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Abstract: The Differential Evolution (DE) is a highly competitive nemical optimization algorithm, with a small num-
ber of control parameters. However, it is highly sensitivehe setting of these parameters, which inspired
many researchers to develop adaptation strategies. Oherofis the popular Success-History based Adap-
tation (SHA) mechanism, which significantly improves the p&formance. In this study, the focus is on
the choice of the metaparameters of the SHA, namely thagettif the Lehmer mean coefficients for scaling
factor and crossover rate memory cells update. The expetinage performed on the LSHADE algorithm and
the Congress on Evolutionary Computation competition anemical optimization functions set. The results
demonstrate that for larger dimensions the SHA mechaniglmmadified Lehmer mean allows a significant
improvement of the algorithm efficiency. The theoreticalsiderations of the generalized Lehmer mean could
be also applied to other adaptive mechanisms.

1 INTRODUCTION and since its development (Storn and Price, 1997) has
received many attention from the research community

In recent decades the area of Evolutionary Computa-due to its simplicity in implementation and only few
tion (EC) has proposed various tools to solve com- control parameters. However, the choice of optimal
plex optimization problems in different areas, includ- parameter settings remains one of the main issues of
ing engineering, technical, financial, and many more. modern DE variants development, according to (Das
Most of these tools are based on various biology- et al., 2016).
inspired heuristic approaches, but mostly follow the In (Al-Dabbagh et al., 2018) it is stated that one of
evolutionary paradigm. The existing heuristic and the most efficient parameter adaptation schemes pro-
metaheuristic algorithms differ in problem solution posed for DE is the Success History based Adapta-
representation and operations used. One of the well-tion, proposed in (Tanabe and Fukunaga, 2013). This
developed areas is the area of numerical optimiza- adaptation mechanism was applied in one of the most
tion problems, in which certain success has beencompetitive DE variants, such as SHADE, LSHADE,
made by algorithms such as real-coded Genetic Al- and their modifications. The SHA uses information
gorithm (GA), Particle Swarm Optimization (PSQO), about previously successful values of DE parameters
Covariance Matrix Adaptation Evolutionary Strategy to update the memory cells. To address the effect
(CMA-ES) and Differential Evolution (DE). of bias caused by the fact that smaller scaling fac-
The DE is known to be one of the most competi- tor and crossover rate parameter values lead to more

tive approaches for all types of optimization problems greedy search, the usage of Lehmer mean was pro-
- posed. Some aspects of structural bias in DE have

al https://orcid.org/0000-0002-1695-5798 been studied in (Caraffini et al., 2019). In this study,
b® https://orcid.org/0000-0003-2927-1974 the generalized variant of Lehmer mean is considered,
¢ https://orcid.org/0000-0002-3776-5707 and the LSHADE variant is tested with various types
d® https://orcid.org/0000-0002-8228-6924 of Lehmer mean implementations.
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The rest of the paper is organized as follows: in The scaling factoF, crossover rat€r, as well as
section 2 the DE state of the art is described, with the population sizeNP are three main control parameters
main focus on the SHA mechanism, section 3 presentsif DE. The SHADE algorithm (Tanabe and Fukunaga,
the modified Lehmer mean and theoretical insights, 2013) improved the adaptation procedure in JADE
section 4 contains the experimental setup and results,(Zhang and Sanderson, 2009) by introducing several
as well as discussion, and section 5 concludes the paimemory cells containing best known parameter val-
per. ues combinations, which were then used to generate

new trial vectors. Initially there weld memory cells,
each containing a paMg, Mcr, which are set to 0.5,

2 SUCCESSHISTORY BASED and the current memory indéxwvas set to 1. For each
mutation and crossover tifeandCr values were gen-
DIFFERENTIAL EVOLUTION erated using Cachy distribution and normal distribu-

) ) . . tion with scale parameter and standard deviation of
The Differential Evolution was originally proposed g 1 respectively:

by K. Price and R. Storn in (Storn and Price, 1997)
for real-valued optimization problems solving. DE F = rando(Mg, 0.1)

is a population-based algorithm, in which the popu- {Cr B randn(M7 ’ 0 1’)
lation of NP individuals is represented asj, where N Crh, =

i=1..,NP j=1,..,D, whereDis the problem di- If the newly generateB or Cr is outside th€0, 1]
mension. The goal is to minimize the functié(X) interval, then it is generated again until it satisfies this
with respect to bound constrairjtsnin;, xmayj]. condition. During the selection step, if the trial vec-

The DE starts by initializing the population ran- tor was successful, i.e. better then target vector, the
domly within the boundaries, and proceeds by per- values ofF andCr were stored ir§ and<cr, as well
forming mutation, crossover and selection (replace- as the improvement valuf; = | (u) — f(x)|. After
ment) operations. The mutation operator is the key the end of the generation, currédnth memory cell is
component of DE, which generates new mutant vec- updated using the weighted Lehmer mean:
tor by combining the vectors from the population.

There are several mutation strategies known, how- le_ WS
ever, in this study theurrent— to — pbeststrategy, mean,(S) = fa_ij (2
introduced in JADE algorithm (Zhang and Sanderson, 2i=1Wj Sj

2009), is applied: whereSis eitherS: or &r, and the weight value

Afj . o
Wj = —5 L. The index of memory ceh is incre-
Zk:lAfk

Vi =Xij +F* (Xpoj —Xi,j) +F+(41j—%2j) (1) mented every generation and set to hit H. The
whereF is the scaling factor, which is a parameter idea of using several memory cells is to provide more
usually in rangg0,1]. The pbindex is chosen from robust parameter adaptation, in which the fluctuations
p% best individuals in the population, whil¢ andr2 ~ 0f F andCr would not influence the searh signifi-
are chosen randomly from the population. Next, the cantly. The SHA mechanism is sensitive not only to
crossover operation is performed, in which the trial the improvementfact, but also to the value of the im-

vector is defined as: provement, i.eAf.
= {zl [ randd. 1)< Cror = Jrand 3 GENERALIZED LEHMER
b, OMErwise MEAN FOR SUCCESS
where Cr is the crossover rate in rangé, 1], HISTORY ADAPTATION

jrand is set to random index ifil,D] and used to

mutant vector. After this, the selection procedure is iy JADE (zZhang and Sanderson, 2009) algorithm for

applied, and the newly generated trial vectore-  the calculation ofF values only. In rJADE (Peng
places the target vectog if it has at least as good ¢t g, 2009), the weighted procedure forcalcula-
fitness: tion was proposed, where ti¥f; values were used.
) Finally, in LSHADE (Tanabe and Fukunaga, 2014)
x| = {Uja if £(uj) < f(xij) the Lehmer mean was used for béthandCr calcu-
’ Xij, otherwise lation.
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The generalized from of weighted Lehmer mean for dimensions 10, 30, 50 and 100. The experiments

could be written as follows (Bullen, 2003): were performed according to the competition rules,
i.e. there were 51 independent run for every function,

Z‘i Jwix? the total computation resource was set to 1@DG"d

mearny w(X) = ﬁ (3) the best achieved fithess values were saved ldffdF
2 j=1WjX] =0.01,0.02,0.03,0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,

From this equation it could be seen that weighted 0-8 0.9 and 1.BFEmax, whereNFE is current num-
Lehmer means is a group of means, and by chang-Per of function evaluations, afdFEmax is the total
ing the p parameter, other means cold be obtained. available resource. The CEC 2017 functions defini-

In particular, mean,(X) is the harmonic mean, tion can befoundin (Wu et al., 2016).

mean y(X) is arithmetic mean, antheany(X) is The LSHADE algorithm used the external archive
also referred to as contraharmonic mean. Other meangVith size NP, and indexr2 in current—to — pbest
could be considered by changing thealue, for ex- mutation strategy was generated from both population

ample, Fig. 1 shows the means obtained by changinga”d the archive, according to (Tanabe and Fukunaga,
p in range[1,4] for x values uniformly distributed in ~ 2014). The population size was set th7§5 p param-
[0,1], allwj = 1. eter incurrent—to — pbeststrategy equal to.Q7.

To perform the comprehensive experiment, the

0801 LSHADE algorithm was tested with different values
075 4 of pin Lehmer mean foF andCr generation. Theg
and pcr changed between 1 and53with step 025,
g %7 and the experiments were performed for dimensions
& 065 10, 30 and 50. The comparison was performed us-
g ing two-tailed Mann-Whitney rank sum statistical test
0-601 with tie-braking and significance level= 0.01 and
0.55 Friedman ranking procedure. Figure 2, 3 and 4 show
the Friedman ranking of different algorithms forl20
WS- | , , ] ] ] 30D and 5@ respectively. The numbers in heatmap
ey Gt B2 F° G graphs represent the truncated td Precision final

ranking.
Figure 1. Dependence of generalized Lehmer mearm on 9

parameter.
EXE 67.9 64.6 63.7 63.8 63.6 63.9 63.3 63.0 62.7 63.1 63.3
The biased Lehmer mean with large values ERLR 65.7 65.2 64.0 63.6 62.3 62.4 62.5 62.4 62.3 61.4 62.5
could be helpful because it tends to generate larger
Mg andMcr values, which could be more preferable
on a |ong_term search perspective. This happens [oT- PV LR 63.1 61.8 61.5 62.9 60.1 59.6 60.2 60.9 61.3 60.9 60.9
cause smalleF andCr result in more greedy search, PX-E 63.3 61.0 61.7 60.9 59.9 59.0 59.1 59.5 59.0 59.5 59.4
i.e. for most functions it is easier to generate a so-
lution close to the one at hand, which leads to local
search-like process. To determine the optimatl- 2.0
ues, the next section contains experimental setup for
algorithm performance comparison and results.

EXOE 64.9 63.7 63.7 62.8 62.0 62.6 62.3 61.3 60.5 61.5 62.5

&§ 2.25

1.75
1.5

1.25

4 EX PERI M ENTAL SETUP AND MR 65.1 63.4 61.3 61.6 61.6 60.9 61.3 61.3 61.5 61.6 61.5
RESULTS 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5

Pcr
To evaluate the performance of LSHADE with differ- Figure 2: Friedman test, D = 10.
ent settings of generalized Lehmer mean, a series of
experiments has been performed on the set of bench- The Friedman ranking procedure performed com-
mark problems from the Congress on Evolutionary parison between all 121 algorithm variants for each
Computation (CEC) 2017 for single-objective real- dimension. From Figures 2-4 it could be observed
valued bound-constrained optimization. The set of that the classical LSHADE setting withe = 2 and
benchmark problems consists of 30 functions defined pcy = 2 is not an optimal choice for all dimensions.
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3.5

3.25

3.0

2.75

2.5

& 2.25

57.3 56.6 57.9 58.8 2.0
56.9 56.3 56.7 56.8 57.8 58.0 61.6 61.9 62.1 63.2 63.8 1.75
62.0 63.3 64.7 63.8 66.6 66.3 68.0 70.6 69.8 70.4 71.5 1.5
73.174.9 75.5 74.3 76.7 76.8 78.6 78.2 79.0 79.5 80.3 1.25

86.5 87.0 89.0 88.4 88.7 88.4 90.3 89.7 89.2 89.0 89.5 1.0

1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 35 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5

Pcr Pcr
Figure 3: Friedman test, D = 30. Figure 5: Mann-Whitney test, D = 10.
354500 35
3.25 3.25
3.0 3.0
2.75 2.75
2.5 2.5
§2.25 §2.25
pYE 57.0 58.0 57.5 57.3 56.6 58.4 60.8 59.7 60.1 61.5 61.6 2.0
sWLE 64.3 63.9 64.9 65.1 66.4 67.3 67.0 67.4 69.1 67.6 69.1 1.75
g 74.6 73.9 75.0 75.2 74.8 77.7 77.0 78.4 77.3 77.9 77.6 1.5
S LE 85.1 83.9 85.0 87.1 86.2 86.8 87.7 88.3 87.9 88.4 87.9 1.25
AR 95.8 95.4 96.4 97.1 98.9 97.5 97.9 98.8 98.4 98.7 98.4 1.0
1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25
Pcr Pcr

Figure 4: Friedman test, D = 50. Figure 6: Mann-Whitney test, D = 30.

Several other important conclusions could be done, 10D some of the best variants are aroynd= 1.5
for example, for higher dimensions larggrare more  and relatively largepc,. For 3M the best choice
preferable, probably because exploration propertiesis pr = 2.25 andpcy = 1.75, where up to 7 signif-
of the DE are more beneficial in this case. For all icant improvements are found. ForBQup to 17
dimensions the arithmetical mean, i.p.= 1 is one improvements could be achieved with relatively large
of the worst possible choices. As for tipe, values, pr = 3.0 and largepcr = 2.0. From this, it can be
the dependence on this parameter is not as significantconcluded that larger dimensional problems require
however, the growth of botpr andpc, could deliver largerF values to be set for a successful search pro-
good search properties. cess, while theCr values are not so significant, al-
Figures 5, 6 and 7 contain the Mann-Whitney though, the values aroungt, = 2.0 appear to be a
test comparison between the case wipgn= 2 and good choice in all cases.
Pcr = 2 and other cases. The numbers in heatmap  As for 10D problems, only a limited set of ex-
graphs represent the total score, which was defined agperiments has been performed due to computational
the sum of wins (+1), ties (0) and losses (-1) of every complexity. The Mann-Whitney test comparison be-
algorithm compared to baseline variant. tween baseline version of LSHADE and LSHADE
The comparison in Figures 5-7 shows that for with variable pr (LSHADE-pg) is presented in Ta-

96



Generalized Lehmer Mean for Success History based Adaptive Differential Evolution

35 n Table 1: Mann-Whitney Statistical test results for LSHADE
and LSHADEpg.
> Func | D=10 | D=30 | D=50 | D=100

3.0 f1 0 0 1 1
2.751 f2 0 0 1 1
f3 0 0 0 -1
> 4 | o 0 0 1
&2.251 5 0 1 1 1
50 f6 0 0 1 1
f7 1 0 1 -1
L. f8 0 1 1 1
158 f9 0 0 0 0
f10 0 0 0 -1
- fl1 | o 1 1 1
Lo8 f12 0 1 1 1
1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 35 f13 0 0 0 1
Per f14 0 0 0 1
Figure 7: Mann-Whitney test, D = 50. f15 0 0 1 1
f16 0 0 0 -1
ble 1. For comparison on 100the pr was set to fl7 0 0 0 0
3.75, andper = 2.0, for 1D, 30D and 5 the values f18 | 0 0 1 1
of pr were set to 1.5, 2.25 and 3.0 respectively, with f19 0 0 1 1
the samepc, value. Here 1 means that LSHADg f20 0 0 -1 -1
was better for particular function, -1 means that it was f21 0 0 1 1
worse, and 0 means that there were no significant dif- f22 0 0 0 -1
ference. f23 1 0 1 1
The results in Table 1 show that the effect on f24 | 0 0 0 1
the DE performance is observed mostly folDb@nd f25 0 0 1 1
100D. As for different functions, there were improve- 126 0 0 1 1
ments for f5 and f8, as well as for f11 and f12, also f27 0 0 1 1
for f1, f2, f6, f15, f18, f19, f23, 25, f26 and f27. f28 0 0 1 0
These functions have different properties, so it can be f29 0 0 1 0
concluded that changing the Lehmer mean calculation f30 0 0 0 1
procedure is beneficial in many scenarios. Total | 1 4 17 14

For an additional set of experiments, one of
the best state-of-the-art LSHADE versions, namely
LSHADE-RSP (Stanovov et al., 2018) has been cho-
sen. LSHADE-RSP was ranked 2nd in CEC 2018
competition on bound-constrained numerical opti-
mization, and the best among DE variants partici-
pated. LSHADE-RSP used rank-based selective pres
sure, and a number of parameter adaptations take
from the jSO algorithm presented in (Brest et al.,
2017). LSHADE-RSP was modified to have the same
changingpr parameter as described above, resulting
in LSHADE-RSPpg algorithm. 5 CONCLUSIONS

Although for 1@ and 3® the LSHADE-RSP-
pr does not show any significant difference in per- In is paper the generalized Lehmer mean was pro-
formance, for larger dimensions the change in mean posed for calculation of control parameters in Dif-
calculation leads to several significant improvements. ferential Evolution adaptation process. The general-
For 5, only for f7 there was a performance loss, ized mean formulation allows different types of mean
while for 7 other functions improvements were found. calculation to be presented in a single equation with
For 10, the convergence of could be slower on sim- one control parameter. The performed experiments
pler problems, such as f1-f3, however, more complex have shown that using largerparameter in Lehmer

problems are solved better, with up to 13 significant
improvements from 30. The graphs demonstrating the
convergence process for all functions and dimensions
50 and 100 are presented in the appendix. From these
graphs it can be seen that LSHADE-R$P-con-
verges slower due to largér values and higher ex-
“ploration capabilities, however eventually it gets bet-
er solutions.
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Table 2: Mann-Whitney Statistical test results for
LSHADE-RSP and LSHADE-RSPg.

D=10 | D=30 | D=50
0 0

D=100
-1
-1
-1
0

Func
f1
f2
f3
f4
5
f6
f7
f8
fo

f10
f11
f12
f13
f14
f15
f16
f17
f18
f19
f20
f21
f22
f23
f24
f25
f26
f27
f28
f29
f30
Total

[eNeoNoNoNeNe)
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1
[cNeoNoN e

=

OCORROORRRREREL

=

[cNeoNeoNoloolololololoololoNololoNoloNololoNolNoloNolNeNoNe o)
[cNoNeoNoNoNolololololoNoNoloNoNoloNoloNoNoloNoNoloNoNeNeNe o)

OO0 OFrRFRPROO0OO0OO0OOOFRFRPFOOFRPROORLRFLROOO

ORORORORE

mean leads to an improvement in the search prop-
erties of DE, especially for larger dimensions. For
the LSHADE algorithm there were up to 17 signifi-
cant improvements according to Mann-Whitney sta-
tistical tests for 50 and up to 14 improvements for
100D. It was shown that a simple heuristic rule which
increases the parameter for scaling factdf cal-
culation with the growth of the problem dimension
may improve even some of the best state-of-the-art
DE variants, like LSHADE-RSP. Although the pre-
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Figure 9: Convergence of LSHADE-RSP and LSHADE-RgR-D=100.



