Logical Approach to Theorem Proving with Term Rewriting on KR-logic

Tadayuki Yoshida1, Ekawit Nantajeewarawat2, Masaharu Munetomo3 and Kiyoshi Akama3

1Tokyo Software Development Laboratory, International Business Machines Corporation, Tokyo, Japan
2Computer Science Program, Sirindhorn International Institute of Technology Thammasat University, Pathumthani, Thailand
3Information Initiative Center, Hokkaido University, Sapporo, Japan

Keywords: Term Rewriting Rules, Logical Problem Solving Framework, Equivalent Transformation, Correctness.

Abstract: Term rewriting is often used for proving theorems. To mechanizing such a proof method with computation correctness guaranteed strictly, we follow LPSF, which is a general framework for generating logical problem solution methods. In place of the first-order logic, we use KR-logic, which has function variables, for correct formalization. By repeating (1) specialization by a substitution for usual variables, and (2) application of an already derived rewriting rule, we can generate a term rewriting rule from the resulting equational clause. The obtained term rewriting rules are proved to be equivalent transformation rules. The correctness of the computation results is guaranteed. This theory shows that LPSF integrates logical inference and functional rewriting under the broader concept of equivalent transformation.

1 INTRODUCTION

Term rewriting is often used for solving proof problems (Bird and Wadler, 1988; Dershowitz and Jouannaud, 1990). Typical examples are proofs in group theory, where the axiom of a group consists of laws, such as associativity law \(\forall x, y, z \in G : x \cdot (y \cdot z) = (x \cdot y) \cdot z \). The operator (\(\cdot \) here is a mapping \(G \times G \rightarrow G \). Assuming the axiom of a group, we want to prove that \((a^{-1} \cdot a) \cdot (b^{-1} \cdot b) = b \cdot ((a \cdot b)^{-1} \cdot a)\). Usually, term rewriting is used for proving such an equation. If the terms on both sides of this equation are rewritten repeatedly to reach a single term finally, the equation is proved.

Such a proof by term rewriting is, however, not regarded as logical problem solving. To mechanizing such a proof method, we need to formalize the problem as a logical problem with computation correctness guaranteed strictly. We follow the LPSF (Akama et al., 2019a), which is a general framework for generating logical problem solving methods for Model-Intersection (MI) problems (Akama and Nantajeewarawat, 2016). We apply the LPSF to this proof problem by reformalizing it as an MI problem.

We also need to construct a rule set. We already know how to make term rewriting rules from equational clauses (Akama et al., 2019b). Based on this work, we try to devise a new method of generating new term rewriting rules from \(Cs \).

Assume that \(Cs \) is a background knowledge consisting of equational clauses. We apply to \(Cs \) repeatedly (1) specialization by a substitution for usual variables, and (2) application of already derived rewriting rules. After repetition, we make a term rewriting rule from the resulting equational clause. We prove the correctness of the obtained term rewriting rule, i.e., it is an ET rule. Since ET rules are repeatedly applied to the original problem, the result of computation is also correct. Such guarantee of correctness is usually not clearly discussed in the theory of term rewriting systems.

The rest of this paper is organized as follows: Section 2 gives an introductory example used throughout the paper. Section 3 reviews KR-Logic, a foundation to formalize the problem (Akama et al., 2019a). Section 4 introduces a class of conditional term rewriting rules and gives a theoretical bases for handling equality atoms in KR-Logic. Section 5 proves the correctness of the rule generation method for a given clause set. Section 6 shows how we can build a conditional term rewriting system for an introductory example by producing a set of term rewriting rules from a given clause set. Section 7 explains a solution built on the new conditional term rewriting system and the computation steps are shown for an example input. Section 8 concludes the paper.
2 AN INTRODUCTORY EXAMPLE

We take a proof problem in the group theory and show intuitive solution by term rewriting. We will try to formalize this solution in later sections.

2.1 A Proof Problem of a Group

Consider the following definition of a group:

\(\langle G, (\cdot), e, (^{-1}) \rangle \) is a group iff

1. \(G \) is a set,
2. \((\cdot) \) is a mapping from \(G \times G \) to \(G \),
3. \(e \in G \), and
4. \((^{-1}) \) is a mapping from \(G \) to \(G \),

that satisfy the following conditions:

A1 (associativity) : \(\forall x,y,z \in G : (x \cdot (y \cdot z)) = ((x \cdot y) \cdot z) \)

A2 (identity) : \(\forall x \in G : x \cdot e = e \cdot x = x \)

A3 (inverse) : \(\forall x \in G, \exists x^{-1} \in G : x \cdot x^{-1} = x^{-1} \cdot x = e \)

Using these three axioms, we want to prove that

\(((a^{-1} \cdot a) \cdot (b \cdot b^{-1}))^{-1} = b \cdot ((a \cdot b)^{-1} \cdot a) \).

2.2 Informal Proof with Equalities

We formalize the proof problem in 2.1 by introducing two function-like notations: Assume that

1. \((\cdot) \) is a mapping \(f \) from \(G \times G \) to \(G \), and
2. \((^{-1}) \) is a mapping \(i \) from \(G \) to \(G \).

Using these mappings, we have the following five equations corresponding to three axioms in 2.1.

\begin{align*}
e1: \quad & f(x, f(y, z)) = f(f(x, y), z) \\
e2: \quad & f(x, e) = x \\
e3: \quad & f(e, x) = x \\
e4: \quad & f(x, i(x)) = e \\
e5: \quad & f(i(x), x) = e
\end{align*}

Let \(a, b \) be a term in \(G \). Let’s take a couple of terms \(i(f(f(i(a), a), f(b, i(b)))) \) as \(((a^{-1} \cdot a) \cdot (b \cdot b^{-1}))^{-1} \) and \(f(b, f(i(f(a, b)), a)) \) as \(b \cdot ((a \cdot b)^{-1} \cdot a) \).

The original proof problem is then considered to determine the equality of these two terms.

In addition to the set of equalities above, we have four additional equalities derived from the original equalities.

\begin{align*}
e6: \quad & i(e) = e \\
e7: \quad & f(x, f(y, i(f(x, y)))) = e \\
e8: \quad & f(y, i(f(x, y))) = i(x) \\
e9: \quad & i(f(y, x)) = f(i(x), i(y))
\end{align*}

For example, a generation process of \(e7 \) is shown as follows:

\begin{align*}
f(x, i(x)) = e \quad (p1) \\
\Rightarrow f(f(x, y), i(f(x, y))) = e \quad (p2) \\
\Rightarrow f(x, f(y, i(f(x, y)))) = e \quad (e7)
\end{align*}

Starting with \(p1 \), a substitution \(\{x/f(x, y)\} \) is applied to \(p1 \) then \(p2 \) is obtained. Applying \(e1 \) to \(p2 \) results in \(e7 \). In similar way, \(e6 \) is obtained. Using \(e7 \), \(e8 \) and \(e9 \) are generated.

By replacement of the terms using these nine equalities, each term reaches \(e \). This obviously means that these two are equal;

\(i(f(f(i(a), a), f(b, i(b)))) = f(b, f(i(f(a, b)), a)) \).

2.3 How to Give Correctness to the Informal Method

The informal method is only procedural, i.e.,

1. each term rewriting rule is constructed without proving it to be semantically correct.
2. each successive transformation process is obtained by application of rewriting rules without correctness of computation result.

Our theory is correctness-based, i.e.,

1. each term rewriting rule is proved to be an ET rule.
2. each successive transformation process is obtained with guarantee of correctness of computation result.

KR-logic is sufficient for correctness-based theory, while first order logic is not.

3 REPRESENTATION IN KR-LOGIC

We use KR-Logic in order to formalize the original problem in 2.1 as a proof problem on a logical structure. KR-Logic is considered as an extension of usual first order logic by introduction of existential quantification of function variables, which is essential for representation of proof problems with equality constraints.

3.1 KR-logic

We take ECLS$_N$ as a logical structure L, where ECLS$_N$ is the space of all clauses (including non-flat ones) on KR-logic. It is an extension of ECLS$_F$ (Akama and Nantajeewarawat, 2018) that contain
only flat clauses, which is also an extension of CLS consisting of usual clauses. Let \(K \) denote the conjunction of the following formulas:

\[
F_1 : \forall x \forall y : (g(x) \land g(y) \rightarrow g(f(x, y))) \\
F_2 : \forall x : (g(x) \rightarrow g(s_i(x))) \\
F_3 : g(s_e) \\
F_4 : \forall x \forall y \forall z : ((g(x) \land g(y) \land g(z)) \\
\quad \rightarrow eq(s_f(x, s_f(y, z)), s_f(s_f(x, y), z))) \\
F_5 : \forall x : (g(x) \rightarrow eq(s_f(x, s_f(x), x))) \\
F_6 : \forall x : (g(x) \rightarrow eq(s_f(s_e(x), x))) \\
F_7 : \forall x : (g(x) \rightarrow eq(s_f(s_i(x)), s_e)) \\
F_8 : \forall x : (g(x) \rightarrow eq(s_f(s_i(x), s_e)))
\]

These formulas give definitions of \(s_f, s_i, \) and \(s_e \) which are corresponding to conditions listed in 2.1.

3.2 Formalization in Clausal Form in KR-logic

Let term \(t_a \) and \(t_b \) be

\[
t_a = s_i(s_f(s_f(s_i(x), y), s_f(y, s_i(y))))
\]

\[
t_b = s_f(x, s_f(x, y)), x
\]

respectively. In order to ensure the equality of these two terms, we want to prove

\[
K \rightarrow \forall x \forall y : (g(x) \land g(y)) \rightarrow eq(t_a, t_b).
\]

Its negation is

\[
K \land \neg \forall x \forall y : (g(x) \land g(y)) \rightarrow eq(t_a, t_b),
\]

which is equivalent to

\[
K \land (\exists x \exists y : (g(x) \land g(y) \land \neg eq(t_a, t_b))).
\]

By meaning-preserving Skolemization (MPS), this formula is transformed into

\[
E : \exists \exists f \exists s_i \exists s_e \exists s_a \exists s_b : \\
K \land g(s_a) \land g(s_b) \land \neg eq(t_a, t_b),
\]

where \(s_a \) and \(s_b \) are new function variables.

Each formula in \(K \) is transformed into a set of clausal forms using MPS as follows: \(MPS(F_1) = C_1, MPS(F_2) = C_2, MPS(F_3) = C_3, MPS(F_4) = C_4, MPS(F_5) = C_5, MPS(F_6) = C_6, MPS(F_7) = C_7, \) and \(MPS(F_8) = C_8. \)

The formula \(E \) is eventually represented in a clausal form by:

\[
C_0 : \leftarrow eq(s_i(s_f(s_f(s_i(x), y), s_f(y, s_i(y)))), \right. \\
\left. s_f(s_b, s_f(s_i(s_f(s_a, s_b), s_a))))
\]

\[
C_1 : g(s_f(x, y)) \leftarrow g(x), g(y)
\]

\[
C_2 : g(s_i(x)) \leftarrow g(x)
\]

\[
C_3 : g(s_e) \leftarrow
\]

\[
C_4 : eq(s_f(x, s_f(y, z)), s_f(s_f(x, y), z)) \leftarrow g(x), g(y), g(z)
\]

\[
C_5 : eq(s_f(s_f(x), x), x) \leftarrow g(x)
\]

\[
C_6 : eq(s_f(s_e(x), x), x) \leftarrow g(x)
\]

\[
C_7 : eq(s_f(s_i(x), s_e), x) \leftarrow g(x)
\]

\[
C_8 : eq(s_f(s_f(x), s_e), x) \leftarrow g(x)
\]

\[
C_9 : g(s_a) \leftarrow
\]

\[
C_{10} : g(s_b) \leftarrow
\]

Let \(C_s \) be a set of clauses in \(ECLS_N \) and equal to \(\{C_1, C_2, \ldots, C_{10}\} \). Then we solve the given proof problem by proving that \(Models(\{C_0\} \cup C_s) = \emptyset \).

4 TERM REWRITING RULES

We introduce a class of conditional term rewriting rules based on the equality atoms in a given clause set.

4.1 Overview

We introduce a logical structure \(ECLS_N \), in which an equational clause is defined. A conditional term rewriting rule is defined. We obtain a conditional term rewriting rule from an equational clause. Rewriting relation determined by a conditional term rewriting rule is defined. We propose a sufficient condition of the correctness of a conditional term rewriting rule that is obtained from an equational clause.

4.2 Alphabet and Terms of KR-logic

An alphabet \(\langle F, V, FC, FV, Pred, Predc \rangle \) is assumed, where \(F \) is a set of constructors, \(V \) is a set of usual variables, \(FC \) is a set of function constants, \(FV \) is a set of function variables, \(Pred \) is a set of user-defined predicate symbols, and \(Predc \) is a set of built-in constraint predicate symbols. Each element in \(F \cup FC \cup FV \) is associated with a non-negative integer, called its arity.

Definition 1. A term on \(\langle F, V, FC, FV \rangle \), which is also simply called a term, is inductively defined as follows:

1. A 0-ary element in \(F \cup FC \) is a term.
2. If \(v \in V \cup FV \), then \(v \) is a term.
3. If \(f \in F \cup FC \cup FV \), the arity of \(f \) is \(n > 0 \), and \(t_1, \ldots, t_n \) are terms, then \(f(t_1, \ldots, t_n) \) is a term.

The set of all terms on \(\langle F, V, FC, FV \rangle \) is denoted by \(T(F, V, FC, FV) \). Let \(T(F) = T(F, \emptyset, 0, 0) \). Let \(T(F, FC) = T(F, V, FC, FV) \). A term in \(T(F, FC) \) is called a ground term.
4.3 Term Contexts, Atom Contexts, and Clause Contexts

Assume that □ is a function symbol with arity 0 that does not belong to F ∪ V ∪ FC ∪ FV. A subterm is a part of a term, and a subterm is extended by a term-context into a term. Let t be a term and tc a term context. t ⊨ tc is the term tc{□/t}. A term is a part of an atom, and a term is extended by an atom context into an atom. Let t be a term and ac an atom context. t ⊨ ac is the atom ac{□/t}. An atom is a part of a clause, and an atom is extended by a clause context into a clause. Let a be an atom and con a clause context. a ⊨ con is the clause con{□/a}. The sets of all term contexts, all atom contexts, and all clause contexts are denoted, respectively, by Con tc, Con ac, and Con con.

4.4 Conditional Term Rewriting Rules

4.4.1 Equational Clauses

An equational clause is a clause in ECLS N of the form
eq(t 1, t 2) ← con ds,
where t 1 and t 2 are terms in T(F, V, FC, FV), and con ds is a finite sequence of atoms. The set of all equational clauses in ECLS N is denoted by EQC.

4.4.2 Conditional Term Rewriting Rule

A conditional term rewriting rule, “CTRR” for short, is a formula of the form (t 1 → t 2 : con ds). A conditional term rewriting rule r of the formula (t 1 → t 2 : con ds) is often represented by r : (t 1 → t 2 : con ds). The set of all conditional term rewriting rules is denoted by CTR.

4.4.3 Equational Clause to CTRR

An equational clause C = (eq(t 1, t 2) ← con ds) determines a set of two conditional term rewriting rules, which is denoted by ctrs(C), i.e.,

ctrs(C) = {(t 1 → t 2 : con ds), (t 2 → t 1 : con ds)}.

4.5 CTRR as Relation of Clauses

A conditional term rewriting rule r determines a relation on pow(ECLS N), denoted by rel(r), as follows:

Definition 2. Let r be a conditional term rewriting rule. Let S 0 be the set of all substitutions on V.

\[\text{rel}(r) = \{ (C 1, C 2) \mid r = (t 1 \rightarrow t 2 : \text{con ds}) \land (\text{tc} \in \text{Con tc}) \land (\text{ac} \in \text{Con ac}) \land (\text{con} \in \text{Con con}) \land (\theta \in \text{S 0}) \land (\text{conds} \theta = \text{true}) \land (C 1 = \{(((t 1 \theta) \rightarrow \text{tc}) \rightarrow \text{ac}) \rightarrow \text{con}) \land (C 2 = \{(((t 2 \theta) \rightarrow \text{tc}) \rightarrow \text{ac}) \rightarrow \text{con}) \}. \]

Figure 1 illustrates how the element of rel(r) is constructed by a couple of clauses C 1 and C 2. Assume that θ is given to fullfil the conditions denoted by con ds θ, all occurrences of t 1 θ are valid under the term context tc, with which all atom occurrences containing t 1 θ are valid under the atom context ac, in which a clause containing the atoms with t 1 θ is valid under the clause context con. The same validity is confirmed for t 2 θ in C 2. Then an element of rel(r) is obtained as a pair of C 1 and C 2.

\[r = (t 1 \rightarrow t 2 : \text{con ds}) \]

\[\text{true} \]

\[\text{conds} \rightarrow \text{con ds} \theta \]

\[\text{C 1} \]

\[\text{C 2} \]

\[\text{rel(r)} \]

Definition 3. C 1 is transformed into C 2 by a conditional term rewriting rule r, denoted by C 1 → C 2, iff (C 1, C 2) ∈ rel(r).

4.6 Basic Theorem

Theorem 1. Let C be a set of clauses. Let C, C 1 , and C 2 be clauses in ECLS N . If Models(CS) = Models(CS ∪ \{C\}), ctrs(C) ⊨ r, then r is model-preserving.

Proof. According to Theorem 1 in (Akama et al., 2019b), obviously Models(CS ∪ \{C 1\}) = Models(CS ∪ \{C 2\}).

5 MAKING CORRECT TERM REWRITING RULE

We introduce a mechanism to generate a new conditional term rewriting rule from a set of clauses. Also, we prove a theorem for giving the correctness of generated rules.

5.1 Generation of CTRR

We describe the method of generating a CTRR after transforming a set of equational clauses. A transfor-
Equational clauses in Cs

CTRRs

Rule application
Rule generation

Figure 2: CTRRs expansion by rule generation.

5.2 Main Theorem for Generation

A logical consequence relation, lcr, is defined by lcr(X) = (Models(Cs) = Models(Cs ∪ {X})), where X is an equational clause. A transformation by substitution preserves a logical consequence relation.

Proposition 1. Let Cs be a subset of ECLS_N, and C a clause in ECLS_N. Let θ be a substitution. If Models(Cs) = Models(Cs ∪ {C}), then Models(Cs) = Models(Cs ∪ {Cθ}).

Proof. Since (1) G ∈ Models(Cs) iff G ∈ Models(Cs ∪ {C}), and (2) G ∈ Models(Cs ∪ {C}) iff G ∈ Models(Cs ∪ {Cθ}), we have G ∈ Models(Cs) iff G ∈ Models(Cs ∪ {C}). Hence Models(Cs) = Models(Cs ∪ {C}). □

A logical consequence relation is preserved by repeated application of specialization and rewriting.

Proposition 2. Let Cs be a set of clauses. Let C be a clause in ECLS_N. Assume that R is a set of model-preserving term rewriting rules. If Cs ⊢ C, then Models(Cs) = Models(Cs ∪ {C}).

Proof. Assume that Cs ⊢ C.

(base case) Assume that Cs ⊢ C. Then, Cs = Cs ∪ {C}. Hence, Models(Cs) = Models(Cs ∪ {C}).

(inductive case) There is a clause C', a substitution θ, and r ∈ R such that (1) Cs ⊢ C', and (2) Cθ ⊢ C. By the inductive hypothesis and (1), Models(Cs) = Models(Cs ∪ {C'}). By proposition 1, Models(Cs) = Models(Cs ∪ {Cθ}). By r ∈ R and (2), Models(Cs ∪ {Cθ}) = Models(Cs ∪ {C}). Hence, Models(Cs) = Models(Cs ∪ {C}). □

The method of rule generation gives model-preserving rules.

Theorem 2. Let Cs be a subset of ECLS_N. Let R be a set of term rewriting rules. Let r be a conditional term rewriting rule such that Cs ⊢ C. If R is model-preserving, then r is also model-preserving.

Proof. Models(Cs) = Models(Cs ∪ {C}) and from Theorem 1, Models(Cs ∪ {C}) = Models(Cs ∪ {Cθ}). Then Models(Cs) = Models(Cs ∪ {Cθ}). □

A generated rule is model-preserving since all transformations in the generation sequence and a rule generation method preserve a logical consequence relation.

6 CONSTRUCTING TERM REWRITING SYSTEM WITH RULE GENERATION

We introduce a method to construct a term rewriting system which equips rule generation.

6.1 Term Rewriting System Overview

Once a logical structure containing equational clauses are constructed, then we can develop a term rewriting system which contains a set of CTRRs growing by rule generation.

Figure 2 shows the overview of CTRRs expansion. The basic diagram elements shown in Legend are:
• Clause, a circled number represents an equational clause with its number
• Rule application, a solid line between two circles represents a transformation using pre-generated CTRR
• CTRR, a diamond with inner number. A white diamond represents a simple CTRR, while a dark diamond a CTRR from a transformed clause, and
• Rule generation, a dotted line between a clause and a CTRR

CTRR #1 to #10 are generated in straightforward way as shown in 4.4.3. For example, the top diamond in “CTRRs” section at the right side means r_9, which is generated from C_4. It is denoted as $ctrs(C_4) \ni r_9$. CTRR #11, #13, #17, and #18 are generated from transformed clauses by applying one or more pre-generated CTRRs. For example, the negative diamond of 13 is a generated rule from C_{16} which is a resulting clause of rule application to C_8.

As a result, a set of CTRRs are growing by generating a new one from a transformed clause using existing CTRRs.

6.2 Generation of Term Rewriting Rules

Figure 2 shows the mechanism where conditional term rewriting rules are generated from a set of equational clauses. In “Equational clauses in Cs” section at the left side of Figure 2, C_4, C_6, C_7, C_8, and C_5 are listed in this order. For example, the circle of #8 in “Equational clauses in Cs” is connected to the circle of #16 with a solid line and the diamond of #4, which means that by application of r_4, C_3 is transformed into C_{16}. Then the dark diamond of #13 is generated from a transformed clause #16.

6.3 Rule Generation Sequences

In Figure 2, we have 14 generation lines. Each line consists of a rule generation arrow line and zero or more rule application arrow lines. When we represent a rule generation line using \rightarrow, $ctrs$, and \Rightarrow, we call such formal representation a “rule generation sequence.” Here are 14 generation sequences appear in Figure 2:

#4: $ctrs(C_4) = \{r_9, r_{10}\}$
#6: $ctrs(C_6) = \{r_3, r_4\}$
#7: $ctrs(C_7) = \{r_5, r_6\}$
#8(a): $ctrs(C_8) = \{r_7, r_8\}$
#8(b): $C_5 \rightarrow C_{16}, ctrs(C_{16}) \ni r_{13}$;
#8(c): $C_5 \rightarrow C_{11}, ctrs(C_{11}) \ni r_{11}$;

#5(a): $C_5 \rightarrow C_{23}, ctrs(C_{23}) \ni r_{17}$;
#5(b): $C_5 \rightarrow C_{24}, ctrs(C_{24}) \ni r_{18}$;
#5(c): $ctrs(C_5) = \{r_1, r_2\}$

6.4 Generation of r_{17} from Cs

The following steps explain the generation sequence

(1) $Cs \ni C_3$
(2) $C_5 \theta_{21} \rightarrow C_20$
(3) $C_{20} \theta_{21} \rightarrow C_{21}$
(4) $C_{21} \theta_{22} \rightarrow C_{22}$
(5) $C_{22} \theta_{23} \rightarrow C_{23}$
(6) $ctrs(C_{23}) \ni r_{17}$

The 4th step is detailed as follows:

(4-1) Take C_{21}

$C_{21}: eq(y, \Sigma(f, i(x), y)) \rightarrow g(x), g(y)$

(4-2) Specialization by $\theta_{22} = \{y/x, f/S(f(x,y))\}$

$C_{21}\theta_{22}: eq(f, i(y), f, i(x), y) \rightarrow g(x), g(y)$

(4-3) Application of $r_{11}; C_{21} \theta_{22} \rightarrow C_{22}$

$r_{11}: eq(f, i(x), y); \rightarrow Se$

(6.5 Generated Rules

From all 14 generation sequences, we have conditional term rewriting rules as follows:

$r_1: (x \rightarrow f(x, Se) : \{g(x)\})$
$r_2: (f(x, Se) \rightarrow x : \{g(x)\})$
$r_3: (x \rightarrow f(Se, f(x)) : \{g(x)\})$
$r_4: (Se \rightarrow f(x, f(x)) : \{g(x)\})$
$r_5: (f(x, f(x), x) \rightarrow g(x))$
$r_6: (f(x, f(x), x) \rightarrow Se : \{g(x)\})$
$r_7: (f(x, f(x)) \rightarrow f(x, f(Se, f(x), x)) : \{g(x)\})$
$r_8: (f(x, f(x), x) \rightarrow g(x))$
$r_9: (f(x, f(x), z) \rightarrow f(x, f(x, z)) : \{g(x), g(y), g(z)\})$
$r_{10}: (f(x, f(x, z)) \rightarrow f(x, f(x, z)) : \{g(x), g(y), g(z)\})$
$r_{11}: (f(x, f(x, z)) \rightarrow Se : \{g(x), g(y)\})$
$r_{12}: (Se) \rightarrow Se : \{\}$
$r_{13}: (f(x, f(x))) \rightarrow f(x, f(x)) : \{g(x), g(y)\}$
$r_{14}: (f(x, f(x))) \rightarrow f(x, f(x)) : \{g(x), g(y)\}$
$r_{15}: (f(x, f(x))) \rightarrow f(x, f(x)) : \{g(x), g(y)\}$
7 LPSF-BASED SOLUTION WITH TERM REWRITING

We propose a LPSF-based solution for problems using term rewriting. First, we give a theoretical foundation of the correctness of the solution, followed by the solution for the sample problem.

7.1 Clause-rule Interaction Tree

A clause is transformed into a clause by repeated application of rules, which is represented by a triple.

\[C \circ [r_1, \ldots, r_n] = C' \]

- \(C \circ [r_1, \ldots, r_{n-1}] = C'' \), and there is \(\theta \) such that \(C'' \theta \rightarrow C' \).

We add a generated rule to a triple to form a quadruple.

Definition 6. Let \(C' \) be a set of clauses. Clause-Rule Interaction quadruple wrt \(C' \) is a tuple of the form \((C', [r_1, \ldots, r_n], C', r') \), where \(C' \) and \(C' \) are clauses, \(r_1, \ldots, r_n \) and \(r' \) are term rewriting rules, \(C \in C', C \circ [r_1, \ldots, r_n] = C' \), and \(ctri(C') \supseteq r' \).

Notations for an element designator in a sequence and a subsequence are introduced.

Definition 7. Let \(X \) be a finite sequence. \(nth(m, X) \) is defined as the \(m \)-th element of \(X \). Under\((m, X)\) is defined as the set of all elements of \(X \) until \(m \)-th element, i.e., Under\((m, X) = \{ nth(1, X), nth(2, X), \ldots, nth(m, X) \} \). Two notations for obtaining clauses and rules from a set of CRI quadruples are introduced.

Definition 8. Let \(X \) be a set of Clause-Rule Interaction quadruples. We define \(cl(X) \) and \(trs(X) \) by:

- \(cl(X) = \{ C \mid (C, [r_1, \ldots, r_n], C', r') \in X \} \).
- \(trs(X) = \{ r' \mid (C, [r_1, \ldots, r_n], C', r') \in X \} \).

If a rule is applied for rule generation, the rule must be already generated.

Definition 9. Let \(C' \) be a set of clauses. Clause-Rule Interaction Tree wrt \(C' \), denoted by CRIT\((C')\), is a finite sequence of clause-rule interaction quadruples wrt \(C' \) such that if \((C', [r_1, \ldots, r_n], C', r') = \) nth\((m, CRIT\((C')\)) \), then \(\{ r_1, \ldots, r_n \} \subseteq trs(\text{Under}(m - 1, \text{CRIT}\((C')\))) \).

Example:

\[
\text{CRIT}(C') = \{ (C_4, [r_4], C_4, r_0), \quad (C_4, [r_4, r_10], C_4, r_0), \quad (C_3, [r_3, r_1], C_3, r_1), \quad (C_3, [r_3, r_2], C_3, r_2), ... \}

7.2 Correctness

Rules generated in a Clause-Rule Interaction Tree are model-preserving.

Theorem 3. Let \(C' \) be a set of clauses. Let \(r \) be a conditional term rewriting rule. If \(trs(CRIT\((C')\)) \supseteq r \), then \(r \) is model-preserving.

Proof. We prove the theorem by induction of the size of CRIT\((C')\). Assume that \(trs(CRIT\((C')\)) \supseteq r \).

- When size\((CRIT\((C')\)) = 1. Then \((C', [r], C', r) = \) nth\((1, CRIT\((C')\)) \). Hence \(C = C' \) and Models\((C') = Models(C) \cup \{ C' \} \). Let \(R' = \{ \} \). Since \(C' \supseteq C' \) and \(ctri(C') \supseteq r \), we have \(C' \Rightarrow r \). By Theorem 2, \(r \) is model-preserving.

- When size\((CRIT\((C')\)) > 1. Assume that the theorem holds for \(Under(m - 1, CRIT\((C')\)) \). Let \(R' = \{ r_1, \ldots, r_n \} \). Then \(C' \supseteq C' \). Since CRIT\((C')\) is a clause-rule interaction tree wrt \(C' \), we have \(R' \subseteq R \). Hence \(R' \) is model-preserving. Since \(C' \supseteq C' \) and Proposition 2, we have Models\((C') = Models(C) \cup \{ C' \} \). Since \(C' \supseteq C' \) and \(ctri(C') \supseteq r \), we have \(C' \Rightarrow r \). By Theorem 2, \(r \) is model-preserving.

\[\Box \]

7.3 Solution for the Sample Problem

The sample proof problem is proven by the application of model-preserving term rewriting rules generated in this paper. All steps of computation are shown below. \(M \) is used as a short-hand for Models for saving spaces.

\[M = \{ \{ eq(Si(Sf(Sf(Si(Sa)))Sb), Sa)) \} \} \cup C \]

Apply \(r_8 \) with \(\theta_{13} = \{ x/Sa \} \)

\[M = \{ \{ eq(Si(Sf(Sf(Sf(Si(Sa)))Sb), Sa))) \} \} \cup C \]

Apply \(r_8 \) with \(\theta_{32} = \{ x/Sa, y/Sb \} \)

\[M = \{ \{ eq(Si(Sf(Sf(Sf(Sf(Sf(Sf(Si(Sa)))Sb))))))) \} \} \cup C \]

Apply \(r_6 \) with \(\theta_{13} = \{ x/Sb \} \)
The theory in this paper is constructed on LPSF, where KR-logic is used as a canonical logical structure, and term rewriting rules are used as ET rules. The resolution rule and the unfolding rule are typical instances of rules in the domain of logic, while term rewriting rules are typical instances of functional rewriting. Hence, logical inference and functional rewriting co-exist, both of them being instances of a broader concept of equivalent transformation.

REFERENCES

