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Abstract: The unbreakable bond that exists today between devices and network connections makes the security of the
latter a crucial element for our society. For this reason, in recent decades we have witnessed an exponential
growth in research efforts aimed at identifying increasingly efficient techniques able to tackle this type of
problem, such as the Intrusion Detection System (IDS). If on the one hand an IDS plays a key role, since
it is designed to classify the network events as normal or intrusion, on the other hand it has to face several
well-known problems that reduce its effectiveness. The most important of them is the high number of false
positives related to its inability to detect event patterns not occurred in the past (i.e. zero-day attacks). This
paper introduces a novel Discretized Extended Feature Space (DEFS) model that presents a twofold advan-
tage: first, through a discretization process it reduces the event patterns by grouping those similar in terms of
feature values, reducing the issues related to the classification of unknown events; second, it balances such a
discretization by extending the event patterns with a series of meta-information able to well characterize them.
The approach has been evaluated by using a real-world dataset (NSL-KDD) and by adopting both the in-
sample/out-of-sample and time series cross-validation strategies in order to avoid that the evaluation is biased
by over-fitting. The experimental results show how the proposed DEFS model is able to improve the clas-
sification performance in the most challenging scenarios (unbalanced samples), with regard to the canonical
state-of-the-art solutions.

1 INTRODUCTION

Network security is undoubtedly one of the most cru-
cial aspects of today’s society, in which an ever in-
creasing number of services is performed through lo-
cal networks or through the Internet. Considering that
many of these services involve sensitive information
such as, for instance, banking or health-care, it is jus-
tified the growing interest of the scientific community
in seeking efficient solutions able to ensure the secu-
rity of these services. The Intrusion Detection Sys-
tems (IDSs) (Buczak and Guven, 2016; Yeo et al.,
2017) represent the main instruments to face such a
kind of problem, since they have been designed in or-
der to classify the network events into two classes,
legitimate or fraudulent.

An IDS enables us to overcome the limitations of
other common security solutions (Kizza, 2017), such
as those that exploit a series of defined rules (e.g., fire-
walls (Saboori et al., 2012)), authentication mecha-
nisms, or data encryption (Deng et al., 2003). They
can adopt different techniques and strategies in or-
der to detect and classify the network events and, in

addition, they can protect a single host or a whole net-
work.

A Back Propagation Neural Network has been
adopted in (Sen et al., 2015) in order to detect anoma-
lous network activities, whereas a Fuzzy Logic tech-
nique has been used in (Orfila et al., 2003), with
the aim to improve the IDS performance by adopt-
ing fuzzy thresholds. The IDS performance had been
improved in (Scherer et al., 2011) by introducing
Clustering Algorithms and Support Vector Machines
supervised models, whereas the Genetic Algorithms
were used in (Li, 2004) in order to take into account
the spatial and temporal information related to the
network events. Various technologies have been also
combined to define hybrid solutions, such as those
introduced in (Wang et al., 2010), where the perfor-
mance of an IDS has been improved by using both the
Fuzzy Clustering and the Artificial Neural Networks
techniques. In brief, an IDS detects and analyzes all
network events, alerting when a network activity can
represent a potential intrusion, allowing security man-
agers to face these attacks through manual or auto-
matic countermeasures.
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Although the literature proposes a large num-
ber of approaches based on different techniques
and strategies, there are still some problems that
transversely affect these approaches. The main
cause of these problems is the high degree of dy-
namism that characterizes the domain taken into
consideration, as it involves a heterogeneous and
high number of events, whose correct classification
represents a complex problem. This scenario often
makes obsolete the information used to define an eval-
uation model, making it ineffective against attacks not
previously known (e.g., zero-days ones) and, in addi-
tion, many attacks have a behavior very similar to that
of a normal network activity, so it is very hard to dis-
criminate them.

The intuition behind the proposed DEFS model
relies onto the observation that the most important
limitation of the state-of-the-art intrusion detection
approaches is their inability to correctly classify the
new network events, since the involved data domain
is characterized by a huge number of heterogeneous
activities. On the basis of this consideration, we in-
troduced a new feature space where the features that
characterized each event have been transformed by
following discretization and extension criteria.

The performed data discretization process leads
towards a new feature space able to reduce the high
number of event patterns given by the original contin-
uous and discrete feature values, grouping the similar
patterns and facing the problems related to the clas-
sification of unknown event patterns. After this op-
eration, we extend the number of event features by
introducing a series of meta-information with the aim
to well characterize each event. Differently from the
canonical approaches of data preprocessing adopted
in the machine learning context (e.g., featurization,
random projection, etc.), the proposed data model
combines the discretization process with the introduc-
tion of several meta-information in order to reduce
the issues related to the loss of information caused by
them.

It should be observed that most works in the liter-
ature validate their intrusion detection approaches on
the same data they used to tune the parameters of the
employed algorithms. This is not effective as the pro-
cedure is biased by over-fitting. The problem is due
to the need of a complete separation between the data
used to tune the internal algorithms, training data and
test data. For this reason, we preferred to evaluate
our model by following a more effective evaluation
strategy largely used in other fields (e.g. financial),
performing the parameter tuning on a set, then per-
forming the training step on a different set of data and,
finally, running the evaluation on the test set, a third

different set of data. Basically we evaluate the per-
formance of our approach (training and test) on data
never seen before (named out-of-sample), performing
the parameter tuning by using different data (named
in-sample). Within the in-sample and the out-sample
we performed two canonical cross-validation. The
former was needed to define the internal parameters
(discretization range and classification algorithm to
use) of our approach. We created our training model
and performing the testing on the latter.

We preferred to evaluate our novel data model
in relation to individual machine learning algorithms,
rather than comparing it with more sophisticated con-
figurations (e.g., ensemble approaches). The reason
is that if we verify that such a data model applied on a
single classification algorithm produces better perfor-
mance, it means that it is also able to improve the per-
formance in the context of more complex approaches
that exploit it. Our scientific contributions are:
- formalization of a Discretized Extended Feature

Space (DEFS) model aimed to face the data hetero-
geneity by discretizing and extending the original
event feature space;

- exploitation of the DEFS model in the context of
a machine learning classifier, selecting through an
exhaustive evaluation of several state-of-the-art ap-
proaches;

- definition of an algorithm based on the DEFS
model, which is able to classify each new network
event as normal or intrusion.

2 BACKGROUND AND RELATED
WORK

An Intrusion Detection System (IDS) represents a
network security technology aimed to detect attacks
against a target application or computer. It works
by analyzing each network event in order to detect
unauthorized access, misuse, and potential violations
(from now on, simply referred to as attacks) (Ghor-
bani et al., 2010). Such attacks can derive from au-
tomated actions such as, for instance, a malware (i.e.
virus), or from a sequence of manual actions executed
by a human attacker.

An IDS is aimed to capture, analyze, and classify
all the events related to a machine/network. It is
usually performed according to a binary criterion,
where such events are divided into two classes,
normal and intrusion. Literature works have used
many metrics and real-world datasets in order to
evaluate the performance of such systems (Muna-
iah et al., 2016), from those based on the confusion
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matrix1, such as the Accuracy, the Sensitivity, the
Specificity, and the F-measure, to more specific met-
rics able to evaluate the prediction model effective-
ness, such as the Matthews Correlation Coefficient
(MCC). The MCC presents some advantages with re-
spect to other metrics based on the confusion matrix,
since it takes into consideration the balance ratios of
all the four classes of information in such a matrix
(i.e., true positives, true negatives, false positives, and
false negatives) (Chicco, 2017).

The main problem that reduces the effectiveness
of an IDS is the domain where it operates, since it
involves data that are characterized by a high level
of heterogeneity and dynamism, making it difficult to
define an effective evaluation model. In addition, the
behavior of an attack can be almost identical to that of
a legitimate activity, making it very difficult to iden-
tify.

3 FORMAL NOTATION

The formal notation adopted in this paper is shown in
Table 1.

Table 1: Formal Notation.
Notation Description Note

E = {e1,e2, . . . ,eX} Set of classified events
E+ = {e+1 ,e

+
2 , . . . ,e

+
Y } Subset of normal events E+ ⊆ E

E− = {e−1 ,e
−
2 , . . . ,e

−
W} Subset of intrusion events E− ⊆ E

Ê = {ê1, ê2, . . . , êZ} Set of unclassified events
F = { f1, f2, . . . , fN} Set of event features
C = {normal, intrusion} Set of event classifications

4 APPROACH DEFINITION

This section describes the implementation of our
DEFS model, from its formal definition to its ex-
ploitation in the context of a classification algorithm.

4.1 Model Formalization

According to the formal notation introduced in Sec-
tion 3, given the set E = {e1,e2, . . . ,eX} of classified
events and the set Ê = {ê1, ê2, . . . , êZ} of unclassified
events, where each event is characterized by a series
of F = { f1, f2, . . . , fN} features, in the following we
formalize the data discretization and extension pro-
cesses we applied on the event feature space.

1A matrix 2x2 that reports the number of True Negatives
(TN), False Negatives (FN), True Positives (TP), and False
Positives (FP).

4.1.1 Data Discretization

The discretization process is applied on each feature
in F and it is aimed to reduce the original (continuous
and discrete) range of values by mapping them into
a defined range of discrete values {0,1, . . . ,η} ∈ Z,
where the value of η is defined through the tuning
process previously described, which involves only the
in-sample datasets in order to avoid the result from
being influenced by over-fitting.

On the basis of the defined η value, we perform a
data discretization process that we denote as f

η−→ d. It
converts each feature element f ∈ F in a new discrete
value taken from a range of integers {d1,d2, . . . ,dη}.
Such a process is aimed to reduce the high hetero-
geneity that characterizes the data domain by per-
forming a kind of average between similar event pat-
terns in terms of feature values. In short words, it
transforms each feature value f in a discrete value d
and this process is performed on both the datasets E
and Ê, before the data extension process described in
Section 4.1.2, as formalized in Equation 1.

{ f1, f2, . . . , fN}
η−→ {d1,d2, . . . ,dN}, ∀ e ∈ E

{ f1, f2, . . . , fN}
η−→ {d1,d2, . . . ,dN}, ∀ ê ∈ Ê

(1)

4.1.2 Data Extension

By using as data source the discretized datasets pre-
viously obtained, we further extend with the goal of
integrating the new discretized feature space with sev-
eral meta-information Ξ. In more detail, we integrate
the event feature space with the values related to the
Minimum (µ), Maximum (Λ), Average (α), and Stan-
dard Deviation (σ) information measured in such a
space. It should be observed how these information
are able to improve the characterization of each event,
even when they refer to already discrete range of val-
ues or non-ordered values.

The objective of this operation is to combine the
advantage related to the reduction of the number of
event patterns, performed through the discretization
process, with the advantages in terms of event charac-
terization given by the meta-information Ξ formalized
in Equation 2.

Ξ =



µ = min(d1,d2, . . . ,dN)

Λ = max(d1,d2, . . . ,dN)

α =
1
N

∑
N
n=1(dn)

σ =
√

1
N−1 ∑

M
n=1(dn− d̄)2

(2)

The introduction of the Ξ mathematical indicators
relies on the consideration that the literature presents
several intrusion detection approaches enhanced by

KDIR 2019 - 11th International Conference on Knowledge Discovery and Information Retrieval

324



the adoption of metrics such as minimum, maximum,
average, and standard deviation (Ahmed and Mo-
hamed, 2018; Marino et al., 2018).

4.1.3 Transformed Feature Space

As a result of the data discretization and data exten-
sion processes, the original feature space F has been
transformed in a new one, where the feature values
f ∈ F of the datasets E or Ê (i.e., respectively, re-
lated to the classified and unclassified events) are dis-
cretized in an integer range of η values, defined by
following the tuning process previously described. In
addition, this first transformation has been followed
by a process aimed to integrate such a discretized fea-
ture space, with the additional meta-information Ξ re-
ported in Equation 2. The result is the transformed
feature space shown in Equation 3, which lies under-
neath our DEFS model (for exemplification reasons it
is only applied to the dataset E, but it is identical for
the dataset Ê).

DEFS(E) =


d1,1 d1,2 . . . d1,N µ1,N+1 Λ1,N+2 α1,N+3 σ1,N+4
d2,1 d2,2 . . . d2,N µ2,N+1 Λ2,N+2 α2,N+3 σ2,N+4

...
...

. . .
...

...
...

. . .
...

dX ,1 dX ,2 . . . dX ,N µX ,N+1 ΛX ,N+2 αX ,N+3 σX ,N+4

 (3)

4.2 DEFS Classification Algorithm

The DEFS model formalized in Section 4.1 is then
adopted in the Algorithm 1 in order to classify all the
new events in the set Ê.

Algorithm 1: New events classification by DEFS model.

Input: a=Classifier, E=Evaluated events, Ê=Unevaluated events
Output: Set of classified Ê events
1: procedure GETCLASSIFICATION(a, E, ê)
2: D(E)← dataDiscretization(E)
3: D(Ê)← dataDiscretization(Ê)
4: D(E)← addMeta f eatures(D(E))

5: D(Ê)← addMeta f eatures(D(Ê))

6: model← trainModels(a,D(E))

7: for each d(ê) ∈ D(Ê) do
8: c← getClassi f ication(model,d(ê))
9: out put.add(c)
10: end for
11: return out put
12: end procedure

5 EXPERIMENTS

This section provides information about the used de-
velopment environment during the experiments, the
dataset taken into account, the evaluation metrics, the
adopted experimental strategy, concluding by present-
ing and discussing the obtained results.

5.1 Environment

The development environment is based on the Python
language, whose scikit-learn 2 library has been used
in order to implement the state-of-the-art algorithms.
It should be noted that we have set to 1 the seed
of the scikit-learn pseudo-random number generator
(i.e., the random state parameter) in order to allow
the reproducibility of all the performed experiments.

5.2 Dataset

We have chosen NSL-KDD3 as real-world dataset to
use in order to evaluate the performance of the pro-
posed approach, since it represents a fixed and im-
proved version of the KDD-CUP99 (Tavallaee et al.,
2009) dataset, which has been widely used in litera-
ture.

Details about this dataset are reported in Table 2,
where it should be observed that the number of attack
classes in the training set is not equal to that in the
test set, since a certain attack might not be present in
both the datasets. Information in terms of total num-
ber of events, number of normal and intrusion events,
and values that characterize each event, have been re-
ported according to the formal notation provided in
Section 3.

Table 2: Dataset Composition.
Dataset Total events Normal events Intrusion events Event values Classes

|E| |E+| |E−| |V | of attacks

Training 125,973 67,343 58,630 41 23
Test 22,543 9,710 12,833 41 38

Total 148,516 77,053 71,463

The different types of events are grouped into four
categories: Privilege Escalation Attack (PEA), De-
nial of Service Attack (DSA), Remote Scanning Attack
(RSA), and Normal Network Activity (NNA). The PEA
category contains all the attacks characterized by a
Privilege Escalation (PE) activity, which is aimed to
get a privileged access to one or more resources (e.g.,
Buffer overflow, Loadmodule, Rootkit, Perl, Sqlat-
tack, Xterm, and Ps attacks). The DSA category con-
tains all the attacks characterized by a Denial of Ser-
vice (DoS) activity, which is aimed to make a certain
service/resource unusable by using a high number of
legitimate requests (e.g., Back, Land, Neptune, Pod,
Smurf, Teardrop, Mailbomb, Processtable, Udpstorm,
Apache2, and Worm attacks). The RSA category
groups instead all the attacks aimed to collect sensi-
tive information about services/systems, performing
this operation by adopting all possible non-invasive
and invasive techniques (e.g., Satan, IPsweep, Nmap,

2http://scikit-learn.org
3https://github.com/defcom17/NSL KDD
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Portsweep, Mscan, and Saint attacks). The RAA cate-
gory contains all the attacks focused on getting access
to remote systems/services, leveraging simple tech-
niques (e.g., Guess password, Ftp write, Imap, Phf,
Multihop, Warezmaster, Xlock, Xsnoop, Snmpguess,
Snmpgetattack, Httptunnel, Sendmail, and Named at-
tacks). The last NNA category simply contains all the
events related to the normal network activity.

The numeric relevance of each class of attacks is
reported in Table 3.

Table 3: Classes of Attacks Numeric Relevance.
Dataset PEA DSA RSA RAA NNA

Training 52 45,927 11,656 994 67,343
Test 67 7,460 2,421 2,885 9,710

Total 119 53,387 14,077 3,879 77,053
Percentage 0.08 35.95 9.48 2.61 51.88

5.3 Experimental Strategy

We compared our approach to different and highly
performing state-of-the-art algorithms usually
adopted in this domain, i.e., Gradient Boosting
(GBC), Adaptive Boosting (ADA), Random Forests,
Multilayer Perceptron (MLP), and Decision Tree
(DTC).

The NSL-KDD dataset has been preprocessed in
order to convert all the categorical features into nu-
merical. It should be noted that the last feature of each
dataset row contains the event classification, accord-
ing to the notation 1=normal and 2=intrusion. We
have also converted such a notation in the standard
binary form 0=normal and 1=intrusion.

As introduced in Section 1, in order to evaluate
the real effectiveness of the proposed approach with
respect to the state-of-the-art solutions, we conducted
the experiments by adopting an approach based on
two different datasets, the first one (in-sample) used to
select the internal algorithms parameters and the sec-
ond one (out-of-sample) to evaluate the performance
(training and testing). Such a strategy, largely used in
many critical domains (Cleary and Hebb, 2016; Fenu
and Surcis, 2009) in order to asses the real perfor-
mance of a proposed classification approach/strategy,
allows us to avoid that the prediction model is biased
by over-fitting. Basically we perform the algorithms
tuning on a different dataset (in-sample) than the one
we adopted to build the model and perform the classi-
fication task (out-of-sample). In more detail, we used
the 80% of each dataset (i.e., PEA, DSA, RSA, and
RAA) as in-sample data, using the remaining 20% as
out-of-sample data.

After the definition of the in-sample and out-of-
sample datasets, in order to further limit the impact
of the data dependency in the experiments, we used

in each of them the TimeSeriesSplit scikit-learn func-
tion to perform the data validation process, since a
canonical k-fold cross-validation strategy is not suit-
able when time series data are involved, as it does not
respect the event chronology. The adopted time series
cross-validation strategy is instead able to divide the
data into n splits training and test sets, tacking into
account the chronology aspect (we used n splits=5).

As anticipated earlier in Section 2, in order to get
an effective evaluation of the performance reached by
our approach, we evaluated our results on the basis of
several metrics. The first metric is the Specificity (i.e.,
true negative rate), a metric based on the confusion
matrix that provides a measure of the correctness of
the performed classifications in terms of correct intru-
sion events detected respect to the normal ones. An-
other metric taken into account is the Matthews Cor-
relation Coefficient, a metric largely used to evaluate
the overall effectiveness of a classification model, in
terms of its capability to correctly recognize the nor-
mal and intrusion events .

We also evaluate the Dataset Class Imbalance
(DCI) as formalized in Equation 4, where 1 indicates
a perfect data balance.

DCI(E+,E−) =


min(|E+|, |E−|)
max(|E+|, |E−|)

, i f (|E+| 6= |E−|)∧ (max(E+,E−)> 0)

0, i f max(E+,E−) = 0

1, Otherwise

(4)

5.4 Results

The performed experiments were aimed to evaluate
the performance of several state-of-the-art approaches
when they are used in order to distinguish between
intrusion and normal events. We performed this op-
eration in two phases, initially by taking into account
all normal events together with those related to a sin-
gle class of intrusions, then by using all normal events
together with those related to all classes of intrusions.

The first experimental step is the evaluation of
the imbalance level that characterizes each involved
dataset, since this information allows us to asses the
real effectiveness of an evaluation model. Table 4 re-
ports the DCI values related to all the datasets and
it shows that three of them (i.e., PEA, RSA, and RAA)
present a high level of imbalance, with regard to DSA,
where exists a quite balance between the two classes
of information (i.e., normal and intrusion).

Table 4: Datasets Class Imbalance Level.
Events PEA DSA RSA RAA

Normal 77,053 77,053 77,053 77,053
Intrusion 119 53,387 14,077 3,880

DCI 0.0015 0.6928 0.1826 0.0503
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The experimental results related to the evaluation
of the competitor algorithms are shown in Table 5,
where the best obtained performance has been high-
lighted in bold. The evaluation has been performed
by using the in-sample datasets with and without a
preliminary data oversampling4 process aimed to bal-
ance the two classes of samples (i.e., normal and in-
trusion). In order to perform this data oversampling
we used a Python implementation of the Synthetic Mi-
nority Over-sampling Technique (SMOTE) (Chawla
et al., 2002).

Premising that all the experiments that used the
in-sample and out-of-sample datasets have been per-
formed by following the time series cross-validation
criterion described in Section 5.3, a first analysis of
the obtained results indicates how some algorithms
(e.g., Random Forests) perform better than the other
ones in terms of Specificity, whereas other algorithms
(e.g., Adaptive Boosting) perform better than other
ones in terms of MCC.

Considering that an optimal algorithm of classifi-
cation should balance the capability to detect the in-
trusion events (Specificity) with the capability to per-
form this operation without a significant increasing
of the false negative (aspect reported by the MCC
metric), in order to select the best algorithm we have
taken into account the average value of these two met-
rics.

Table 5: Algorithms In-sample Performance.
Normal Oversampling

Algorithm Events Specificity MCC Average Specificity MCC Average
Gradient Boosting PEA 0.4019 0.4077 0.4048 0.5583 0.6584 0.6083
Adaptive Boosting PEA 0.7629 0.5972 0.6801 0.5319 0.5259 0.5289
Random Forests PEA 0.9600 0.5984 0.7792 0.8467 0.6227 0.7347
Multilayer Perceptron PEA 0.3000 0.2079 0.2540 0.0455 0.1803 0.1129
Decision Tree PEA 0.4794 0.5086 0.4940 0.4627 0.5257 0.4942

Gradient Boosting DSA 0.9995 0.9990 0.9992 0.9993 0.9990 0.9991
Adaptive Boosting DSA 0.9991 0.9986 0.9989 0.9989 0.9985 0.9987
Random Forests DSA 0.9997 0.9993 0.9995 0.9998 0.9992 0.9995
Multilayer Perceptron DSA 0.9818 0.9596 0.9707 0.9712 0.9589 0.9650
Decision Tree DSA 0.9995 0.9990 0.9992 0.9993 0.9990 0.9991

Gradient Boosting RSA 0.9964 0.9937 0.9950 0.9934 0.9926 0.9930
Adaptive Boosting RSA 0.9925 0.9881 0.9903 0.9823 0.9848 0.9835
Random Forests RSA 0.9985 0.9956 0.9970 0.9981 0.9958 0.9970
Multilayer Perceptron RSA 0.8364 0.8601 0.8482 0.8016 0.8432 0.8224
Decision Tree RSA 0.9917 0.9913 0.9915 0.9897 0.9898 0.9898

Gradient Boosting RAA 0.9625 0.9427 0.9526 0.7892 0.8739 0.8316
Adaptive Boosting RAA 0.9605 0.9337 0.9471 0.6733 0.8008 0.7370
Random Forests RAA 0.9895 0.9603 0.9749 0.9718 0.9511 0.9614
Multilayer Perceptron RAA 0.5749 0.2649 0.4199 0.2517 0.4465 0.3491
Decision Tree RAA 0.9363 0.9387 0.9375 0.9074 0.9202 0.9138

We can observe that such a criterion does not al-
low us to detect the algorithm with the best overall
performance, then we also calculated the average per-
formance related to all the event scenarios, with and
without oversampling preprocessing. In addition, we
detailed this analysis by using two groups of events,
those characterized by a low DCI value (low level of
unbalance), and those characterized by an high DCI
value (high level of unbalance), calculating their DCI
average value, according to the information provided

4A technique that increases the minority samples by
generating other ones, synthetically.

in Table 4. The results are shown in Table 6 and
they indicate Random Forests as the best performing
algorithm in both the aforementioned scenarios (i.e.,
high and low DCI value) and, in addition, such perfor-
mances are reached without a preliminary data over-
sampling.

According to the DEFS model formalization pro-
vided in Section 4.1, this step is aimed to detect
the optimal range to use for the discretization of the
datasets feature values. Analogously to what was
done for the choice of the best competitor algorithm,
in order to avoid that such a process is biased by over-
fitting, we perform it in the context of the in-sample
datasets. We obtain 430 as best value to use as dis-
crete integer range of the DEFS model.

Table 6: Algorithms In-sample Mean Performance.
Performance Average

Algorithm Events DCI Normal Oversampling
Gradient Boosting PEA, DSA, RSA, RAA 0.2318 0.8379 0.8580
Adaptive Boosting PEA, DSA, RSA, RAA 0.2318 0.9041 0.8121
Random Forests PEA, DSA, RSA, RAA 0.2318 0.9377 0.9232
Multilayer Perceptron PEA, DSA, RSA, RAA 0.2318 0.6225 0.5762
Decision Tree PEA, DSA, RSA, RAA 0.2318 0.8556 0.8492

Gradient Boosting PEA, RSA, RAA 0.0781 0.7842 0.8110
Adaptive Boosting PEA, RSA, RAA 0.0781 0.8725 0.7498
Random Forests PEA, RSA, RAA 0.0781 0.9171 0.8977
Multilayer Perceptron PEA, RSA, RAA 0.0781 0.5064 0.4465
Decision Tree PEA, RSA, RAA 0.0781 0.8077 0.7993

Out-of-sample Performance Comparison: On the
basis of the results of the previous experiments, which
indicate Random Forests (RF) without a preliminary
data oversampling as the best performing algorithm
in the in-sample datasets, the next series of experi-
ments are aimed to evaluate its performance in the
context of the out-of-sample datasets, measuring them
before and after the introduction of our DEFS model.
It means that the selection process we performed in
order to choose our best competitor (i.e., Random
Forests) has been made by using different data (in-
sample datasets) respect to those used to evaluate its
performance (out-of-sample datasets). This because
we want that both Random Forests based on the stan-
dard feature space model and Random Forests based
on our DEFS model are evaluated on data never seen
before. The results are shown in Table 7, where
the values highlighted and in bold indicate when our
DEFS model overcomes the canonical one.

Table 7: Out-of-sample Performance Comparison
RF Default Model RF DEFS Model

Events DCI Specificity MCC Average Specificity MCC Average
PEA 0.0015 0.5618 0.4077 0.4848 0.7833 0.4835 0.6334
DSA 0.6928 0.9957 0.9585 0.9771 0.9919 0.9629 0.9774
RSA 0.1826 0.9458 0.9102 0.9280 0.9626 0.9175 0.9401
RAA 0.0503 0.9704 0.7961 0.8833 0.9714 0.7891 0.8802

Discussion: The analysis of the in-sample and out-
of-sample results leads towards the following consid-
erations:
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• the preliminary analysis of the datasets imbal-
ance level underlines that there are some classes
of intrusion events that represent a high level of
data unbalance, with respect to the normal cases.
This generates a reduction of the effectiveness of
the canonical classification approaches based on
an evaluation model trained by using the previ-
ous known events collected by an IDS (Brown
and Mues, 2012; Japkowicz and Stephen, 2002).
Considering that also a slight performance incre-
ment in terms of intrusion event detection (i.e.,
Specificity) represents an important improvement,
when it is not directly related to an equal reduc-
tion of the evaluation model event discrimination
capability (i.e., MCC), we attribute more impor-
tance to this (unbalanced) scenario with respect to
the other (balanced);

• according to the literature, the experiments indi-
cate Random Forests as one of the best perform-
ing algorithm (Resende and Drummond, 2018) in
this domain, as shown by the single and average
performance measured in the context of the in-
sample datasets, reported, respectively, in Table 5
and Table 6. On the basis of this consideration,
we used this algorithm in order to experiment our
DEFS model, considering that an improvement
in its excellent classification performance would
represent a good result able to demonstrate the ef-
fectiveness of the proposed model;

• the experimental results related to the out-of-
sample performance shown in Table 7 indicate
how the adoption of our DEFS model improves
the intrusion detection performance in all the
datasets, especially in those characterized by a
high level of data unbalance (i.e., PEA, RSA, and
RAA, with a DCI value of, respectively, 0.0015,
0.1826, and 0.0503);

• we can observe how the performance improves
with the increase of data unbalance level, indicat-
ing the effectiveness of our DEFS model in terms
of characterization of the network events, allow-
ing an intrusion detection system to discriminate
the intrusion events even when these are in much
smaller numbers than the normal ones (e.g., as it
happens in the PEA dataset, where the intrusion
events are 119 and normal events are 77,053);

• in the few cases where our model does not out-
perform the canonical one (i.e., DSA Specificity
and RAA MCC), its performance are very close to
those of the state-of-the-art competitor, since in
the former case we have a difference of −0.0038
in terms of Specificity although we get better av-
erage performance, whereas in the latter case we

have a difference of−0.0070 in terms of MCC but
a Specificity improvement of +0.0010;

• summarizing, the proposed model proved to be
able to improve the event characterization, espe-
cially in those cases where there are not enough
samples in a class of events to train a reliable eval-
uation model, allowing us to define an intrusion
detection system that operates in all the possible
scenarios, also by recurring to hybrid strategies
that combine the canonical data models with the
proposed one.

6 CONCLUSIONS AND FUTURE
WORK

Nowadays, Intrusion Detection Systems play an im-
portant role, since the exponential increase in services
offered through computer networks is jeopardized by
an equally exponential growth of the number of at-
tempts to exploit them fraudulently. These real-world
scenarios involve various classes of attacks that fre-
quently need targeted approaches that do not work
well in a canonic heterogeneous scenario, where dif-
ferent classes of attacks are present.

The Discretized Extended Feature Space model
proposed in this paper has been designed in order to
reduce the issues related to the classification of un-
known and heterogeneous events by adopting a data
discretization process and, at the same time, to bet-
ter characterize each event by introducing a series of
meta-information.

The results show how such a novel model outper-
forms the best competitor in terms of capability to de-
tect the intrusion in a context of datasets with a high
level of unbalance, in terms of Specificity (in all the
cases) and MCC (in two datasets out of three), demon-
strating its potential effectiveness in a real-world sce-
nario. It should be observed that our approach can be
parallelized by using GPUs or big data frameworks
such as Apache Spark 5 in order to reduce the compu-
tational time.

A possible future work would be the experimen-
tation of our model in the context of a classifica-
tion approach based on several and different algo-
rithms configured through an ensemble strategy (Saia
et al., 2018), in order to improve the overall perfor-
mance, as well as its evaluation in other data domains,
such as those related to the Fraud Detection (Carta
et al., 2019) and Credit Scoring (Saia and Carta, 2016)
fields.

5https://spark.apache.org
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