
HoT: Unleash Web Views with Higher-order Templates

Fernando Miguel Carvalho a and Luis Duarte
ADEETC, ISEL, Polytechnic Institute of Lisbon, Portugal

Keywords: Template View, Big Data, Front-end, Web Application, HTML.

Abstract: Over the past decades, templates views have been the most used approach to build dynamic HTML pages.
Simply put, a template engine (such as JSP, Handlebars, Thymleaf, and others) generates HTML by merging
templates with given data models. Yet, this process may turn impractical for large data sets that postpone the
HTML resolution until all data become available to the engine. This behavior results in poor user experience
preventing the browser to render the end user-interface. In this paper we introduced the concept of higher-
order templates (HoT) provided in Java implementation of HtmlFlow, which allows HTML to be resolved on
demand as data becomes available. This lets the user-interface to be rendered incrementally by the browser in
line with the availability of the data. Finally we also show some advantages of HtmlFlow over state of the art
front-end frameworks such as ReactJS.

1 INTRODUCTION

Contrary to static HTML pages, which do not change
from request to request, dynamic Web pages may take
results from a data source, like database or web ser-
vice, and embed them into the HTML. Dynamic Web
pages share a similar structure to static HTML but
they also include markers that can be resolved into
calls to gather dynamic information. Since the static
part of the page acts as a template, this pattern is
known as template view (Fowler, 2002) or template-
based view strategy (Alur et al., 2001). When the tem-
plate view is used to service a request, the markers
are replaced by the results of corresponding computa-
tions. The parsing and replacement process (i.e. res-
olution) is the main role of the template engine (Parr,
2004).

Template engines distinguish themselves by the
idiom and subset of available markers to control the
dynamic content. Generally, all engines provide a
specialized tag for iteration, which can be used for
example to generate a dynamic list such that one pre-
sented in Listing 1 expressed in the Handlebars id-
iom (an extension to the Mustache templating lan-
guage (Lerner, 2011)).

In this example, the template receives a context
object with a tracks property and generates a li
element with the track’s name for each item in the
tracks list. The process of resolving the template

a https://orcid.org/0000-0002-4281-3195

and producing HTML is blocking and it only finishes
when all template markers have been replaced with
data from the context object. In the case of an itera-
tion tag (i.e. #each of Listing 1) it must traverse the
entire list (i.e. tracks) to complete the template reso-
lution. The larger the data (i.e. tracks.size()), the
longer the engine takes to finish the resolution. While
the engine is resolving the view, the browser is pre-
senting a blank page to the end user giving him an
unresponsive behavior.

Listing 1: Handlebars template view for a dynamic un-
ordered list.

{{#each tracks}}
{{name}}

{{#each}}

Visualization is one of the major concerns in big
data (Agrawal et al., 2015; Storey and Song, 2017).
Also, people tend to prefer web based applications
as their favorite visualization support for data anal-
ysis (Yaqoob et al., 2016). Yet, even using data re-
duction strategies (Liu et al., 2013; ur Rehman et al.,
2016) the resulting data sets are large enough to make
unfeasible the use of template views. This problem
arises in both, server-side or client-side (i.e. front-
end) web application development. In the former
case, the view resolution process prevents the server
to send the response and in the latter, the number of
DOM nodes (Hors et al., 2004) increases with the size

118
Carvalho, F. and Duarte, L.
HoT: Unleash Web Views with Higher-order Templates.
DOI: 10.5220/0008167701180129
In Proceedings of the 15th International Conference on Web Information Systems and Technologies (WEBIST 2019), pages 118-129
ISBN: 978-989-758-386-5
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

of dynamic data, incurring in additional performance
overhead for the browser. For these reasons tradi-
tional ways of presenting data in web applications is
inadequate to handle big data (Agrawal et al., 2015).

In this work, we propose a new approach based on
higher-order templates (HoT), which aims to achieve
a similar methodology to the server side template
view pattern, but useful even on the presence of big
data. Briefly, our goal is to establish data-centric
push-style approach (Jin et al., 2015) and push the
resulting HTML to the response stream as its content
is being resolved. Rather than pulling data from a
source and fully complete markers of a template view,
we propose to react to data and push the resulting
HTML as it is being resolved. This follows the idea
of (Meijer, 2012) that states that the Velocity axis of
big data ranges from pulling data from the source to
pushing data to the clients.

This solution is implemented in HtmlFlow Java
library, which implements a domain specific lan-
guage (DSL (Mernik et al., 2005)) for HTML. Briefly,
HtmlFlow implementation is based on the following
key ideas:

1. do not block the template resolution until its com-
pletion (Meijer, 2012);

2. discard textual template files;

3. use HTTP chunked transfer encoding (Fielding
and Reschke, 2014);

4. define views as first-class functions.

For the remainder of this paper we present in the
next section state of the art solutions that deal with
web presentation of large data sets. Then in Sec-
tion 3 we present our proposal of higher-order tem-
plates. After that in Section 4, we present the Java
library HtmlFlow, which provides a domain-specific
language for HTML. In Section 5, we discuss re-
lated work in the HtmlFlow field. In Section 6, we
present an experimental evaluation of developing a
web application–topgenius.eu1–that presents the top
tracks ranking for a given country. This application
uses data from Last.fm RESTful API and dynamically
builds a list with hundreds of thousands of records.
Here we compare three different technological ap-
proaches: 1) server-side template view, 2) ReactJS
and 3) HtmlFlow. Finally, in Section 7 we conclude
and discuss some future work.

1Source code is available at github.com/xmlet/topgenius

2 STATE OF THE ART

Dealing with large data sets on web applications usu-
ally leads the browser to present an unresponsive be-
havior due to the template view resolution process.
One way of dealing with this problem is to reduce big
data into manageable size (Feldman et al., 2013). Yet,
even using reduction techniques the resulting subset
may still be large enough to turn impractical the use
of a template engine.

Web applications usually mitigate this problem
with two possible solutions (but not limited to): 1)
numbered pagination, 2) infinite scrolling. Numbered
pagination was one of the first solutions adopted to
deal with the web presentation of big data, such as
the results retrieved by web search engines. Later the
MSN search’s image search was the first one to in-
troduce the infinite scrolling technique with a single
page of results, which you can scroll to automatically
load more images (Farago et al., 2007). Both options
reduce latency and turn the browser responsive, but
both also have some drawbacks.

Numbered pagination forbids, for example, the
end user to use the browser to find something among
all resulting pages. On the other hand, infinite
scrolling uses AJAX to fetch data (Kesteren et al.,
2006) and DOM (Hors et al., 2004) to update the
user-interface as data results become available. This
approach is usually known as front-end web develop-
ment (Smith, 2012). But, manipulating large collec-
tions of DOM nodes is slow and increases browser
processing overhead. Moreover we lose the overall
structure of the template view that now is mixed in
with DOM manipulation logic.

Regarding the example of Listing 1 and its use
with a front-end technology, then the template would
be only the ul element with a unique identifier (e.g.
listOfTracks) such as:

<ul id="listOfTracks">

In turn, the li elements would be manipulated
programmatically through DOM.

Keeping a view definition with whole HTML
structure similar to a template was one of the moti-
vations for the appearance of front-end frameworks,
such as Angular or ReactJs. This kind of frameworks
allow the definition of a view based on a context ob-
ject that is latter bound to the view by the framework
through DOM.

Yet, these frameworks do not solve the perfor-
mance issues and do not let end users to get page
source code in an infinite scroll scenario. For example
in ReactJs, the page source of resulting HTML will

HoT: Unleash Web Views with Higher-order Templates

119

only display <div id="root"></div> correspond-
ing to the div element where the framework places
HTML elements from DOM manipulation.

Briefly, web front-end development approaches
circumscribe the server-side templates problems by
moving the HTML resolution from the server to web
agents (i.e. browser). This let the browser to update
the user-interface as data becomes available. Yet, this
approach also have the following drawbacks:

1. proliferation of the web development heterogene-
ity, which adds the use of DOM and AJAX;

2. loose the chance of getting the page source of the
resulting HTML;

3. the number of DOM nodes are proportional to the
size of dynamic data and big data sets may kill the
browser performance.

3 HoT: HIGHER-ORDER
TEMPLATES

A higher-order template (HoT) is an advanced tech-
nique for resolving a template view progressively as
data from its context object is being available, rather
than waiting for whole data and resolve the entire
template. A higher-order template (HoT) defines a
template view as a function and its context object as
other function received by argument. Also, a higher-
order template can receive other templates as param-
eters. In this case, these parameters play the role of
partial views. Like a higher-order function may take
one or more functions as arguments, a higher-order
template may take one or more templates views as ar-
guments. This compositional nature enables reusing
template logic.

Templates in HtmlFlow are specified through Java
functions, which can be defined as named or anony-
mous functions (i.e. lambdas) For example, the tem-
plate of Listing 1 can be expressed in HtmlFlow with
the tracksTpl function of Listing 2.

Listing 2: HtmlFlow template function for a division ele-
ment with a dynamic unordered list.
HtmlTemplate <Stream <Track >> tracksTpl =

(view , tracks) -> view

.div()

.ul()

.of(ul -> tracks.forEach (item -> ul

.li().text(item.getName()).__() // li

))

.__ () // ul

.__(); // div

The tracksTpl function receives two parameters:
an HtmlFlow view and a context object (e.g. tracks).
The view parameter provides the HTML fluent in-
terface (Fowler, 2010) with methods corresponding
to the name of HTML elements and an additional
() method to close an HTML element tag. The

tracks parameter acts like the model in the model-
view-controller pattern (E. Krasner and Pope, 1988).
Here the tracks is a Java Stream, which is an ab-
straction over a lazy sequence of objects (i.e. in-
stances of Track). In this case, the tracks ob-
ject is traversed in the forEach method call (i.e.
tracks.forEach(...)) chained within the template
definition.

Also, an HtmlFlow template can receive other
templates as parameters. In this case, these param-
eters play the role of partial views. Regarding a tem-
plate view with partials then the corresponding func-
tion should receive a further argument for each partial
view. For example, considering that the tracksTpl
function takes an additional footer argument, then
it can include this partial view through the method
addPartial. We can chain the call to addPartial
in the template definition as depicted in the example
of the Listing 3, that adds the footer after the defini-
tion of the unordered list.

Listing 3: HtmlFlow template with a partial view footer.
HtmlTemplate <Stream <Track >> tracksTpl =

(v, trks , footer) -> v

.div()

... // adds ul and an li for each track

.of(div -> div.addPartial(footer));

.__() // div

If a partial view has no context object and does
not require model binding, then we can discard the
template function and directly create that view from
an expression, through the view() factory method of
the class StaticHtml. For example, we may define
a billboard division (i.e. bbView) as depicted in the
following view definition:

HtmlView bbView = StaticHtml
.view().div().text("Dummy billboard"). ();

Another advantage of using views as first-class
functions is to allow views composition. For exam-
ple, if want to define a partial view (e.g. footerView)
with a placeholder for another partial view (e.g.
banner), then we may define a footerView method
that takes an HtmlView as the banner parameter and
returns a new HtmlView as depicted in Listing 4.

WEBIST 2019 - 15th International Conference on Web Information Systems and Technologies

120

Listing 4: Partial view definition of a footer that takes an-
other banner view as parameter.
HtmlView footerView(HtmlView banner) {

return StaticHtml.view()

.div()

.of(div -> div.addPartial(banner))

.p().text("Created with HtmFlow").__() // p

.__(); // div

}

Thus, we may finally compose the tracksTpl
template of Listing 3 with the footerView, which
in turn will be filled with the bbView. This creates
the following pipeline: tracksTpl <- footerView <-
bbView.

Given the tracksTpl function we may create the
corresponding view (i.e. tracksView) through the
view() factory method of the class DynamicHtml
as depicted in line 2 of Listing 5. Finally, we may
compose all the parts of the tracksView through
the render method of HtmlView. For example,
given a tracks stream, the footerView and the
bbView we may resolve the tracksView as de-
picted in line 3 of Listing 5. Here we can observe
the pipeline: tracksView <- footerView <- bbView,
where tracksView takes the footerView as argu-
ment, which in turn receives the bbView as argument.

Listing 5: Composing and resolving the tracksView.
Stream <Track > tracks = ...

var tracksView = DynamicHtml.view(tracksTpl);

String html = tracksView

.render(tracks , footerView(bbView));

Having all the compositional parts of a template
view defined as first-class functions (the template it-
self, the context object and partial views) is a key fea-
ture to achieve the HtmlFlow compositional nature.

4 HtmlFlow

HtmlFlow is a Java library DSL for HTML. HtmlFlow
is type-safe and conforms with HTML 5 schema. In
the following subsection we present the HtmlFlow de-
sign and its core types. After that, we distinguish be-
tween the pull and push output approaches provided
by HtmlFlow. Finally in subsection 4.3 we show some
implementation details of HtmlFlow.

4.1 Design

In addition to the HTML fluent interface, the
HtmlView class encapsulates the logic of what
to do on each HTML element visit. To that

end, the HtmlView delegates to an implementa-
tion of the ElementVisitor interface, the re-
sponsibility of defining what to do on each in-
vocation to the HtmlFlow fluent interface (e.g.
.div(), .ul(), etc). This feature enables the
integration with different kind of visitors such
as collecting the resulting HTML into a string
buffer (i.e. HtmlVisitorStringBuilder) or
emitting the HTML to an output stream (i.e.
HtmlVisitorPrintStream), as depicted in the class
diagram of Figure 1. Note that every HTML element
is an implementation of the Element interface and
also the HtmlView itself.

Figure 1: Class diagram of HtmlFlow core types.

In turn, the type HtmlView has two different sub-
types: StaticHtml and DynamicHtml. The former
does not support model binding and can be useful to
define and reuse partial views in different kinds of
template views (e.g. footerView and bbView). The
latter is intended for templates with a context object
that require model binding on their resolution.

Thus a DynamicHtml view depends of an imple-
mentation of the HtmlTemplate, such as the lambda:
(view, tracks, footer) -> ... of the Listing 3.
This lambda is conforming the following definition of
the interface HtmlTemplate:

public interface HtmlTemplate <T> {
void resolve(

HtmlView <T> view ,
T model ,
HtmlView <T>...partials);

}

Note that both view and partials are of type
HtmlView allowing the composition between any
kind of views.

4.2 Output Approaches

HtmlFlow provides two ways of resolving a view:
pull or push approach. In the pull approach we get the
resulting HTML from the render() method call, as
shown in line 3 of the example of Listing 5 and then
we may proceed to do whatever we want with that

HoT: Unleash Web Views with Higher-order Templates

121

HTML. On the other hand, with the push approach,
we set the HtmlFlow with a PrintStream and let
the resolution process push the resulting HTML to
that stream. The equivalent push resolution of the
tracksView of Listing 5 would be:

tracksView
.setPrintStream (...)
.write(tracks , footerView(bbView));

According to the requirements stated in Section 1
of a web application, we want to push the resulting
HTML to the output stream as the template view is
being resolved. To that end we should use a visitor
that writes the resulting HTML to the HTTP response
stream. This allows the HTML to be sent to the end-
user agent (e.g. browser) as tracks are being iter-
ated through the forEach loop. HtmlFlow does not
need to wait for tracksTpl completion to start send-
ing the HTML. As HTML elements are visited the
HTML is generated and emitted immediately to the
output channel allowing the browser to progressively
render the user-interface.

For a web application purpose we should wrap
the HTTP response stream into a PrintStream
object and assign it to the HtmlView. In Listing 6 we
show the usage of a HttpResponsePrinter object
that wraps an instance of HttpServerResponse
representing an HTTP response in a VertX
web application (Fox, 2001). First we take
the HttpServerResponse object from the
RoutingContext and set the content-type as
text/html (lines 2 and 3). After that, we set the
output stream of the view (line 5) and then we pass
to it the model object (line 6) that will be internally
bound to the template. Finally, we close the HTTP
response stream (line 7).

Listing 6: Setting an HtmlView to the HTTP response
stream.
<T> void handler(

RoutingContext ctx,

HtmlView <T> view ,

T model)

{

HttpServerResponse resp = ctx.response();

resp.putHeader("content -type", "text/html");

view

.setPrintStream(new HttpResponsePrinter(resp))

.write(model);

resp.end();

}

The handler method of Listing 6 can be used
to send the result of tracksView resolution to the
HTTP response stream. Every time the tracksView
resolution emits HTML to its PrintStream, the

Listing 7: A naif implementation of PrintStream that for-
wards data to a HttpServerResponse.
class HttpResponsePrinter

extends PrintStream
{
final HttpServerResponse resp;
public HttpResponsePrinter (... resp) {

super(new OutputStream() {
@Override
public void write(int b) {
char c = (char) b;
resp.write(String.valueOf(c));

}
});

this.resp = resp;
}

}

HttpResponsePrinter may push that data to the
HTTP response stream. In Listing 7 we show a naif
implementation of the HttpResponsePrinter that
writes every received byte immediately to the HTTP
response stream.

A more effective approach may buffer those bytes
into an internal buffer and flush that buffer to the out-
put stream only when a certain threshold is achieved.

4.3 HtmlFlow Internals

There is a primary goal in the HtmlFlow design:
the HTML fluent interface should be easily naviga-
ble. This is crucial to provide a good user experi-
ence while creating templates through the HtmlFlow
API. There are two main aspects, the fluent interface
should be easily navigable and always implement the
concrete language restrictions. We tackle this issue
through the use of type parameters, which allow us
to keep track of the tree structure of the elements that
are being created and keep adding elements, or mov-
ing up in the tree structure without loosing the type
information of the parent. In Listing 8 we can observe
how we can take advantage of the type arguments.

Listing 8: Explicit use of type arguments in the subtypes of
Element.
Html <Element > html = new Html <>();
Body <Html <Element >> body = html.body();

P<Header <Body <Html <Element >>>> p1 =
body.header().p();

P<Div<Body <Html <Element >>>> p2 =
body.div().p();

Header <Body <Html <Element >>> header =
p1.__();

Div<Body <Html <Element >>> div = p2.__();

When we create the Html element we should in-
dicate that it has a parent, for consistency. Then, as

WEBIST 2019 - 15th International Conference on Web Information Systems and Technologies

122

Listing 9: Example of the implicit use of type arguments in
HtmlFlow API.
Html <Element > html = new Html <>()

.body()
.header()

.p().__()
.__() // header
.div()

.p().__();
.__() // div

.__(); // body

we add elements, such as Body, we automatically re-
turn the recently created Body element, but with par-
ent information that indicates that this Body instance
is descendant of an Html element. After that, we cre-
ate two distinct P elements, p1, which has an Header
parent, and p2, which has a Div parent. This informa-
tion is reflected in the type of both variables. Lastly,
we can invoke the () method,which returns the cur-
rent element parent, and observe that each P instance
returns its respective parent object, with the correct
type.

In the example presented in Listing 8 the usage of
the fluent interface might seem to be excessive ver-
bose to define a simple HTML document. Yet, for
most common purposes we can suppress the auxil-
iary variables and simplify its usage chaining method
calls as we show in Listing 9, which is an equivalent
definition to the previous template of Listing 8. The
type arguments are still important and inferred by the
methods chain usage to validate and provide the cor-
rect available API to the next element. Therefore, typ-
ing for example p().div() is disallowed because it
goes against the content allowed by a P element ac-
cording to HTML5.

All the implementations of the Element interface
corresponding to all kind of HTML elements avail-
able in HTML 5 are automatically built from the XSD
definition of the HTML 5. These implementations
are part of the HtmlApi auxiliary library used by the
HtmlFlow. The HtmlApi is built with the support of
ASM (Binder et al., 2007) a bytecode instrumentation
tool. Thus HtmlFlow depends of a build process or-
ganized in three different components that are part of
xmlet2 framework depicted in Figure 2.

Each component of Figure 2 has the following
role:

1. XsdParser – parses all the external rules defined
by the XSD document into a tree of objects.

2. XsdAsm – deals with the generation of bytecodes
that make up the types of the Java fluent interface.
This project should translate as many rules of the

2https://github.com/xmlet/

XsdParser

XsdAsm

HtmlApi

Objects Tree

Java Types

</>
XSD

HtmlFlow

Figure 2: xmlet framework build process and its organiza-
tion in three main components: XsdParser, XsdAsm and
HtmlApi.

parsed language definition, its XSD file, into the
Java language in order to make the resulting flu-
ent interface as similar as possible to the language
definition.

3. HtmlApi – it is a concrete client of the XsdAsm
project, it will use the HTML5 language defini-
tion file in order to request a strongly typed fluent
interface, named HtmlApi. This is used by the
HtmlFlow library to manipulate the HTML lan-
guage and write well formed documents.

To support the foundations of the XSD language
there is a common infrastructure in every fluent in-
terface generated by this project. This infrastruc-
ture is composed by the following main interfaces:
Element and Attribute, which are implemented
by every generated class for each xsd:element or
xsd:attribute defined in the XSD.

This solution focus on how the code is organized
rather than making complex code. All the meth-
ods present in the generated classes have very low
complexity, mainly adding information to the ele-
ment children or to the attribute list. To reduce code
repetition we created many interfaces with default
methods implementations so that different classes
can extend them and reuse the code. The complex-
ity of the generated code is mostly present in the
AbstractElement class, which implements most of
the Element interface methods. Another very impor-
tant aspect of the generated classes is the extensive
use of type arguments, also known as generics, which
allows the navigation in the element tree while keep-
ing type information, which is essential to ensure the
specific language restrictions.

The client of the HtmlApi (i.e. HtmlFlow) is
responsible for establishing what to do on Htm-
lApi methods calls. To that end the HtmlApi fol-
lows the Visitor design pattern. Thus, on every el-
ement or attribute instantiation we directly invoke
the ElementVisitor visit method. Since the
ElementVisitor instance is shared by all elements

HoT: Unleash Web Views with Higher-order Templates

123

then we can invoke the visit method in the con-
structor of the classes generated based on a XSD
<xsd:element>. In Listing 10 we show a simplified
example of the generated Html class.

Listing 10: Html Class Generated by XsdAsm.
final class Html <Z extends Element > {
protected final Z parent;
protected final ElementVisitor visitor;

public Html(Z parent) {
this.parent = parent;
this.visitor = parent.getVisitor();
this.visitor.visitElementHtml(this);

}
...

public Body <T> body() {
return new Body(this);

}
public Head <T> head() {

return new Head(this);
}

}

Since adding elements results in the creation of
new objects, such as Body and Head, it results in the
invocation of their respective visit method due to the
visit method being called on each class constructor.
The attributes have a very similar behavior, although
they do not create instances on their methods invo-
cation. On the other hand, their restrictions are vali-
dated through the invocation of static validate meth-
ods present on each attribute class.

5 RELATED WORK

HtmlFlow distinguish from competition in three main
features: 1) composability provided by higher-order
templates (HoT), 2) HTML validation and 3) perfor-
mance. In this section we analyze these characteris-
tics and related work for each of these fields.

HTML view engines deal with data models as
their inputs to produce HTML as output (Fowler,
2002). Martin Fowler distinguishes between two pos-
sible approaches followed by view engines: 1) tem-
plate view and 2) transform view. The former is
HTML centric and thus oriented to the output. In this
case, the view is written in the structure of the HTML
document and embed markers to indicate where data
model properties need to go. Since the seminal tech-
nologies JSP, ASP and PHP appeared with the tem-
plate view pattern, many other alternatives emerged
along the last two decades3, turning this pattern into

3wikipedia.org/Comparison of web template engines

one of the most used approaches in web applications
development.

On the other hand, the transform view is oriented
to the input and how each part of the input is directly
transformed into HTML. XSLT is maybe one of the
most well-known programming languages to specify
transformations around XML data. In this case the
XML data takes the place of the input that is trans-
formed by the XSLT to another format (e.g. HTML).
Also, the functional nature of the transform view pat-
tern enables its composition in a pipeline of transfor-
mations where each stage takes the result of the previ-
ous transformation as input and produces a new out-
put that is passed to the next transformation. For ex-
ample, the Cocoon Java library (?) provides a frame-
work for building pipelines of XML transformations
steps specified in XSLT.

The transform view pattern has similarities with
the higher-order templates approach of HtmlFlow
where a view is a first-class function that takes an ob-
ject model as parameter and applies transformations
over its properties. The object model has the role of
the input (e.g. XML data) and the HTML domain-
specific language is the idiom used to transform the
model into HTML.

The j2html (Ase, 2015) is an alternative Java DSL
for HTML. The major handicap of j2html in com-
parison to HtmlFlow is the lack of validation of the
HTML language rules either at compile time or at
runtime. Hence, is does not ensure that the resulting
HTML is conforming a valid HTML document.

The KotlinX.Html (Mashkov, 2015) is another
popular DSL for HTML and it has been written in
Kotlin programming language. Kotlin may run on top
of the Java Virtual Machine (JVM) and provide inter-
operability between Java, Android, and browser en-
vironments. Like HtmlFlow, the HTML fluent inter-
face for KotlinX.Html is automatically built from the
XSD definition of the HTML 5 language. Thus, the
generated DSL ensures that each element only con-
tains the elements and attributes stated in the HTML5
XSD document. This is achieved through type infer-
ence and the Kotlin compiler. Yet, unlike HtmlFlow,
the KotlinX.Html does not validate attributes and ac-
cepts any kind of values.

HtmlFlow has two main advantages over com-
petition: 1) shows better performance in several
benchmarks including the spring benchmark (Reijn,
2015), and 2) flexible output approach with sup-
port to the visitor design pattern integration (Gamma
et al., 1995). This latter feature allows the integra-
tion of an output stream that pushes the resulting
HTML to the HTTP response stream as the view is
being resolved. The push-based style is proposed by

WEBIST 2019 - 15th International Conference on Web Information Systems and Technologies

124

Erik Meijer (Meijer, 2012) as an alternative to the
usual pull-based collections through the iterator pat-
tern (Gamma et al., 1995) in the context of the veloc-
ity dimension of big data.

6 EXPERIMENTAL EVALUATION

To evaluate our proposal of HtmlFlow higher-order
templates, we compare it with two different alterna-
tive approaches: a state of the art server side tem-
plate engine (Handlebars) and a front-end framework
(ReactJS). We used these three different technologies
to build a VertX web application (Fox, 2001) that
presents a listing resulting from a large data set pro-
vided by Last.fm API. This API provides a social mu-
sic playground that allows anyone to build their own
programs including web applications.

In our experimental evaluation we built a Java web
application deployed in Heroku with the domain top-
genius.eu. The topgenius.eu provides the most popu-
lar tracks on Last.fm last week for a given country. To
that end we consume data from the geo.getTopTracks
service of Last.fm API.

In the following subsection we present the high-
level architecture of the topgenius.eu web applica-
tion. Next in the subsection 4.2 we explain the do-
main model. Finally in subsection 4.3 we describe
the testing approach and the results of the experimen-
tal evaluation.

6.1 TopGenius Architecture

The topgenius.eu provides 3 different pages with ex-
act same functionality, but built with 3 three different
technologies: Handlebars, HtmlFlow and ReactJS. At
the index we can find the corresponding links to these
pages, each one presenting a similar user-interface to
that one of Figure 3.

The web page of Figure 3 also includes an input
for the limit, which specifies the maximum number
of tracks that should be returned by topgenius web
server. To avoid useless roundtrips to Last.fm we keep
an internal per user cache in topgenius web server
with data gathered from the geo.getTopTracks service.
On the first request for a given country the topgenius
will dispatch a sequence of fetch operations to gather
that country’s data from the Last.fm. These fetch op-
erations are performed asynchronously and topgenius
does not need to wait for their completion. For ex-
ample, if the end user asks for the top hundred tracks
from Australia, then the topgenius will fetch all avail-
able tracks from Australia on Last.fm, but it will con-
clude the response as the first 100 tracks are available.

Later, the same request to topgenius may already get
all available tracks from its cache with a low latency.

Also, as presented in Figure 3 we provide a clear
cache feature that allows users to recycle the cache for
a given country and let them take the user experience
of fetching data from the Last.fm data source with a
high latency.

The topgenius web server provides three routes for
each of the view engines: /handlebars, /htmlflow
and /react, as depicted in Figure 4. In addition, it
also includes a fourth route /api/toptracks used by
the ReactJS application to get a country top tracks.

While the geo.getTopTracks service of Last.fm
API provides paginated results with 50 records
per page, the /api/toptracks route serves those
same pages in a single data stream. This al-
lows the ReactJS application to get whole required
data with a single fetch operation, similar to what
happens for Handlebars and HtmlFlow approaches,
where the browser gets the resulting HTML doc-
ument in a single HTTP GET request. To that
end the /api/toptracks route uses the media type
application/stream+json (Snell, 2012) to trans-
mit JSON objects in newline-delimited JSON for-
mat (NDJSON). In Figure 4 we use a distinct dashed
arrow to represent data emitted by /htmlflow and
/api/toptracks routes regarding the chunked trans-
fer encoding (Fielding and Reschke, 2014) used in
both cases to stream data. On the other hand,
the /handlebars route compromises a well-known
Content-Length, which shows that topgenius server
starts to send the resulting response only when the
entire HTML document is completed. This pre-
vents the browser from presenting the response of
the /handlebars route while the server has not con-
clude the template view resolution. Rather than us-
ing this all-or-nothing basis, the /htmlflow route
starts streaming the end HTML as the resolution pro-
ceeds, sending the final data in a series of chunks
with unknown size. This same streaming behavior
applies to the /api/toptracks route. Thus in both
cases the browser will render content progressively:
1) as HTML is received from the /htmlflow route,
or 2) as JSON is received from the /api/toptracks
route and the ReactJS component dynamically up-
dates HTML through DOM manipulation.

6.2 TopGenius Domain Model

In the topgenius Java application the class
LastfmWebApi provides methods to access the
Last.fm API. In this case, the access to the geo.get-
TopTracks service is provided by the method
countryTopTracks with the following signature:

HoT: Unleash Web Views with Higher-order Templates

125

Figure 3: Topgenius.eu user-interface to present the most popular tracks on Last.fm last week for a given country.

Figure 4: Topgenius architecture and interactions with Last.fm RESTful API and the browser.

Track[] countryTopTracks(String country,
int page)

To gather the first 100 thousand tracks of Australia
Last.fm top tracks into a single Stream of Track ob-
jects we may perform the following query:

Listing 11: Stream query pipeline to gather the first 100
thousand tracks from Australia.
Stream <Track > tracks = IntStream

.rangeClosed(1, 100000)

.mapToObj(p ->
countryTopTracks("Australia", p))

.flatMap(Stream::of)

The resulting Stream<Track> is the model (i.e.
context object) for the templates built with Handle-
bars and HtmlFlow. But notice that tracks stream is
a lazy sequence, meaning that its elements are pro-
cessed only on demand, when they are fetched by
a terminal operation such as a for each loop. In
the case of HtmlFlow we can provide this tracks
stream as it is to the template which consumes
its elements trough the chained operation of(->
tracks.forEach...) as denoted in the example

of Listing 2. Yet, for the Handlebars template, we
have to first collect the entire tracks stream into a
List<Stream> before passing it to the template. This
prefetch of the stream incurs in useless memory over-
head and higher latency in HTTP server response.
Thus for limits over 10 thousands of tracks the Han-
dlebars HTTP handler may violate the Heroku plat-
form requirements and responds with a internal server
error status code.

In ReactJS a React.Component represents a tem-
plate view and its state property is equivalent to the
model in MVC or the context object in a template.
The main characteristic of ReactJS is that whenever
the state changes, the component automatically re-
renders. The React component setState() method
schedules an update to a component’s state object that
results in its rendering.

Thus, in the ReactJS approach rather than gather-
ing all the top tracks pages in a single stream we con-
catenate the resulting arrays in the component state
array and let React do the job and re-render the com-
ponent. The geographicTopTracks method of List-
ing 12 uses the native Javascript fetch function to
perform an HTTP request to /api/toptracks and a

WEBIST 2019 - 15th International Conference on Web Information Systems and Technologies

126

ndjson parser to deliver pages through the Javascript
async iterable protocol. Note that the concat() oper-
ation does not change the existing arrays, but instead
returns a new array that is set as the new state of the
React component.

Listing 12: ReactJS geographicTopTracks method that
recursively parses each page retrieved from /api/toptracks
route.
geographicTopTracks(url) {
fetch(url)
.then(resp => {

const reader =
ndjson(resp.body.getReader())

reader.next().then(
function cons({value , done}) {

if(done) return
const tracks = this

.state

.tracks

.concat(value.tracks.track)
this

.setState({
’tracks ’: tracks

})
reader

.next()

.then(cons)
})

})
}

6.3 Performance Evaluation

To measure and compare the performance of differ-
ent approaches we used JMeter with Selenium Web-
Driver. To that end we built a Selenium script for
each approach that opens the topgenius correspond-
ing url, fetches the top tracks of Australia and when
the browser finishes receiving and rendering all con-
tent, then it scrolls to the end of the page. In List-
ing 13 we depict the script used to test Handlebars.
For HtmlFlow it only changes the url, but for Reac-
tJS we need an additional wait condition to detect the
rendering completion. Note that for ReactJS the page
body is empty and all content is loaded dynamically
through DOM.

Listing 13: Selenium script to evaluate the performance in
JMeter.
WDS

.browser

.get("/handlebars?country=...")
WDS

.browser

.executeScript(scrollTo(
0,
document.body.scrollHeight)

)

All tests were executed on a single machine with
the JVM version 11, SE Runtime Environment 18.9
(build 11+28). During the measurements there were
no other workloads running. To discard the network
overheads we run both topgenius web server and the
browser in the same machine. And, before starting the
measurement we ensured that all required data was al-
ready collected and available in the topgenius internal
cache.

The results of Figure 5 were taken with 3 different
workloads for a limit of 1000, 5000 and 10000 tracks.
These results show that for small data sets there are
no significant differences, yet for larger data sets the
HtmlFlow gets an improvement of up to 4-fold in per-
formance in comparison to ReactJS.

Despite we are including here the Handlebars re-
sults, they only have meaning within this benchmark
ecosystem. On presence of a realistic data source such
as Last.fm with high latency, Handlebars it is not able
to show any preliminary results until all records were
fetched, which is not an acceptable user experience.
We can observe this behavior in topgenius.eu if we do
not use cache.

7 CONCLUSIONS AND FUTURE
WORK

In this paper we propose a new approach of higher-
order templates implemented in HtmlFlow solution.
HtmlFlow assembles all the homogeneity and sim-
plicity of server-side Web development, enabling its
usage even with large data sets. HtmlFlow is a Java
DSL library for HTML that replaces textual template
files by templates defined as first-class functions. This
library not only competes in performance with state of
the art alternatives(Reijn, 2015), but it also provides a
full set of safety features not met together in any other
library individually, such as:
• Well-formed documents;
• Fulfillment of all HTML rules regarding elements

and attributes;
• Fully support of the HTML5 specification.

HtmlFlow started as an academic use case of a flu-
ent interface for HTML, which was not released nor
disseminated, but still attracted the attention of some
developers. This community was looking for a Java li-
brary that helps them to dynamically produce papers,
reports, emails and other kind of HTML documents
in complex Java applications where classic templates
engines do not fit all the requirements. For exam-
ple, textual templates are not properly suited for com-
plex programming tasks involving the dynamic build

HoT: Unleash Web Views with Higher-order Templates

127

Figure 5: Performance results in milliseconds taken with JMeter for three view engines: Handlebars, HtmlFlow and ReactJs.

of user-interface components, which may depend on
runtime introspection data (e.g. reflection).

The increasing attention around HtmlFlow raised
the idea of developing a mechanism that automati-
cally generates a fluent interface based on the HTML
language specification, specified in a XSD file, which
gave rise to the xmlet platform.

Having templates views defined as first-class
functions suppress the limitations of textual templates
for server-side views specially in the presence of large
data sets. Thus HtmlFlow keeps template views sim-
ple with focus on domain-driven design and avoiding
auxiliary decorations such as numbered pagination or
infinite scrolling via DOM manipulation techniques.

One of our goals for a future release of HtmlFlow
is to include an automatic translation tool that allows
to convert an HTML document in its equivalent defi-
nition in HtmlFlow idiom. This is an essential module
to spread the HtmlFlow in mainstream use allowing
web designers to easily convert their web themes to
integrate a main HtmlFlow project.

More interesting and the next evolution of
HtmlFlow will be the support of asynchronous mod-
els with particular focus in Java reactive streams. Our
goal is to deal with the Observable or Publisher as
a result of the transformation provided by a higher-
order template that can be asynchronously processed
to emit the resulting HTML to the HTTP response
stream.

ACKNOWLEDGEMENTS

We express our gratitude to Antonio Rito Silva from
INESC-ID, Professor at University of Lisbon for
many suggestions and improvements of our work. We
would like to thank Pedro Felix for all feedback and
help to enhance our work.

REFERENCES

Agrawal, R., Kadadi, A., Dai, X., and Andres, F. (2015).
Challenges and opportunities with big data visualiza-
tion. In Proceedings of the 7th International Confer-

ence on Management of Computational and Collec-
tive intElligence in Digital EcoSystems, MEDES ’15,
pages 169–173, New York, NY, USA. ACM.

Alur, D., Malks, D., and Crupi, J. (2001). Core J2EE Pat-
terns: Best Practices and Design Strategies. Prentice
Hall PTR, Upper Saddle River, NJ, USA.

Ase, D. (2015). Kotlin dsl for html. Technical report,
https://j2html.com/.

Binder, W., Hulaas, J., and Moret, P. (2007). Advanced java
bytecode instrumentation. In Proceedings of the 5th
International Symposium on Principles and Practice
of Programming in Java, PPPJ ’07, pages 135–144,
New York, NY, USA. ACM.

E. Krasner, G. and Pope, S. (1988). A description of the
model-view-controller user interface paradigm in the
smalltalk80 system. Journal of Object-oriented Pro-
gramming - JOOP, 1:26–49.

Farago, J. H., Williams, H. E., Walsh, J. E., Whyte, N. A.,
Goel, K. J., Fung, P., Lazier, A. J., Moss, K. A., and
Ray, E. N. (2007). Object search ui and dragging ob-
ject results.

Feldman, D., Schmidt, M., and Sohler, C. (2013). Turn-
ing big data into tiny data: Constant-size coresets for
k-means, pca and projective clustering. In Proceed-
ings of the Twenty-fourth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA ’13, pages 1434–
1453, Philadelphia, PA, USA. Society for Industrial
and Applied Mathematics.

Fielding, R. and Reschke, J. (2014). Chunked transfer cod-
ing. Rfc, https://tools.ietf.org/html/rfc7230#section-
4.1.

Fowler, M. (2002). Patterns of Enterprise Application Ar-
chitecture. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA.

Fowler, M. (2010). Domain Specific Languages. Addison-
Wesley Professional, 1st edition.

Fox, T. (2001). Eclipse vert.x tool-kit for building re-
active applications on the jvm. Technical report,
https://vertx.io/.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1995). Design Patterns: Elements of Reusable
Object-oriented Software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

Hors, A. L., Hégaret, P. L., Wood, L., Nicol, G., Robie, J.,
Champion, M., Arbortext, and Byrne, S. (2004). Doc-
ument object model (dom) level 3 core specification.
Technical report, https://www.w3.org/TR/2004/REC-
DOM-Level-3-Core-20040407/.

Jin, X., Wah, B. W., Cheng, X., and Wang, Y. (2015). Sig-

WEBIST 2019 - 15th International Conference on Web Information Systems and Technologies

128

nificance and challenges of big data research. Big
Data Res., 2(2):59–64.

Kesteren, A. V., Aubourg, J., Song, J., and Steen, H. R. M.
(2006). Xmlhttprequest specification. Technical re-
port, https://www.w3.org/TR/XMLHttpRequest/.

Lerner, R. M. (2011). At the forge: Mustache.js. Linux J.,
2011(210).

Liu, Z., Jiang, B., and Heer, J. (2013). immens: Real-time
visual querying of big data. In Proceedings of the
15th Eurographics Conference on Visualization, Eu-
roVis ’13, pages 421–430, Chichester, UK. The Eu-
rographs Association & John Wiley & Sons,
Ltd.

Mashkov, S. (2015). Kotlin dsl for html. Technical report,
https://github.com/Kotlin/kotlinx.html.

Meijer, E. (2012). Your mouse is a database. Queue,
10(3):20:20–20:33.

Mernik, M., Heering, J., and Sloane, A. M. (2005). When
and how to develop domain-specific languages. ACM
Comput. Surv., 37(4):316–344.

Parr, T. J. (2004). Enforcing strict model-view separation
in template engines. In Proceedings of the 13th Inter-
national Conference on World Wide Web, WWW ’04,
pages 224–233, New York, NY, USA. ACM.

Reijn, J. (2015). Demo project to show different java
templating engines in combination with spring mvc.
Technical report, https://github.com/jreijn/spring-
comparing-template-engines.

Smith, P. (2012). Professional Website Performance: Opti-
mizing the Front-End and Back-End. Wrox Press Ltd.,
Birmingham, UK, UK, 1st edition.

Snell, J. M. (2012). The application/stream+json media
type. Internet-draft.

Storey, V. C. and Song, I.-Y. (2017). Big data technologies
and management. Data Knowl. Eng., 108(C):50–67.

ur Rehman, M. H., Liew, C. S., Abbas, A., Jayaraman, P. P.,
Wah, T. Y., and Khan, S. U. (2016). Big data reduction
methods: A survey. Data Science and Engineering,
1(4):265–284.

Yaqoob, I., Hashem, I. A. T., Gani, A., Mokhtar, S., Ahmed,
E., Anuar, N. B., and Vasilakos, A. V. (2016). Big
data: From beginning to future. International Jour-
nal of Information Management, 36(6, Part B):1231 –
1247.

HoT: Unleash Web Views with Higher-order Templates

129

