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Abstract: Recently it has been reported that artificial spiking neural networks (SNNs) are computationally more pow-
erful than the conventional neural networks. In biological neural networks of living organisms, various firing
patterns of nerve cells have been observed, typical examples of which are burst firings and periodic firings. In
this paper we propose a learning method which can realize various firing patterns for recurrent SNNs (RSSNs).
We have already proposed learning methods of RSNNs in which the learning problem is formulated such that
the number of spikes emitted by a neuron and their firing instants coincide with given desired ones. In this
paper, in addition to that, we consider several desired properties of a target RSNN and proposes cost func-
tions for realizing them. Since the proposed cost functions are not differentiable with respect to the learning
parameters, we propose a learning method based on the particle swarm optimization.

1 INTRODUCTION

Recently there is a surge in the research of artifi-
cial spiking neural networks (SNNs) due to the fact
that the functions of spiking neurons are closer to
the physiological functions of the generic biologi-
cal neurons than the conventional threshold and sig-
moidal neurons (Mass and Bishop C., 1998; Gerst-
ner and van Hemmen, 1993b; Mass, 1997b). In arti-
ficial spiking neural networks the information is en-
coded and processed by the spike trains (sequence of
action potentials) similar to the biological neural net-
works (BNNs), through a discontinuous and nonlin-
ear encoding mechanism (Mass and Bishop C., 1998;
Gerstner and van Hemmen, 1993b). The conventional
neuron models usually tend to ignore these sophisti-
cated discontinuous encoding mechanisms. In addi-
tion to the SNNs’ similarity to the BNNs, recently it
has been reported that they are computationally more
powerful than the conventional artificial neural net-
works (Mass, 1997b; Mass, 1997a; Mass, 1996). It
is however much more difficult to analyze and syn-
thesize the SNNs than the conventional threshold and
sigmoidal neural networks. This is due to their as-
sociated nonlinear and discontinuous encoding mech-
anisms, which make the SNNs continuous and dis-
crete hybrid-dynamical systems. In this paper we dis-
cuss a learning method, which is one of fundamental

problems of NNs, for the recurrent spiking neural net-
works (RSNNs).

In the case of the sigmoidal neural networks, the
backpropagation method was proposed by Rumelhart
et al. (Rumelhart and McClelland, 1986) for feed-
forward types of neural networks, which is one of
the pioneering works that trigger the research inter-
ests of applications of the neural networks. Following
the backpropagation method, learning methods have
been developed for recurrent sigmoidal neural net-
works (Kuroe, 1992).

In the case of the SNNs, their learning methods
have not been actively studied due to their associ-
ated nonlinear and discontinuous encoding mecha-
nisms and only a few studies have been done. As
unsupervised learning W. Gestner et al. proposed
a learning method for feedforward SNNs, which is
based on the concept of the Hebbian learning (Gerst-
ner and van Hemmen, 1993a). As supervised learning
for SNNs the following studies have been done. K.
Selvaratnam et al. proposed a gradient based learn-
ing method for RSNNs (Selvaratnam and Mori, 2000)
based on sensitivity equation approach and Y. Kuroe
et al. proposed based on adjoint equation approach
(Kuroe and Ueyama, 2010). Backpropagation-like
learning method is proposed for feedforward SNNs
(Bohte et al., 2002) and for deep SNNs (Lee and
Pfeiffer, 2016).
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Figure 1: Schematic of the firing mechanism of the integrate
and fire type SN.

In biological neural networks of living organisms,
various firing patterns of nerve cells have been ob-
served (Izhikevich, 2007), typical examples of which
are burst firings and periodic firings. It is expected
that artificial SNNs with recurrent architectures re-
alize various complicated firing patterns (Izhikevich,
2004; Izhikevich, 2007) because of their behavior as
nonlinear dynamical systems. In this paper we pro-
pose a learning method which can realize various fir-
ing patterns for RSNNs. As stated above learning
methods of RSNNs were proposed in (Selvaratnam
and Mori, 2000; Kuroe and Ueyama, 2010), in which
the learning problem is formulated such that the num-
ber of spikes emitted by a neuron and their firing in-
stants coincide with given desired ones. In addition to
that, in this paper we consider several desired prop-
erties of a target RSNN and propose cost functions
for realizing them. Since the proposed cost functions
are not differentiable with respect to the learning pa-
rameters and their gradients do not exist, the gradient
based methods cannot be used. We propose a learn-
ing method based on the particle swarm optimization
(PSO)(Kennedy and Eberhart, 2001).

2 SPIKING NEURAL NETWORKS

2.1 Firing Mechanism of SNs

In this paper we consider the integrate-and-fire type
spiking neurons (SNs) shown in Fig. 1. The firing
mechanism of the i-th integrate-and-fire type spik-
ing neuron is as follows. When an input stimulus
ei(t) is fed into the integrator with transfer function
1/(s+ ci), a spike is emitted at the moment when the
internal state pi(t) which corresponds to the mem-
brane potential of a biological neuron reaches the
threshold value si. At the instant of spike emission
the sign of the internal state pi(t) is observed and as-

signed to the output spike and the internal state pi(t)is
reset to zero. The firing mechanism is mathematically
described as follows.

σi(t) =
Ki

∑
ki=1

εi,ki ×δ(t− ti,ki) (1)

ti,ki = min[t : t > ti,ki−1, |pi(t)| ≥ si] (2)

εi,ki = sgn[pi(t−i,ki
)] (3)

d pi(t)
dt

=−ci pi(t)+ ei(t), ti,ki−1 < t < ti,ki (4)

pi(0) = p0
i , (5)

pi(t+i,ki
) = 0, ki = 1, . . .Ki, (6)

where, σi(t): output sequence of spikes of the i-
th spiking neuron, Ki: total number of spikes fired
before time t, ti,ki : time at which the kth

i spike is
emitted, pi(t): internal state, p0

i : initial condition of
pi(t), si: threshold value, ei(t): input to the spiking
neuron, and pi(t−i,ki

) = limε→0 pi(ti,ki − ε), pi(t+i,ki
) =

limε→0 pi(ti,ki +ε), ε> 0. Equation (6) denotes the re-
setting mechanism of the SN at spike emission times.

2.2 Model of Spiking Neural Networks
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Figure 2: Model of the connections of i-th spiking neuron
in the SNN.

In this paper we consider recurrent spiking neural
networks (RSNNs) in which integrate-and-fire type
spiking neurons shown in Fig.1 are fully connected
through synaptic weights wi, j and time delay elements
gi, j(s). Figure 2 shows a schematic diagram of the
connection of the ith spiking neuron in the RSNN.
We let here the number of neurons composed in the
RSNN be M. The elements gi, j(s) determine shape
of post synaptic potentials, so called spike-response
function as shown in Fig. 3, or delay due to the
spike transmission between spiking neurons. Synap-
tic weights wi, j are multiplied by the time delay ele-
ments (wi, j× gi, j(s)). The input stimulus ei(t) of the
i-th SN is generated by the weighted sum of each out-
put yi, j(t) of the element gi, j(s) and the external input
vi(t). The input ui, j(t) of gi, j(s) is connected with
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Figure 3: Spikes and spike-response function.

the output of the j-th neuron σ j(t). The connection
topology of the entire RSNN is given by

ei(t) =
M

∑
j=1

wi, jyi, j(t)+ vi(t), (7)

ui, j(t) = σ j(t). (8)
For the convenience of the derivation of the learning
algorithms, the elements gi, j(s) are expressed in the
state space form:

dxi, j(t)
dt

= Ai, jxi, j(t)+bi, jui, j(t) (9)

yi, j(t) = ci, jxi, j(t) (10)

xi, j(0) = x0
i, j, i, j = 1, · · · ,M (11)

gi, j(s) = ci, j(sI−Ai, j)
−1bi, j,

where xi, j(t): N dimensional state vector, x0
i, j: N di-

mensional initial state vector and the dimensions of
the system matrices and vectors Ai, j, bi, j and ci, j are
N × N, N × 1 and 1× N, respectively. Equations
(1)∼(11) give the whole description of the RSNN
considered in this paper.

3 PROPOSED METHOD

3.1 Examples of Firing Patterns

In biological neural networks of living organisms,
various firing patterns of nerve cells are observed.
The purpose of this paper is to propose a learning
method of neural network that produces such firing
patterns. Here we introduce two examples of such fir-
ing patterns observed in biological neural networks of
living organisms like human brains. One typical ex-
ample is a burst firing pattern. It is a firing pattern
as shown in Fig. 4, in which the number of firings
suddenly increases and decreases and the firing time
interval and the non-firing time interval are clearly di-
vided. In the figure an example of the time evolution
of the membrane potential of a neuron which gener-
ates burst firing is shown. Another typical example is
a periodic firing pattern. It is a firing pattern in which
a same firing pattern is repeated with a constant pe-
riod. In both firing patterns, burst and periodic firing
patterns, there could exist various firing patterns de-
pending on firing time, firing frequency and so on.

Figure 4: An example of burst firing.

3.2 Formulation of Learning Problems

3.2.1 Learning Problem for Generating Various
Firing Patterns

We now formulate the learning problem which real-
izes various firing patterns. As stated above, in burst
firing patterns the firing time interval and the non-
firing time interval are clearly divided. In order to
realize this, it is necessary to divide total time inter-
val into some sub time intervals and specify a desired
firing pattern to each sub time interval.

Suppose that the RSNN operates starting at time
t = 0 and finishing at time t = t f and the total time
interval is 0 ≤ t < t f . For each neuron, say the i-th
SN denoted by SNi in the RSNN, we divide the total
time interval into sub time intervals and the number
of sub time intervals is denoted by Si. For the i-th SN,
let tvi-th sub time interval be ts

i,tvi
≤ t < te

i,tvi
,(tvi =

1,2, · · · ,Si), where the start time ts
i,tvi

and the finish
time te

i,tvi
satisfy the following equations.

te
i,tvi

= ts
i,tvi+1(i = 1,2, · · · ,M; tvi = 1, · · · ,Si−1)

ts
i,1 = 0, te

i,Si
= t f (i = 1,2, · · · ,M) (12)

We now formulate the learning problem which re-
alizes various firing patterns. We already pro-
posed a learning method of the RSNNs described by
(1)∼(11), in which the learning problem is formulated
such that the number of spikes emitted by SN and
their firing instants coincide with given desired num-
bers of spikes and their desired firing instants for the
interval [0, t f ] (Selvaratnam and Mori, 2000; Kuroe
and Ueyama, 2010). In this paper, in order to real-
ize various firing patterns, in addition to the learning
problem in (Selvaratnam and Mori, 2000; Kuroe and
Ueyama, 2010) we consider the learning problems in
which desired number of spikes without specifying
their firing instant is given, and desired values of up-
per and/or lower limit of the number of spikes emitted
by SN are given. The learning problem is formulated
as follows.
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[Learning Problem]
Determine the values of the synaptic weights wi, j such
that the RSNN generates the desired spike sequence
if one of the values of the following items is specified
for any given neuron SNi in the RSNN and any given
sub time interval ts

i,tvi
≤t<te

i,tvi
:

a) the number of spikes and their firing instants,

b) the number of spikes,

c) the value of upper limit of the number of spikes,

d) the value of lower limit of the number of spikes or

e) the values of lower and upper limits of the number
of spikes.

Let the set of the neurons SNi which one of the items
a)–e) is specified be O and the set of the indexes
tvi of the sub time intervals which one of the items
a)–e) is specified be Ui. For the sub time interval
ts
i,tvi
≤t<te

i,tvi
(tvi ∈Ui), let the number of spikes which

SNi emits be Ki,tvi , and the time instant of ki,tvi -th
spike be ti,ki,tvi

(ki,tvi = 1,2, · · · ,Ki,tvi ). We introduce
the measures which represent discrepancies between
Ki,tvi , ti,ki,tvi

and their specified values in a)–e) as cost
functions, denoted by Ji,tvi(ti,ki,tvi

,Ki,tvi), and define
the total cost function as follows.

J1 = ∑
i∈O

∑
tvi∈Ui

αi,tviJi,tvi(ti,ki,tvi
,Ki,tvi) (13)

where αi,tvi are weight coefficients. The def-
inition of Ji,tvi will be given in the next sec-
tion. Letting the learning parameters be X1 =
(w1,1,w1,2,· · ·,wi, j,· · ·,wM,M), the learning problem
here is reduced to the following optimization prob-
lem:

Minimize J1 (14)
w.r.t. X1

3.2.2 Learning Problem for Generating Periodic
Firing Patterns

In order to make the network generate persistent pe-
riodic phenomena it should be a nonlinear dynamical
system like the RSNNs described by (1)∼(11). Here
we formulate the learning problem which generates
various patterns in the previous subsection and makes
them periodic with a given desired period T . In or-
der to make them periodic, the state variables pi and
xi, j(t) of the RSNN must satisfy the conditions:

pi(t) = pi(t +T ), xi, j(t) = xi, j(t +T ). (15)

The problem here is to determine the values of the
network parameters which minimize the cost func-
tion J1 and make the conditions (15) being satisfied
simultaneously. We introduce another cost function

to realize the conditions. Note that the initial states
of the RSNN which realize the conditions (15) are
unknown. As the learning parameters we choose
not only the synaptic weights wi, j but also the initial
states of the RSNN, p0

i and x0,n
i, j (i = 1,2, · · · ,M; n =

1,2, · · · ,N). Defining X2 = (w1,1,· · ·,wi, j,· · ·,wM,M,

p0
1,· · ·,p0

i ,· · ·,p0
M, x0,1

1,1,· · ·,x
0,n
i, j ,· · ·,x

0,N
M,M), the learning

problem here is reduced to the following optimization
problem:

Minimize J1 +βJ2 (16)
w.r.t. X2

subject to |p0
i |< si

J2 is the cost function realizing the periodicity condi-
tion (15), the definition of which is given in the next
section, and β is a weight coefficient. Note that the
constraint |p0

i | < si is set to prevent the fact that SNi

always fires at the initial time t = 0 if |p0
i | ≥ si.

3.3 Defining the Cost Functions

It is known that, since PSO is an optimization method
that uses only values of a cost function and does not
require its continuity or the existence of its gradient,
various cost functions can be set according to opti-
mization problems. It is, therefore, important what
kind of cost functions are set. We now propose cost
functions which realize the items a)–e) and the peri-
odicity condition (15).

3.3.1 Cost Function for Firing Instants

Let the desired number of spikes emitted by SNi for
the time interval ts

i,tvi
≤t<te

i,tvi
be Kd

i,tvi
and their de-

sired firing instants be td
i,ki,tvi

(ki,tvi=1,2,· · · ,Kd
i,tvi

). In
order to realize that the number of spikes emitted by
each SNi and their firing instants coincide with the
given desired ones, we define the following cost func-
tion J11.

J11 =

Ki,tvi

∑
ki,tvi=1

|td
i,ki,tvi
− ti,ki,tvi

|ex + J111 (17)

where

J111 =



Ki,tvi

∑
ki,tvi=Kd

i,tvi
+1

|t p
i,ki,tvi
− ti,ki,tvi

|ex,(Ki,tvi > Kd
i,tvi

)

Kd
i,tvi

∑
ki,tvi=Ki,tvi+1

|td
i,ki,tvi
− ti,Ki,tvi

|ex,(Ki,tvi < Kd
i,tvi

)

0, (Ki,tvi = Kd
i,tvi

)
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and ex is the exponentiation parameter which is usu-
ally chosen as ex = 1 or 2. J111 is a penalty func-
tion which is applied when the number of spikes
emitted by SNi does not coincident with the de-
sired one. When Ki,tvi > Kd

i,tvi
, in order to avoid the

excess number of spikes being fired we set provi-
sional teaching signals for the excess spikes. Let
t p
i,ki,tvi

be the timings of the provisional teaching
signals to the firing instants of the excess spikes
ti,ki,tvi

,ki,tvi = Kd
i,tvi

+1, · · · ,Ki,tvi . We choose values
of t p

i,ki,tvi
to be larger enough than t f (t p

i,ki,tvi
>> t f ).

When Ki,tvi < Kd
i,tvi

, in order to make each SNi gen-
erate additional spikes we set the penalty as follows.
Considering that at the firing instant ti,Ki,tvi

of the last
actual spike emitted by SNi the missing Kd

i,tvi
−Ki,tvi

number of spikes fire simultaneously, we set the error
between the last actual firing instant and the desired
firing instants as in the second case of J111.

3.3.2 Cost Function for the Upper and Lower
Limits of the Number of Spikes

Let the desired upper and lower limit values of the
number of spikes emitted by SNi for the time inter-
val ts

i,tvi
≤t<te

i,tvi
be Kdu

i,tvi
and Kdl

i,tvi
, respectively. The

cost function for the upper limit is set so that its value
increases as the number of spikes emitted by SNi ex-
ceeds the upper limit value Kdu

i,tvi
as follows.

J12 = max(Ki,tvi −Kdu
i,tvi

,0)ex (18)

The cost function for the lower limit is set so that its
value increases as the number of spikes emitted by
SNi lowers the lower limit value Kdl

i,tvi
as follows.

J13 = max(Kdl
i,tvi
−Ki,tvi ,0)

ex (19)

3.3.3 Cost Function for Generating Periodic
Firing Patterns

In order to make firing pattern be periodic with period
T , the state variables pi(t) and xi, j(t) of the RSNN
must satisfy the conditions (15). The cost function J2
for the problem (16) is set so as to realize the condi-
tions (15) as follows.

J2 =
NT

∑
nT=1

M

∑
i=1

(
|p0

i − pi(nT T )|ex

+
M

∑
j=1

N

∑
n=1
|x0,n

i, j − xn
i, j(nT T )|ex

)
(20)

It is theoretically enough to let NT = 1, however, we
introduce the parameter NT for numerical accuracy.

The items a)–e) in Subsection 3.2.1 can be real-
ized by appropriately choosing from the cost func-
tions J11, J12, J13 defined in the above section and
combining them as follows.

a) J11 b) J12 + J13 (Let Kdu = Kdl .)
c) J12 d) J13 e) J12 + J13

3.4 Learning Method based on the PSO

The cost function J11 defined by (17) is differen-
tiable with respect to the network parameters X1 =
(w1,1,w1,2,· · ·,wi, j,· · ·,wM,M) if ex = 2, and gradient
based learning methods were proposed in (Selvarat-
nam and Mori, 2000; Kuroe and Ueyama, 2010) for
RSNNs. Since the other cost functions are not dif-
ferentiable, we use the particle swarm optimization
method (PSO) (Kennedy and Eberhart, 2001) in order
to solve the optimization problems (14) and (16). In
the following we explain the outline of the PSO.

Consider an optimization problem of determining
values of Nx decision variables X = (x1,· · ·,xn,· · ·,xNx )
which minimize a cost function J(X). In the PSO, a
swarm is prepared and its all member particles are
used for solving the problem. Let P be the num-
ber of the particles (the swarm size), and X p,k =

(xp,k
1 ,· · ·,xp,k

n ,· · ·,xp,k
Nx

) be the candidate solution of p-
th particle (p = 1,2, · · · ,P) at the k-th iteration. The
candidate solution of p-th particle at the next ((k+1)-
th) iteration is determined based on the update equa-
tion of the PSO as follows.

xp,k+1
n = xp,k

n +4xp,k+1
n (21)

where

4xp,k+1
n = W4xp,k

n

+ C1rand1()
p,k
n (pbest p,k

n − xp,k
n )

+ C2rand2()
p,k
n (gbestk

n− xp,k
n ) (22)

and the update value4X p = (4xp
1 ,· · ·,4xp

n ,· · ·,
4xp

Nx
) is called the velocity vector of the p-th parti-

cle, rand1()
p,k
n ,rand2()

p,k
n are uniform random num-

bers in the range from 0 to 1, W is a weight pa-
rameter called the inertia weight, and C1 and C2 are
weight parameters called the acceleration coefficients.
pbest p,k= (pbest p,k

1 , · · · ,pbest p,k
n , · · · ,pbest p,k

Nx
)) is

called the personal best which is the best candidate
solution found by the p-th particle until the k-th it-
eration and gbestk=(gbestk

1 ,· · · ,gbestk
n ,· · · ,gbestk

Nx
) is

called the global best which is the best candidate so-
lution found by all the members of the swarm, and
they are given as: pbest p,k

n = xp,k∗
n and gbestk

n =

pbest p∗,k
n where k∗ = argmin1≤k′≤k J(X p,k

′
) and p∗ =

argmin1≤p≤P J(pbest p,k).
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4 NUMERICAL EXPERIMENTS

4.1 Problems and Experiment

We prepare the following three learning problems for
experiments and apply the proposed method to them.
Experiment 1
We consider the RSNN consists of fully connected
five neurons SNi(i = 1,2, . . . ,5) and one input neu-
ron SNinput which generates a triggering input vi(t)
as shown in Fig. 5. We let the triggering input be
vi(t) = δ(0). In this problem the total time inter-
val [0.0,5.0) is divided into two sub time intervals
[0.0,2.5) and [2.5,5.0). The desired firing sequences
shown in Table 1 are given to the RSNN, where it is
trained so as that SN1 fires the desired numbers of
spikes for each sub time interval and without assign-
ing their firing instants, and SN2, SN3 and SN4 fire the
desired lower and/or upper limit values of the number
of spikes. SN5 is not given desired firing sequences.
This experiment is a learning problem in which the
items b), c), d) and e) in 3.2.1 is specified.
Experiment 2
Experiment 2 is a learning problem in which the item
b) in 3.2.1 is specified and burst firings with the de-
sired number of spikes are realized. We consider the
same RSNN as in Experiments 1 shown in Fig. 5.
The time interval [0.0,5.0) is divided into three sub
time intervals [0.0,1.0), [1.0,1.5) and [1.5,5.0). The
desired firing sequences shown in Table 2 are given to
SN1 of the RSNN so that it emits a specified desired
number of spikes for the time interval [1.0,1.5) and it
does not fire for the other time intervals [0.0,1.0) and
[1.5,5.0). The experiments are carried out for two
conditions I ( Kd

1,2 = 10) and II ( Kd
1,2 = 20).

Experiment 3
Experiment 4 is a learning problem in which the
item b) in 3.2.1 is specified and a periodic firing
is realized. We consider the RSNN consists of
two neurons SNi(i = 1,2) which are mutually con-
nected as shown in Fig. 6 because neural oscilla-
tors are usually realized by using such fully con-
nected two neuron networks. The total time interval
is [0.0,20.0) and it is divided into five sub time inter-
vals [0.0,4.0), [4.0,8.0), [8.0,12.0), [12.0,16.0) and
[16.0,20.0). The desired firing sequences shown in
Table 3 are given to SN1 of the RSNN so that it fires a
specified desired number of spikes for each sub time
interval. In addition to that the periodic conditions
(15) are given so that the RSNN generates a periodic
firing pattern with the period T = 20.

In order to solve the problems of the above
experiments it is necessary to choose appropriate
cost functions in the optimization problems (14) and

(16). We choose the following cost functions for each
problem:

Ex. 1: J = ∑
i∈O

∑
tvi∈Ui

(J12 + J13)

Ex. 2-I, II: J = ∑
i∈O

∑
tvi∈Ui

(J12 + J13)

Ex. 3: J = ∑
i∈O

∑
tvi∈Ui

(J12 + J13)+ J2

In the experiments the parameters of the RSNN
are set as follows. For all experiments we choose
ci = 0.2, si = 1.0 and the parameters in the state space
model of the elements gi, j(s) are: N = 2 and Ai, j =(
−3.0 0.0
0.0 −6.0

)
, bi, j =

(
1.0
1.0

)
, ci, j = (1.0,−1.0). In

Experiment 1 and 2 the initial states are chosen as

p0
i = 0.0, x0

i, j =

(
0.0
0.0

)
.

For all the experiments the exponentiation param-
eter ex of the cost functions is chosen as ex = 2. For
Experiment 3 the parameter NT of the cost function
J2 is chosen as NT = 1 and the weight coefficient γ is
chosen as γ = 25.

For all experiments the parameters of the parti-
cle swarm optimization are chosen as follows. The
parameters of the update equations (21) and (22)
(W,C1,C2) are chosen:(W,C1,C2) = (0.7,1.4,1.4),
the number of the particles is P = 100 or P = 200,
the maximum number Tmax of learning iterations is
Tmax = 5000. In each experiment the learning itera-
tion finishes when the number of the learning iteration
reaches Tmax. For each particle the initial values of the
candidate solution and its velocity, wp,0

i, j and 4wp,0
i, j ,

are determined randomly within the range [−10,10].
In Experiment 3 for each particle the initial values of
the candidate solution and its velocity, p0

i , 4p0
i , x0,n

i, j

and 4x0,n
i, j are determined randomly within the range

[−1,1] by considering the fact that si = 1.0.

Figure 5: Fully connected five neurons SNi(i= 1, . . . ,5) and
one input neuron SNinput .
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Figure 6: RSNN consists of mutually connected two neu-
rons SNi(i = 1,2).

Table 1: Desired Firing Sequences (Ex. 1).

Ex. 1 (S1,S2 = 2,t f = 5.0)
[ts

i,tvi
,te

i,tvi
) [0.0,2.5) [2.5,5.0)

SN1 Kd
1,1 = 8 Kd

1,2 = 3
SN2 Kdl

2,1 = 8 Kdl
2,2 = 3

SN3 Kdu
3,1 = 10 Kdu

3,2 = 10
SN4 Kdl

4,1 = 10,Kdu
4,1 = 5 Kdl

4,2 = 20,Kdu
4,2 = 15

Table 2: Desired Firing Sequences (Ex. 2).

Ex. 2 (S1 = 3,S2,· · ·,S5 = 1,t f = 5.0)
[ts

i,tvi
, te

i,tvi
) [0.0,1.0) [1.0,1.5) [1.5,5.0)

I SN1 Kd
1,1 = 0 Kd

1,2 = 10 Kd
1,3 = 0

II SN1 Kd
1,1 = 0 Kd

1,2 = 20 Kd
1,3 = 0

Table 3: Desired Periodic Firing Sequences (Ex. 3).

Ex. 3 (S1 = 5,t f = 20.0)
[ts

i,tvi
,te

i,tvi
) [0.0,4.0) [4.0,8.0) [8.0,12.0)

SN1 Kd
1,1 = 4 Kd

1,2 = 4 Kd
1,3 = 4

[ts
i,tvi

,te
i,tvi

) [12.0,16.0) [16.0,20.0)
SN1 Kd

1,4 = 4 Kd
1,5 = 4

4.2 Results and Discussions

We applied the proposed learning method to each ex-
periment. The results are shown here.
Result of Experiment 1
After training the RSNN shown in Fig. 5 by the pro-
posed method we run it by the same triggering signal
vi(t) = δ(0) from the input neuron SNinput and ob-
serve its behavior. Figures 7, 8, 9 and 10 show ex-
amples of time evolutions of the internal state p1(t)
of SN1, p2(t) of SN2, p3(t) of SN3 and p4(t) of SN4
obtained from the result, respectively. It is observed
from the figures that SN1, SN2, SN3 and SN4 emit
the desired firing sequences shown in Table 1, which
implies that the learning is successfully done by the
proposed method.
Result of Experiment 2
Figures 11 and 12 show examples of time evolutions
of the internal state p1(t) of SN1 obtained from the
results Ex. 3-I and Ex. 3-II, respectively. It is ob-
served from the figures the burst firings with the de-
sired number of spikes are realized and the learning is
successfully done by the proposed method.

Result of Experiment 3
After training the RSNN shown in Fig. 6 by the pro-
posed method, we run it with the obtained initial con-
dition and observe its behavior. Note that the RSNN
shown in Fig. 6 has no input neuron and it is triggered
by the initial conditions. Figures 13 shows an exam-
ple of the time evolution of the internal state p1(t) of
SN1 obtained from the result. It is observed that the
periodic firings with the desired number of spikes are
realized.
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Figure 7: Time evolution of p1(t) after learning in Ex. 1.
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Figure 8: Time evolution of p2(t) after learning in Ex. 1.
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Figure 9: Time evolution of p3(t) after learning in Ex. 1.
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Figure 10: Time evolution of p4(t) after learning in Ex. 1.
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Figure 11: Time evolution of p1(t) after learning in Ex. 2-I.
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Figure 12: Time evolution of p1(t) after learning in Ex. 2-
II.
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Figure 13: Time evolution of p1(t) after learning in Ex. 3.

5 CONCLUSIONS

In biological neural networks of living organisms,
various firing patterns of nerve cells have been ob-
served, typical example of which are burst firings and
periodic firings. The RSNNs are expected to realize
various complicated firing patterns because of their
behavior as nonlinear dynamical systems. In this pa-
per we proposed a learning method which can real-
ize various firing patterns for RSNNs. We consid-
ered several desired properties of a target RSNN and
proposed cost functions for realizing them. Since the
proposed cost functions are not differentiable with re-
spect to the learning parameters and their gradients
do not exist, we propose larning methods based on
the particle swarm optimization (PSO). Some exper-
imental examples were provided to show the validity
of the proposed method.
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