if the number of requests for a content has been 

reduced, its popularity counter will be reduced 

accordingly and the content will be subject to eviction 

or offload to other nodes. Given a caching point 

observes average f interests of content k during the 

interval ∆𝑡, the request frequency is measured as: 

𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 𝑓−𝜆∆𝑡  where 𝜆  is a 

control parameter. Request frequency implies that the 

more content requests have been observed by a 

caching point during a short interval time ∆𝑡 , the 

more likely that content will be requested in the same 

interval, thus capture the temporal locality of content 

requests 

Request recency enables our caching design to 

capture the content popularity trend in responsive 

manner based on the recorded time stamp of recent 

requests in different locations for each caching point, 

thus allow to predict adaptively the emerging contents 

that may become highly popular in near future and 

contents that are currently considered as high popular 

but will be less popular soon. Given a caching point n 

observes the most recent interest of content k at 

𝑡𝑟𝑒𝑐𝑒𝑛𝑡𝑅𝑒𝑞 , then we denote 𝑡𝑟𝑒𝑐𝑒𝑛𝑡𝑅𝑒𝑞−1,  𝑡𝑟𝑒𝑐𝑒𝑛𝑡𝑅𝑒𝑞−2,  

𝑡𝑟𝑒𝑐𝑒𝑛𝑡𝑅𝑒𝑞−3, etc. as the time that previous interests 

have been recorded by the caching point. The request 

recency is measured as how likely a recent content 

request will trigger a subsequent request at the current 

time. 
𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑅𝑒𝑐𝑒𝑛𝑐𝑦 =

 
2

1+ 𝑒
−2

(𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒−𝑡𝑟𝑒𝑐𝑒𝑛𝑡𝑅𝑒𝑞)+⋯+(𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒−𝑡𝑟𝑒𝑐𝑒𝑛𝑡𝑅𝑒𝑞−𝑓) 

𝑓

  

Request recency analytic shows that the smaller 

gap between current time and recent requests 

observed in the past of content k, the higher chance 

that content k will be requested soon in the future. 

Request betweenness provides the trade-off 

between current observed content popularity versus 

long terms interest in it in order to balance between 

potentially one-timer contents or fake news and long-

term useful content. The time gap between 

continuous requests in the period of time ∆𝑡  is 

measured as: 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒 − 𝑡𝑟𝑒𝑐𝑒𝑛𝑡𝑅𝑒𝑞 , 𝑡𝑟𝑒𝑐𝑒𝑛𝑡𝑅𝑒𝑞 −

𝑡𝑟𝑒𝑐𝑒𝑛𝑡𝑅𝑒𝑞−1, 𝑡𝑟𝑒𝑐𝑒𝑛𝑡𝑅𝑒𝑞−1 − 𝑡𝑟𝑒𝑐𝑒𝑛𝑡𝑅𝑒𝑞−2,… 

Then the request betweenness heuristic is 

measured as: 

𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑒𝑠𝑠 =

 √
1

𝑓
∑ (𝑡𝑟𝑒𝑐𝑒𝑛𝑡𝑅𝑒𝑞−𝑖 − 𝑡𝑟𝑒𝑐𝑒𝑛𝑡𝑅𝑒𝑞−𝑖−1 − 𝑇𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑇𝑖𝑚𝑒𝐺𝑎𝑝)2𝑓

𝑖=1   

The novel temporal heuristics are the combination 

of request frequency, recency and betweenness which 

allow CafRepCache to choose the best suitable 

contents to cache and when to cache by predicting in 

real time the locality trend of content request patterns 

over time in different locations and avoid losing 

valuable contents by reducing the caches for one-

timers contents and fake news. 

𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝑠 =  𝐹𝑟𝑒𝑞(𝑜𝑘) +  𝑅𝑒𝑐(𝑜𝑘) +
𝐵𝑒𝑡(𝑘𝑘). 

3.2.2 Dynamic Spatial Clustering Heuristics 

As the requests are more likely to be similar in a 

specific region, we propose the fully-localised 

distributed spatial heuristics that aim to classify, 

recognize and predict content interests coming from 

dynamic changing clusters of subscribers. The spatial 

heuristic shows that the higher request rate coming 

from the same localised region or dynamic cluster of 

different subscribers, the higher likely that content 

will be requested again by other subscribers within 

that location. Given a caching point observes interest 

requests of content k from a set of subscribers 𝑠 ∈ 𝑆𝑘 

within a time interval ∆𝑡 , the spatial heuristic is 

measured by the clustering coefficient (Nicosia et al., 

2013), similarity, closeness and tie strength 

(Radenkovic and Huynh, 2017; Radenkovic and 

Grundy, 2011; Daly and Haahr, 2007) between 

different subscribers of the same content as below: 

𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 =  𝐶𝐶𝑜𝑒𝑓(𝑆𝑘) +
 𝑆𝑖𝑚(𝑠1, 𝑠2) + 𝐶𝑙𝑜𝑠𝑒(𝑠1, 𝑆𝑘) + 𝑆𝑡𝑟𝑇𝑖𝑒𝑆𝑡𝑟(𝑠1, 𝑠2)  

∀𝑠1, 𝑠2 ∈ 𝑆𝑘  

 in which the similarity value (Daly and Haahr, 

2007; Nicosia et al., 2013) between 𝑠1, 𝑠2 ∈ 𝑆𝑘 within 

a time interval ∆t is: 
∑  |𝑁𝑠1 ∩ 𝑁𝑠2|𝑡

∆t
 where |𝑁𝑠1  ∩  𝑁𝑠2| 

is the similarity in contacts between two subscriber 

𝑠1, 𝑠2 of the content k. The closeness centrality (Daly 
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and Haahr, 2007; Nicosia et al., 2013) of 𝑠1  is a 

measure of how close 𝑠1 is to any other node in 𝑆𝑘. It 

is measured as the inverse of the average distance 

from 𝑠1  to any other node in 𝑆𝑘 : 
𝑆−1

∑ 𝑑1𝑗𝑗
 where 𝑑1𝑗  is 

the distance between 𝑠1 and 𝑠𝑗in the set of subscribers 

𝑠 ∈ 𝑆𝑘. 

The node tie strength value (Radenkovic and 

Huynh, 2017; Radenkovic and Grundy, 2011; Daly 

and Haahr, 2007) between of subscribers 𝑠1, 𝑠2 ∈ 𝑆𝑘 

within a time interval ∆t is: 

∑
𝑓(𝑠1)

𝐹(𝑠2)− 𝑓(𝑠1)
+  

𝑟𝑒𝑐(𝑠1)

𝑇(𝑠2)− 𝑟𝑒𝑐(𝑠1)
+  

𝑑(𝑠1)

𝐷(𝑠2)− 𝑑(𝑠1)t   

where 
𝑓(𝑠1)

𝐹(𝑠2)− 𝑓(𝑠1)
 measures the frequency of 

contacts between 𝑠1, 𝑠2 ; 
𝑟𝑒𝑐(𝑠1)

𝑇(𝑠2)− 𝑟𝑒𝑐(𝑠1)
 measures the 

recency of contacts between 𝑠1, 𝑠2  and 
𝑑(𝑠1)

𝐷(𝑠2)− 𝑑(𝑠1)
 

indicate the relative distance by hops between 𝑠1, 𝑠2. 

The complex temporal graph metrics of contact 

frequency, recency and topology distance allow 

congruency with the underlying dynamic changing 

network topology and connectivity. In order to 

balance the trade-off between serving contents 

requested from a specific local region of highly 

connected subscribers and from multiple less-

connected subscribers, we favours the weak tie 

strength which helps to give a wider and broader 

long-term predictive content popularity instead of 

only favouring and serving the contents requested 

from a local region of highly connected subscribers. 

Spatial heuristics allow CafRepCache to choose 

the most suitable caching points to cache popular 

contents based on its relative location with the 

subscribers and between the subscribers themselves. 

3.3 CafRepCache’s Combined Heuristics 

In section 3.2, we described our novel approach for 

opportunistic caching protocol that, we argue, is 

essential to be able to capture the spatial-temporal 

locality of mobility and content requests as well as the 

mobility-content traffic interplay. The above two 

non-trivial heuristics ℎ(𝑛𝑖, 𝑜𝑘)  cover different 

dimensions of the mobility-content traffic pattern 

interdependences problem and when combined they 

allow managing a number of trade-offs we identified. 

Each caching point 𝑛𝑖  in the network resolves and 

combines the two heuristics to measure 𝑃(𝑛𝑖, 𝑜𝑘, ∆𝑡) 

denoted as the popularity of 𝑜𝑘  during the interval 

time ∆𝑡. 𝑃(𝑛𝑖, 𝑜𝑘, ∆𝑡) implies the probability of how 

likely the content 𝑜𝑘 will be requested in a period of 

time: 

𝑃(𝑛𝑖, 𝑜𝑘, ∆𝑡) = ∑ 𝛼ℎ𝑈𝑡𝑖𝑙ℎ(𝑛𝑖, C(𝑛𝑖), 𝑜𝑘)

ℎ ∈𝐻

 

where 𝛼ℎ is the weighting factor of each heuristic, 

𝑈𝑡𝑖𝑙ℎ(𝑛𝑖, C(𝑛𝑖), 𝑜𝑘) is the respective utilities of each 

heuristic as measurements of their relative gain, loss 

or equality, calculated as pair-wise comparison 

between the node’s own heuristics and that of the 

encountered contacts: 

𝑈𝑡𝑖𝑙ℎ(𝑛𝑖, C(𝑛𝑖), 𝑜𝑘) =
ℎ(𝑛𝑖,𝑜𝑘)

ℎ(𝑛𝑖,𝑜𝑘)+ℎ(C(𝑛𝑖),𝑜𝑘)
  

ℎ ∈ 𝐻 = {𝑅𝐹𝑟𝑒𝑞, 𝑅𝑅𝑒𝑐, 𝑅𝐵𝑒𝑡, 𝐷𝐶𝑙𝑢𝑠𝑡𝑒𝑟} 

The predictive analytics are resolved by caching 

nodes’ local observations and collaborative 

observations from neighbours within its ego network 

in order to allow each caching point have a more 

regional converged perspective of the network 

without the need of global network knowledge. 

The total content popularity heuristic is measured 

as: 

𝑃(𝐸𝑁𝑖 , 𝑜𝑘, ∆𝑡) =  
1

𝐸𝑁
∑ 𝛼𝑗𝑃(𝑛𝑗, 𝑜𝑘, ∆𝑡)

𝐸𝑁𝑖
𝑗 # 𝑖 ∈ 𝐸𝑁𝑖

. 

4 EXPERIMENT SETUP AND 

EVALUATION 

This section presents an evaluation of our caching 

algorithm, first introducing a set of state-of-the-art 

caching policies as competitive caching algorithms 

and metrics for comparing the experimental results. 

For the underlying network topology and mobility 

patterns, we use a simulation-driven data trace with 

two very different network topologies: random 

network and real-world mobility traces Infocom 

(Scott et al., 2006) in ONE simulator (Keränen et al., 

2009) as scale-free network in order to give a deeper 

and more accurate performance overview of 

CafRepCache. We use Foursquare New York Dataset 

(Yang et al., 2014) as a real trace for content requests. 

This dataset is collected through location-based 

service Foursquare API 

(https://developer.foursquare.com/) describing the 

spatial-temporal locality of content requests in terms 

of user interests at public venues, it contains 227,428 

subscriptions of 18,201 users in different locations of 

New York city during the period of 10 months. Each 

check-in is associated with its time stamp, its GPS 

coordinates and its semantic meaning (represented by 

fine-grained venue-categories). 

We compare and evaluate CafRepCache on the 

overall caching performance measured by different 

criteria (e.g. cache hit ratio, latency, eviction rate, 

etc.) against multiple state-of-the-art and benchmark 

proposals: SocialCache (Le et al., 2015), Optimal 

Cache Placement Based Content Popularity (OCPCP) 

(Zhang et al., 2014), Time Aware Least Recent Used 
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Table 1: Values of the simulation parameters. 

Parameter Value 

Complex temporal network 

topologies 

 Random network, Scale-free 

network (Infocom) 

Content request pattern  Foursquare New York 

Number of nodes 50-100 

Simulation duration  1 - 3 hours 

Request rate  1-25 request/min 

Number of contents  103 - 105 

File size  1 MB - 8.4 MB 

Interest packet size  8 kB - 128 kB 
Cache size

Total content population
 

 0.1 - 0.6% 

(TLRU) (Bilal and Kang, 2014) and LocationCache 

(Mardham et al., 2018). We have run six increments 

of the number of subscribers and publisher ranging 

from 10% to 60% of the total number of nodes. Due 

to limited space, we report on experiments with 

increasing number of subscribers, but note that the 

results for increasing number of publishers are similar 

to the ones presented here. Without losing generality, 

we assume that 25% of node population are 

publishers and varying the number of subscribers. All 

experiments are repeated ten times and averaged with 

different random subscribers and publishers. For each 

experiment, either the cache hit ratio or average 

latency (in hops) or eviction ratio will be shown. The 

general simulation parameters details are shown in 

Table 1. 

Fig. 2 shows the spatial and temporal correlation 

of content traffic (i.e. temporal requests pattern of 

mobile subscribers) in Foursquare dataset for a 

content in different locations over time. 

 

Figure 2: Spatial-temporal correlation of content requests. 

It shows the temporal patterns (similarity) of 

content traffic during weekdays and weekend: if a 

content is requested at a certain point in time, more 

likely it will be requested again in near future. In fact, 

nor are the content references scattered randomly and 

independently over time; rather, a content might be of 

particular interest at a certain time interval, while its 

popularity gradually fades out. The locations of 

mobile subscribers feature different degrees of 

similarity in content request such that the location 1 

and 2 which are relatively close to each other have 

similar request patterns compared to that of location 

3 which are far away from others. This captures the 

impact that the geographical diversity of the users has 

on the observed trace of requested contents by them. 

More precisely, the requests coming from a specific 

region in space are more likely to be similar than 

those collected over regions far apart. 

In order to understand the scalability of caching 

points with regarding to the increasing number of 

subscribers, we vary the number of subscribers to 

evaluate the number of caching points in Fig.3, 

average latency (measured by the number of hops) in 

Fig. 4 and cache hit ratio (which refers to how many 

interest packets are matched with the contents in 

caching points without being forwarded to 

publishers) in Fig.5 that indicate the efficiency of 

caching decisions and locations in random topology 

and scale-free topology. 

 

Figure 3: Number of caching points vs. number of 

subscribers. 

Fig. 3 shows that the relative number of 

CafRepCache caching points increases from 12% to 

23% in random networks and from 2 to 11% in scale-

free networks regarding the growth of subscribers. 

We argue that random networks with short average 

paths and low clustering require more number of 

caching points to serve the dynamic mobile 
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subscribers while scale-free networks with high 

social character need less number of caching points 

which converge to 11% regarding the increasing 

number of subscribers from 40% to 60%. Fig. 4 and 

5 shows that CafRepCache achieves 79.4% and 

92.4% cache hit ratio while the hop count average 

from the caching points to subscribers are 3.01 and 

2.7 in random network and scale-free network 

respectively. 

We argue that in random network, CafRepCache 

benefits from its cache redundancy mechanism that 

select highly suitable locations for caching and 

replication when needed as adaptive replication and 

caching are both necessary to address multi-user data 

communications in dynamic fragmented and sparse 

topologies. In scale-free network, CafRepCache 

utilities its multidimensional predictive analytics and 

complex temporal graph metrics to make caching 

decisions in a predictive manner and congruent with 

the underlying network mobility, connectivity and 

content interest. 

 

Figure 4: Average hops count between caching points and 

subscribers. 

We show graphs of random network topologies as 

a worst case scenario in Fig.3-5 and we will focus on 

scale-free network topologies for the rest of our 

experiments as it allows our caching decision 

makings to leverage the spatial-temporal correlations 

of mobility and traffic patterns as well as mobility- 

traffic interdependence. 

To evaluate the effectiveness of the content 

request frequency heuristic, we vary the content 

request patterns which follows different content 

popularity skewness 𝛼 (0.6-1.1) utilized in Hawkess 

process (Dabirmoghaddam et al., 2014) and measure 

 

 

Figure 5: Success ratio vs. number of subscribers. 

the cache hit ratio. In line with (Dabirmoghaddam et 

al., 2014), when α becomes larger, there is small 

number of contents that account for the majority of 

total requests, or being requested more frequently 

compared to the others. 

Fig. 6 shows that our cognitive caching achieves 

the highest cache hit ratio (ranging from 31% to 

86.4%) compared to other competitive algorithms 

(OCPCP, TLRU, SocialCache, LocationCache) 

regarding the increase of popularity skewness α. We 

observe that higher α leads to bigger gap between 

CafRepCache and others. This is because the request 

frequency heuristic takes advantage of highly skewed 

content popularity and content request temporal 

locality to predict efficiently the incoming content 

requests and adapts strongly with the content requests 

while others neglect or could not adapt with the 

temporal locality of content. CafRepCache is 

followed by LocationCache and SocialCache that 

manage up to 76.6% cache hit ratio regarding the 

increase of content popularity skewness. We observe 

that LTRU and OCPCP achieve the lowest cache hit 

ratio (ranging from 24,3% to 60%) as it relies only on 

simple request frequency or recency metric, thus 

could not be able to predict adaptively the temporal 

locality of content request patterns. 

As the content popularity changes in real-time 

regarding the variation in user interests, we further 

study the impact of varying content popularity 

fluctuation on the caching performance in order to 

evaluate the effectiveness of the content request 

recency heuristic. The Fig.7 shows the popularity 

variation range from 20 to 120 popularity rank for 

each round of the experiment. As caching 

performance of slight variation on content popularity 

has advantage over sharp variation, it is  
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Figure 6: Cache hit ratio vs Popularity zipf alpha. 

challenging for the caching algorithms to adapt 

quickly to the severe and quick popularity alteration. 

As shown in Fig.7, CafRepCache’s request 

recency metric keeps good stability regarding the 

popularity change (typically above 83.1% cache hit 

ratio), predict adaptively the emerging contents that 

may become highly popular in near future and 

contents that are currently considered as high popular 

but will be less popular soon. The sensitiveness of our 

proposed algorithm provides better adaptation to 

rapidly changing content popularity and different 

network environment while all other competitive 

caching algorithms could not be able to adapt with 

sharp variation in popularity. 

 

Figure 7: Cache hit ratio vs Popularity variation. 

We vary the cache size and measure the cache 

eviction ratio to evaluate the effectiveness of the 

content request betweeness heuristic. Eviction is one 

of the popular metrics for the performance evaluation 

of content caching. When the cache space is full and 

caching point makes a decision to cache a new arrived 

content then one of the cached contents is evicted or 

offloaded to free up the buffer. When the resource is 

limited and the eviction rate is potentially high due to 

one-timer contents, the overall network throughput is 

affected in terms of cache hit ratio and content 

retrieval latency. In other words, if a stored content is 

evicted incorrectly and a new request arrives for it, 

then there is a cache miss and the content has to be 

retrieved from other nodes or publishers directly. As 

a result, this increases the content retrieval latency 

and decreases the cache hit ratio of the caching 

services. Smaller cache buffer size offers more 

selective cached contents, thus requires more accurate 

content popularity prediction. 

Fig. 8 shows that CafRepCache achieves the 

lowest eviction ratio regarding the dynamic changing 

in size of the caching points (decreasing from 0.62 to 

0.34 eviction ratio when the cache size is increased) 

compared to the state-of-the-arts caching algorithms. 

CafRepCache is followed by SocialCache and 

LocationCache (ranging from 0.75 to 0.46 eviction 

ratio) while TLRU and OCPCP have the worst 

performance, especially when the cache space is 

relatively small. This is due to the request betweeness 

heuristic allows CafRepCache balance the trade-off 

between current observed content popularity versus 

long terms interest in order to avoid caching quickly 

potentially one-timer contents or fake news and 

losing the long-term useful contents. 

 

Figure 8: Eviction rate vs Relative cache size. 

In order to understand the request spatial-based 

heuristics integrated in our caching algorithm, we 

vary the content request patterns which follows 
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different spatial localisation factor β (0.1-0.85) 

utilized in Hawkess process (Dabirmoghaddam et al., 

2014) and measure the cache hit ratio. In line with 

(Dabirmoghaddam et al., 2014), with low localization 

factor β, content requests are generated 

independently. The generated trace, therefore, 

conforms to the IRM assumption and hence, one 

single time content is considered. With a localization 

factor of 0.85, other near nodes in a region more likely 

request the same content after a node requests it. 

Fig. 9 shows that the request spatial clustering 

heuristic enables CafRepCache to adapt with the 

spatial locality of content requests. CafRepCache 

achieves the best performance (around 87% cache hit 

ratio) followed by LocationCache (80%) and 

SocialCache (72%). TLRU and OCPCP have no (or 

little) improvement to the accuracy of predicting 

content popularity, ranging from 52% to 63% cache 

hit ratio regarding the dynamically changing of 

spatial localization factor. 

We observe that higher β even leads to bigger gap 

between CafRepCache and other state-of-the-art 

content solutions. It is due to the spatial locality 

heuristic helps to classify and recognise content 

interests coming from localised group of subscribers, 

then adaptively predict that the contents will be 

requested again by other subscribers within that 

location. 

 

Figure 9: Cache hit ratio vs Spatial localisation factor. 

We evaluate the effect of subscriber-caching point 

connectivity on the performance of different state-of-

the-art caching protocols in order to understand the 

nature of caching points regarding the dynamic 

connectivity of mobile subscribers. 

Fig. 10 shows that CafRepCache outperforms 

other competitive caching protocols in terms of 

average delay measured by the number of hops. 

 

Figure 10: Average latency (hops) vs. Subscriber-Caching 

point connectivity. 

CafRepCache is able to bring the cached contents to 

only a few hops away from subscribers (2.7 hops) 

regarding the dynamic centrality of caching points. 

This is due to CafRepCache benefits from 

multidimensional multilayer analytics that allow it to 

place the most suitable set of contents in the most 

suitable set of caching points which are not only 

highly central but also have similarity in contacts and 

interest requests with the subscribers. 

5 CONCLUSIONS 

We proposed multilayer adaptive predictive 

distributed collaborative analytics and heuristics for 

enabling spatial-temporal locality awareness of 

mobility and traffic patterns as well as mobility-

content traffic interplay for opportunistic caching in 

mobile edge/fog networks. Our combined heuristics 

allow the caching protocol to be more flexible and 

responsive to the dynamic mobility and complex 

content request patterns in the unreliable scenarios 

imposed by varying publishers and subscribers as 

well as dynamic resource availability. We performed 

extensive real trace-driven experiments in ONE 

simulation (Keränen et al., 2009) and showed that the 

proposed predictive heuristics help CafRepCache 

caching framework to perform better than the state-

of-the-art caching solutions in terms of success ratio, 

cache hit ratio, average delay and eviction rate. 

We aim to explore our ego-network analytics 

and heuristics in greater detail and propose adaptive 

context-aware weighting of the complementary 

analytics and utilities. We plan to deploy our 

approach in different application scenarios which 
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have complex temporal network topologies such as 

smart agriculture (Wietrzyk and Radenkovic, 2010; 

Brun-Laguna et al., 2016), urban emergency (Huynh 

and Radenkovic, 2017), intelligent transport system 

(Loscri et al., 2019), and smart manufacturing 

(Radenkovic et al., 2015) using software-defined 

networking (SDN) or network function virtualization 

(NFV) as in (Radenkovic, 2016; Radenkovic and 

Huynh, 2016). 
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