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Abstract: We understand that many logical problems cannot be solved by using logic programs. Logic programs have the
limited capability of representation. We try to overcome this limitation by adopting KR-logic, an extension
to first-order logic. The extension includes function variables. In this paper, we take a problem which is
well-described with function variables. We rely on Logical Problem Solving Framework (LPSF) to formalize
our problem as a Model-intersection problem. Then we develop a solver for MI problems by adding five
new transformation rules concerning function variables. Correctness of each rule is proved.i.e., each rule is
an equivalent tranformation (ET) rule. Since each rule is correct, all ET rules can be used together without
modification and combinational cost. Thus, the invented rules can be safely reused in other LPSF-based
solvers.

1 INTRODUCTION

Logic programs such as Prolog take an approach to
rely on SLDNF-resolution (Chang and Lee, 1973;
Lloyd, 1987). There are many logical problems which
cannot be solved by using conventional logic ap-
proach. The Agatha puzzle is one of such problems.
We use LPSF (Akama et al., 2019) to formalize the
Agatha puzzle as a Model-intersection (Akama and
Nantajeewarawat, 2016) problem.

Usual clauses don’t have enough expressive power
to represent and compute the Agatha puzzle. We
take an extended clause in ECLSF as a representation
space. ECLSF is a class of clauses with function vari-
ables on KR-logic(Akama et al., 2019). The objective
of this paper is to construct a solver for the Agatha
puzzle by development of equivalent transformation
(ET) rules.

We already have developed several ET rules
(Akama and Nantajeewarawat, 2011),(Akama and
Nantajeewarawat, 2015), (Akama et al., 2018a),
(Akama et al., 2018b) as well as unfolding (Akama
and Nantajeewarawat, 2013) for computation of ex-
tended clauses. However, it turned out that the solver
using these existing rules cannot give an answer to
the Agatha puzzle. This difficulty is due to the lack
of ET rules to handle function variables. To repre-

sent the Agatha puzzle correctly, function variables
are essential. Representation spaces without function
variables, such as conventional clauses, don’t have
enough expressive power of existential quantification.

This paper proposes a set of ET rules which trans-
form extended clauses containing function variables.
The LPSF theory ensures the correctness of answers
to the Agatha puzzle strictly from a combination of
ET rules. The heuristic approach cannot guarantee
the correctness of the method, while LPSF can do for
ET rules. We think ET rules discovered in solving
a certain problem are usable for a general purpose.
Thus, once we invent an ET rule, such rule is reused
independently together with a variety of existing ET
rules.

We take the squeeze method to discover ET rules.
We also study to prove the correctness of rules dis-
covered. Then we state that a new ET rule is truly in-
vented. In this paper, we successfully invent five new
ET rules through iterations of the squeeze method.

The answer to the Agatha puzzle is obtained by
expanding a computation sequence through invented
rule application. This is our first achievement to con-
struct an MI solver for the Agatha puzzle based on the
extended space on ECLSF. We also demonstrate the
fact that new ET rules contribute to an improvement
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of the solver. Due to the limited representation ca-
pability of conventional clauses with first-order logic,
we cannot solve the Agatha puzzle by using any possi-
ble computation methods. The LPSF theory provides
a firm foundation for stepwise improvement of logical
problem solving.

The rest of this paper is organized as follows: Sec-
tion 2 discusses about how to design an MI solver
based on LPSF for the Agatha puzzle. Section 3
explains the rule invention process for a solution of
the Agatha puzzle, by iteratively squeezing applica-
ble rules from an interim transformation status as a
result of application of exiting known rules. Section 4
proves correctness of the invented five transformation
rules in this paper. Section 5 shows how a newly con-
structed MI solver works and what other LPSF param-
eters can be taken into considerations. Section 6 gives
a discussion about the comparison with existing log-
ical structures, one on the usual clausal logic and the
other is the extended clause space with constraints.
Section 7 concludes the paper.

2 DESIGN OF MI SOLVER FOR
QA PROBLEMS

We discuss a design consideration of MI solver for the
famous Agatha Puzzle.

2.1 Agatha Puzzle

Consider the “Dreadsbury Mansion Mystery” prob-
lem, which was given by Len Schubelt and can be de-
scribed as follows: 1) Someone who lives in Dreads-
bury Mansion killed Aunt Agatha. 2) Agatha, the but-
ler, and Charles live in Dreadsbury Mansion, and are
the only people who live therein. 3) A killer always
hates his victim, and 4) is never richer than his vic-
tim. 5) Charles hates no one that Aunt Agatha hates.
6) Agatha hates everyone except the butler. 7) The
butler hates everyone not richer than Aunt Agatha. 8)
The butler hates everyone Agatha hates. 9) No one
hates everyone. The Agatha QA problem is to find all
persons who killed Agatha. The Agatha proof prob-
lem is to show that Agatha killed herself.

2.2 Formalization of the Puzzle

We take ECLSF as a logical structure. We already
know many ET rules on the space of ECLSF, how-
ever, they are not enough for complete solution of the
Agatha puzzles.

Assume that eq and neq are predefined binary con-
straint predicates. For any ground usual terms t1 and

t2, (i) eq(t1, t2) is true iff t1 = t2, and (ii) neq(t1, t2)
is true iff t1 6= t2. The background knowledge of
this mystery is formalized as the conjunction of the
first-order formulas, where (i) the constants A, B, C,
and D denote “Agatha,” “the butler,” “Charles,” and
“Dreadsbury Mansion,” respectively, and (ii) for any
terms t1 and t2, live(t1, t2), kill(t1, t2), hate(t1, t2), and
richer(t1, t2) are intended to mean “t1 lives in t2,” “t1
killed t2,” “t1 hates t2,” “t1 is richer than t2,” respec-
tively.

Let K be the conjunction of the first-order formu-
las F1 to F9 and let q = kill(x,A). The Agatha puzzle
is formalized as a QA problem 〈K,q〉. The answer
to this QA problem, denoted by answer(K,q), is the
set of all ground instances of q that follows logically
from K.
F1 = ∃x : (live(x,D)∧ kill(x,A))
F2 = ∀x : (live(x,D)↔ (eq(x,A)∨eq(x,B)∨eq(x,C))
F3 = ∀x : ∀y : (kill(x,y)→ hate(x,y))
F4 = ∀x : ∀y : (kill(x,y)→¬richer(x,y))
F5 = ¬∃x : (hate(C,x)∧hate(A,x)∧ live(x,D))
F6 = ∀x : ((neq(x,B)∧ live(x,D))→ hate(A,x))
F7 = ∀x : (¬richer(x,A)∧ live(x,D))→ hate(B,x))
F8 = ∀x : ((hate(A,x)∧ live(x,D))→ hate(B,x))
F9 =¬∃x : (live(x,D)∧∀y : (live(y,D)→ hate(x,y)))

K is converted into the set Cs consisting of the
fourteen extended clauses C1 to C14 by applying
meaning-preserving Skolemization (Akama and Nan-
tajeewarawat, 2011) as follows: MPS(F1) = C1, C2,
MPS(F2) = C3, C4, C5, C6, MPS(F3) = C7, MPS(F4) =
C8, MPS(F5) = C9, MPS(F6) = C10, MPS(F7) = C11,
MPS(F8) = C12, and MPS(F9) = C13, C14.

C1 : live(x,D)← f unc( f0,x)
C2 : kill(x,A)← f unc( f0,x)
C3 :← live(x,D),neq(x,A),neq(x,B),neq(x,C)
C4 : live(A,D)←
C5 : live(B,D)←
C6 : live(C,D)←
C7 : hate(x,y)← kill(x,y)
C8 :← kill(x,y),richer(x,y)
C9 :← hate(A,x),hate(C,x), live(x,D)
C10 : hate(A,x)← neq(x,B), live(x,D)
C11 : richer(x,A),hate(B,x)← live(x,D)
C12 : hate(B,x)← hate(A,x), live(x,D)
C13 :← hate(x,y), f unc( f1,x,y), live(x,D)
C14 : live(y,D)← live(x,D), f unc( f1,x,y)

Let state S0 be {C1, ...,C14 }.
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2.3 Answer Mapping

The QA problem 〈K,q〉 is then reformulated as a
model-intersection (MI) problem 〈Cs,ϕ〉, where ϕ is
a mapping from the power set of Gu to the power set
of {A,B,C}, defined by ϕ(G) = {t |kill(t,A) ∈G} for
any G⊆ Gu. In other words, we have

answer(K,q) = ϕ(
⋂

Models(Cs)).
Our plan for solving the Agatha puzzle is to sim-

plify ϕ(
⋂

Models(Cs)) mainly by transforming Cs
preserving Models(Cs) or

⋂
Models(Cs).

3 RULE INVENTION PROCESS

We introduce a process to invent transformation rules
through the squeeze method.

3.1 The Squeeze Method

Many successful research work have proposed gen-
eral ET rules applicable to a wide range of problem
domain. Based on these outcomes, we first apply such
existing ET rules to the QA problem introduced in
2.1, and then investigate the interim set of clauses af-
ter an application process of ET rules terminates. The
iteration of the squeeze method goes as follows: 1)
add one or more rules with a proper priority control
for them, 2) run an application process of combined
ET rule set, 3) verify the interim result if it reaches
to the domain of the defined answer mapping. Other-
wise, go back to 1).

3.2 Applying Existing ET Rules

By applying ET rules discussed in (Akama and Nan-
tajeewarawat, 2014) and (Akama et al., 2018b), to the
original clauses in S0, these clauses are transformed
into simple clauses where atoms like live and hate are
resolved. Then we get the clauses in state S1 as the
first interim result with which our iteration process
starts. The process of transformation to these clauses
is discussed 2.3 in (Akama and Nantajeewarawat,
2018)

S1 = {C44, ...,C55 }
C44 :← neq(x,B), f unc( f1,B,x)
C45 :← f unc( f1,B,A)
C46 :← f unc( f1,B,C)
C47 :← f unc( f0,C)
C48 : kill(x,A)← f unc( f0,x)
C49 :← f unc( f1,B,x), f unc( f0,x)
C50 :← f unc( f1,x,A), f unc( f0,x)
C51 :← neq(x,A),neq(x,B),neq(x,C), f unc( f0,x)

C52 :← neq(x,A),neq(x,B),neq(x,C), f unc( f1,C,x)
C53 :← f unc( f1,A,A)
C54 :← f unc( f1,A,C)
C55 :← neq(x,B), f unc( f1,A,x)

3.3 Determining Development Strategy

There are many func-atoms in the body of clauses in
S1. In order to make further transformations, such
func-atoms need to get handled correctly. It is ob-
served that two types of func-atoms occurrences in
S1: a) A func-atom alone in a body and no head atoms
like C45,C46,C47,C53,C54, and b) Combination of a sin-
gle func-atom variable and a sequence of neq atoms,
and no head atoms like C44,C51,C52,C55. In addition to
these types of func-atoms, we also need to remove a
clause containing a func-atom alone in a body in order
to match to the domain of the answer-mapping func-
tion defined in 2.3. The answer-mapping function can
be applicable when C48 is simplified to have no body
atoms. So a rule for safe func-atom clause removal is
being developed. In the rest of this paper, we invent
these types of ET rules on the LPSF and observe if an
answer to the problem can be obtained by using such
rules from S0 again.

3.4 Squeeze Method Iteration

3.4.1 Side Change of neq-atoms in Body

The rule of side change of neq, denoted as
(chSide neq), is to move neq atoms from body part
into head part with altering predicate to eq. This rule
is applied and C61, C62, C63, and C64 are obtained
from C44, C51, C52 and C55 respectively.

these are transformed into:

C61 : eq(x,B)← f unc( f1,B,x)
C62 : eq(x,A),eq(x,B),eq(x,C)← f unc( f0,x)
C63 : eq(x,A),eq(x,B),eq(x,C)← f unc( f1,C,x)
C64 : eq(x,B)← f unc( f1,A,x)

3.4.2 False func-atom Elimination

The rule of false func-atom elimination, denoted
as elimNegfvr, is to eliminate a clause containing
a false func-atom. According C61, f1(B) = B is
determined. So any other declarations for f1(B) must
be false. Due to this, C45 and C46 are deleted. Also,
f1(A) = B is determined by C64 so any f1(A) atoms
else are false. C53 and C54 can be eliminated.
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3.4.3 Candiate eq-atom Elimination

The rule of candidate eq-atom elimination, denoted
as elimPosfvr, is to remove eq atoms in head
that match with negative declaration of the same
func-atom. According to C47, f0() 6= C. This means
eq(x,C) in the head of C62 can be removed and obtain
C65.

C65 : eq(x,A),eq(x,B)← f unc( f0,x)

3.4.4 True func-atom Elimination

The rule of true func-atom elimination, denoted as
applyPosfvr, is to eliminate func-atom evaluated as
true by referring to a clause of the same func-atom.
It is applied to C49 with C61 and replace C49 with C66

C66 :← f unc( f0,B)

3.4.5 Combinational Rule Application

Again, elimNegfvr and elimPosfvr several times

C48 : kill(x,A)← f unc( f0,x)
C50 :← f unc( f1,x,A), f unc( f0,x)
C61 : eq(x,B)← f unc( f1,B,x)
C63 : eq(x,A),eq(x,B),eq(x,C)← f unc( f1,C,x)
C67 : eq(x,A)← f unc( f0,x)
C68 : eq(x,B)← f unc( f1,A,x)

applyPosfvr to C50 with C67 and replace C50
with C69, and applyPosfvr to C48 with C67 and
replace C48 with C70

C61 : eq(x,B)← f unc( f1,B,x)
C62 : eq(x,A)← f unc( f0,x)
C63 : eq(x,A),eq(x,B),eq(x,C)← f unc( f1,C,x)
C64 : eq(x,B)← f unc( f1,A,x)
C69 :← f unc( f1,A,A)
C70 : kill(A,A)←

elimNegfvr to C69

C61 : eq(x,B)← f unc( f1,B,x)
C62 : eq(x,A)← f unc( f0,x)
C63 : eq(x,A),eq(x,B),eq(x,C)← f unc( f1,C,x)
C64 : eq(x,B)← f unc( f1,A,x)
C70 : kill(A,A)←

3.4.6 Isolated func-atom Elimination

The rule of isolated func-atom elimination, denoted
as elimIsoFunc is to remove a clause containing
a func-atom which has no unifiable candidates in
body atoms of other clauses. In C61, f1(B) = B is
determined and no unifiable pattern to f1(B) exist in
C62,C63 and C64. This situation makes the removal of
C61.

C62 : eq(x,A)← f unc( f0,x)
C63 : eq(x,A),eq(x,B),eq(x,C)← f unc( f1,C,x)
C64 : eq(x,B)← f unc( f1,A,x)
C70 : kill(A,A)←

In the same way, C62, C63 and C64 all can be
removed.

We run through four iterations of squeezing and fi-
nally the clause is simplified enough to apply answer-
mapping to get an answer to the Agatha puzzle. The
process resulted in finding four new ET rules.

The next chapter, we provide a theoretical basis
for each rule so that we can make strict definitions of
newly invented rules.

4 CORRECTNESS

We give formal definitions for five new ET rules.
Each subsection starts with a formal description of
new rule, followed by its brief proof.

4.1 Correctness of Computation

The LPSF guarantees a correct computation with a
bunch of transformation rules by giving a theoreti-
cal foundation to discuss the correctness of each in-
dividual rule. This yields a stable growth of an MI
solver’s capability through adding a set of newly in-
vented transformation rules to existing rule set. We
don’t need to have any concern about the consistency
regarding the correctness of whole computation pro-
cess. It is always kept valid as long as it is based on
the LPSF.

4.2 Side Change of neq-atoms in Body

Let 〈Cs,ϕ〉 be a MI problem on ECLSF. Assume that
a clause C in Cs such that

C = (← Neqs(n), f unc( f ,s1, ...,sm,x)),
Neqs(n) = {neq(x, t1), ...,neq(x, tn)}
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where x is a usual variable, t1, ..., tn and s1, ...,sm are
ground terms, f is a function variable, n > 1, and
m >= 0. There exists at least one f unc-atom in body
of C and a set of neq-atoms which has the same occur-
rence of the variable x in the f unc-atom, where all do-
main terms in f unc-atom have been already grounded
(s1, ...sm).

Under this condition, a new clause C′ is con-
structed from C and all neq-atoms in body of C can be
side-changed into head as eq-atoms. The rest of body
atoms in C, represented as Bs remain unchanged.

C′ = (Eqs(n)← f unc( f ,s1, ...,sm,x))
Eqs(n) = {eq(x, t1), ...,eq(x, tn)}

Cs′ = (Cs−{C})∪{C′ }

The correctness of this rule is shown as follows:
Let σ and θ be substitutions for function variables and
usual variables, respectively. Assume that Cσθ is true.
Since C has no head atom, Neqs(n)σθ is false, while
f uncσ is true.
Neqs(n)σθ = false
⇔ (xσθ 6= t1∧ ...∧ xσθ 6= tn) = false
⇔¬(xσθ = t1∨ ...∨ xσθ = tn) = false
⇔ (xσθ = t1∨ ...∨ xσθ = tn) = true
⇔ Eqs(n)σθ = true

If Eqs(n)σθ is true, then C′σθ is true and obvi-
ously Models(Cs) = Models(Cs′) is true.

4.3 Candidate eq-atom Elimination

Let 〈Cs,ϕ〉 be a MI problem on ECLSF. Assume that
a set of clauses C in Cs such that

C = (← f unc( f ,s1, ....,sm,g))

where s1, ...,sm,g are ground terms, f is a function
variable, and m >= 0.

If there is a func-atom f unc( f ,s1, ...,sm,v) in the
right-hand side of a clause C f rather than C in Cs, and
the head atoms of C f only contains a sequence of eq-
atoms and each eq atom contains a pair of v and a
ground term,

C f = (Eqs(n)← f unc( f ,s1, ....,sm,v))
Eqs(n) = {eq(v, t1), ...,eq(v, tn)}

then Cs′ is obtained from Cs as follows:
head atom eq(v,g) can be removed from C f and C is
removed from Cs.

C′f = (Eqs(n, i)← f unc( f ,s1, ....,sm,v))

Eqs(n, i) = Eqs(n, i)−{eq(v, ti)}
Cs′ = (Cs−{C,C f })∪{C′f }

where ti = g.

The correctness of this rule is shown as follows:
Basically, C f constructs a set of possible range val-
ues { t1, ...tm } for f . Since the negative clause C de-
clares an impossible candidate g of the range of f , if
a range candidate contains ti (= g), then it can be re-
moved. Also, C itself is no longer needed for defining
the models of Cs, so C can be removed from the re-
sulting clauses. Then Models(Cs) = Models((Cs−
{C,C f })∪{C′f }) is true.

4.4 True func-atom Elimination

Let 〈Cs,ϕ〉 be a MI problem on ECLSF. Assume that
a set of clauses C ∈ Cs such that

C = (eq(x,g)← f unc( f ,s1, ....,sm,x))
where x is a usual variable, s1, ...,sm,g are ground
terms, f is a function variable, and m >= 0.

If there is a func-atom f unc( f ,s1, ...,sm,v) in the
right-hand side of a clause C f rather than C in Cs, then
C f can be specialized by applying a substitution θ =
{v/g}, and the true func-atom f unc( f ,s1, ...,sm,g)
can be removed from the resulting clause C f θ.

C f θ = (Hsθ← Bsθ, f unc( f ,s1, ....,sm,v)θ)

C′f θ = (Hsθ← Bsθ)

Cs′ = (Cs−{C f })∪{C′f θ}
where Hs and Bs are a sequence of atoms.

The correctness of this rule is shown as fol-
lows: The above transformation is correct since
f unc( f ,s1, ...,sm,v)θ(= f unc( f ,s1, ...,sm,g)) is true.
Then Models(Cs) = Models((Cs−{C f })∪{C′f θ})
is true.

4.5 False func-atom Elimination

Let 〈Cs,ϕ〉 be a MI problem on ECLSF. Assume that
a set of clauses C ∈ Cs such that

C = (Eqs(n)← f unc( f ,s1, ....,sm,x))
Eqs(n) = {eq(x, t1), ...,eq(x, tn)}

where x is a usual variable, t1, ..., tn,s1, ...,sm,g are
ground terms, f is a function variable, n >= 1 and
m >= 0.

If there is a ground func-atom f unc( f ,s1, ...,sm,u)
in the right-hand side of a clause C f in Cs and u 6=
{ t1, ..., tn }, then C f can be removed from Cs.

C f = (Hs← Bs, f unc( f ,s1, ....,sm,u))

Cs′ = (Cs−{C f })
where Hs and Bs are a sequence of atoms.

The correctness of this rule is shown as fol-
lows: The above transformation is correct since
f unc( f ,s1, ...,sm,u) is false. Then Models(Cs) =
Models((Cs−{C f })) is true.
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4.6 Isolated func-atom Elimination

Let 〈Cs,ϕ〉 be a MI problem on ECLSF. Assume that
a set of clauses C in Cs such that

Cs = Csr ∪{C},
C = (Hs← Bs, f unc( f ,s1, ....,sm,x))

where x is a usual variable, s1, ...,sm are ground terms,
f is a function variable, Hs and Bs are a sequence of
built-in atoms, and m >= 0.

A func-atom is isolated with respect to Csr if there
is no func-atom of the form f unc( f ′,s′1, ....,s

′
m′ , t) in

the body of any clause in Csr such that f ′= f , m′=m,
s′1, ...s

′
m, t are terms, and the lists of terms [s1, ...sm]

and [s′1, ...s
′
m] are unifiable. If the following conditions

are satisfied:
1. f unc( f ,s1, ....,sm,x) is isolated with respect to

Csr, and
2. (Hs← Bs) contains no func atoms and satisfiable,
then C can be eliminated and Cs′ = Csr.

The correctness of this rule is shown as fol-
lows: Assume that g is a ground term such that
(Hs ← Bs){x/g} is satisfiable. Then there ex-
ists h such that f unc( f ,s1, ....,sm,g){ f/h} is true.
Thus, C{x/g}{ f/h} is satisfiable and can be elimi-
nated. The instantiation { f/h} doesn’t affect to Csr
since f unc( f ,s1, ....,sm,x) is isolated with respect to
Csr. Then the above transformation is correct since
Models(Cs′) = Models(Csr) = Models(Cs).

5 EXPERIMENTS

We show a solution for the example Agatha puzzle by
integrating five new rules with existing ones.

5.1 Solution Improvement

We have designed and implemented an improved MI
solver with five invented ET rules. In this section we
will observe the transformation process of the original
clauses C1 to C14 in 2.2.

Before the introduction of five new rules, we use
seven existing rules and control of priority shown in
Section 3.2. The computation process terminated at
125th steps of transformation where (chSide) is ap-
plied 1 time, (dup) 8 times, (erase) 7 times, (neq) 6
times, (specAtom) 1 time, (subsumed) 72 times, and
(ud) 30 times. Figure 1 shows the transition of the
number of clauses on each transformation step. The
number of clauses goes down to 11 at 125th step.
However, the answer is not obtained since the result-
ing clauses are not simple enough to apply the answer
mapping function ϕ.
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Figure 1: Transition of the number of clauses without new
rules.

After integration of five invented rules, we use
twelve rules in total. When we modify the rule pri-
ority as

(neq)>
(elimNegfvr)>(elimPosfvr)>
(applyPosfvr)>(elimIsoFunc)>
(subsumed)>(dup)>(erase)>
(specAtom)>(ud)>
(chSide)>(chSide neq)

then the process is stretched with 17 more steps
of transformation where (applyPosfvr) is applied 3
times, (chSide neq) 1 time, (elimNegfvr) 7 times,
(elimPosfvr) 2 times, and (elimIsoFunc) 4 times. Fig-
ure 2 shows the stretched transition of the number of
clauses. The number of clauses goes down to 1 at
142th step and it is simple enough to apply the an-
swer mapping ϕ, then the answer is obtained.
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Figure 2: Stretched transition of the number of clauses with
new rules.

5.2 Comprehensive Transformation
Flow

All 142 steps cannot be listed in this paper. We give
a summary of transformation for each stage where
atoms are eliminated and simplicity increases.
1. By unfolding using the definition of kill (C2), all

body atoms with the predicate kill are removed.
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By definite-clause removal, the definition of kill
(C2) is removed. By unfolding, three body atoms
with patterns hate(A,x) or hate(C,x) are removed.

2. By side-change transformation for richer, the
richer-atoms in some clauses are removed and
not richer-atoms are obtained in the other side of
these clauses.

3. By unfolding, not richer-atoms and hate-atoms
in clause bodies are removed. The definitions of
not richer and hate are removed.

4. Unfolding with respect to live-atoms has been sus-
pended since one of the definite clauses defining
live introduces a new live-atom with a pure vari-
able as its first argument. To remedy the situation,
the atom live(x,D) in the body of a clause is spe-
cialized into three clauses, which enable further
application of unfolding.

5. By unfolding live-atoms and definite-clause re-
moval, all live-atoms are removed and the clauses
C44 to C55 are obtained.

6. By side-change transformation for neq, neq-atoms
are removed from body part and eq-atoms are ob-
tained in the respective head side in four clauses.

7. By eliminating clauses whose body contain false
func-atoms, by eliminating eq-atoms for a cer-
tain func-atom which is not consistent with other
clauses of the same func-atoms in question from
a head part of a clause, and by eliminating func-
atoms which hold true regarding the settled values
declared in another clause of the same func-atom.

8. By eliminating isolated func-atom declarations
which don’t occur in any other clauses.

9. The ground atom is obtained consistently and the
answer A meaning “Agatha” is obtained by apply-
ing the answer mapping ϕ.

6 DISCUSSION

In this section, we discuss the improvement of our
approach compared with existing framework.

6.1 Failure in CLSB (The Usual Clausal
Logic)

The conventional formalization consists of the follow-
ing two steps:

• From the Agatha problem described by sentences
(Section 2.1) we obtain K in the first-order formu-
las.

• To K we apply CSK to have a set of clauses Cs′.

The conventional Skolemization (CSK) is a major
hindrance to developing a general solution for proof
and QA problems on ECLSFC since it does not gen-
erally preserve satisfiability nor logical meanings by
Theorem 1 in (Akama and Nantajeewarawat, 2016),
and thus does not generally preserve the answers to
proof and QA problems.

When we transform the Agatha background
knowledge K into a set Cs′ of usual clauses us-
ing the conventional Skolemization, we know that
Models(K) 6= /0 and Models(Cs′) = /0, hence neither
satisfiability nor logical meanings is preserved in this
case, and further computation starting from Cs′ to find
answers is thus useless.

6.2 Success in ECLSF (The Extended
Clausal Logic)

In this paper, we are successful to create an MI solver
based on the LPSF with a general logical structure as
much as possible. We already have achieved another
approach to introduce constraint is one of key con-
siderations on building such a general one (Akama
and Nantajeewarawat, 2018). However, rules which
work independently from constraints would benefit
MI solvers to focus on creating rules which are more
specific and effective to a certain problem.

Based on LPSF, transformation rule is a small
building block to construct an algorithm for prob-
lems which requires logical structure for representa-
tion. We proved the correctness of each individual
transformation rule. This means we can reuse safely
newly invented rules in other scenario where same
knowledge representation may fit to MI-solver. When
integrating invented rules, we don’t need additional
effort to prove overall correctness as long as the rule-
by-rule correctness is given.

One of KR-logic unique approach is the existence
of func-atom using function variable and a substi-
tution σ. As shown in the computation process of
Agatha puzzle, we have rich computation algorithm
using ET rules to handling func-atom.

7 CONCLUSIONS

The conventional clauses don’t have enough expres-
sive power of existential quantification that is required
to represent and compute the Agatha puzzle. Function
variables are essentially used for transformation of ex-
istential quantification. We take extended clauses in
ECLSF that have function variables. Hence, we need
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a new logic and logical computation for the extended
space.

To solve the Agatha puzzle, we discover ET rules
to handle function variables. We obtained five gen-
eral ET rules as follows: (1) side-change of neq body-
atoms to eq head-atoms, (2) elimination of candidate
eq head-atom, (3) elimination of func atom by en-
forced specialization, (4) elimination of a clause by
false func atom, and (5) elimination of a clause con-
taining an isolated func atom.

These invented rules are discovered through the
squeeze method. We also prove the correctness of
each rule strictly. Thus, we construct an MI solver
based on the extended space on ECLSF. The solver
is applied to not only the Agatha puzzle, but also
any other problems represented similarly in extended
clauses. It is shown that the proposed new ET rules
contribute to an improvement of a solver. We can
make a constant progress by adopting a suitable repre-
sentation space for the problem that cannot be solved
in the conventional clause space. Increasing the capa-
bility by accumulating properly validated ET rules is
a core research methodology of logical problem solv-
ing framework.
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