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Abstract: This paper presents a robust terminal sliding mode control using the EMG signal. The application deals with 
an exoskeleton- upper limb system, used for rehabilitation. The considered system is a robot with one 
degree of freedom controlling the flexion/ extension movement of the elbow. The different stages of the 
EMG signal extraction were presented. Then, a second order terminal sliding mode algorithm has been 
developed to control the exoskeleton- upper limb system. A Stability study is realized and a robustness 
analysis is done using Monte Carlo simulation in presence of parametric uncertainties. Simulation results 
are provided to prove performance and effectiveness of the second order terminal sliding mode algorithm 
when tracking the EMG signal extracted from the human arm. 

1 INTRODUCTION 

Muscle signals are biomedical signals that measure 
the electrical currents generated in muscles when 
they contract and represent their neuromuscular 
activities. These acquired muscle signals require 
state-of-the-art methods for detection, 
decomposition, and processing to control a 
mechanical system (Teena et al., 2011), (Satoshi et 
al., 2001). 

Electromyography is a technique used to capture 
signals produced by the nerves in the target muscles. 
The field of electromyography is studied in 
biomedical engineering. The instrument from which 
the EMG signal is obtained is known as 
electromyography and the resulting record is known 
as electromyogram.  

The electrical signal produced during muscle 
activation, known as the myoelectric signal, is 
produced from small electrical currents generated by 
ion exchange across muscle membranes and 
detected with the aid of electrodes.  

EMG signal is present in different areas of 
applications (Reaz, et al., 2006). It is used clinically 
for the diagnosis of neurological, neuromuscular 
disorders and for biofeedback diagnosis or 
ergonomic assessment by laboratories and clinicians. 
EMG is also used in many types of research 
laboratories, including those involved in 

biomechanics, neuromuscular physiology, 
movement disorders, postural control (Christian et 
al., 2006), and physiotherapy. 

In this context, we will use this signal to control 
an exoskeleton system. 

Exoskeleton is defined as a mechatronic system 
placed on the user’s arm and acts as amplifier that 
augments, reinforces or restores human 
performances (Sana et al., 2017), (Sana et al., 2018). 
The objective of controlling an exoskeleton is to 
follow the movements of a healthy human, to 
increase his physical abilities for specific tasks in a 
relatively safe and transparent manner. To achieve 
this, it is necessary to apply a suitable controller.  

The complexity of the exoskeleton-upper limb 
dynamic system has led researchers to develop 
different control laws.  

In the literature and referring to (Frank et al., 
2017), a sliding mode was used to control the 
exoskeleton of the upper limbs. A mixed force and 
position controller which mixes, for the same degree 
of freedom, the force and position information is 
used by the author in (Nathanael, 2011). Pre-
calculated torque control (using the PID corrector) is 
a simple nonlinear control method and is often used 
for the control of exoskeletons developed by the 
authors in (Sana et al., 2018), (Thierry, 2012). 

Robotic systems, in general, suffer from two 
main components of uncertainties. The first is that of 
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parameter variations. The second major source of 
uncertainty is the external interaction forces on the 
suspended body, which are generally unknown. So, 
robustness analysis becomes important for such 
systems. 

The different developed controllers used in 
literature are obtained at the cost of certain 
disadvantages like the performance when tracking 
the desired trajectories and the robustness in 
presence of uncertainties and disturbances. 

The contribution of this paper is to control an 
exoskeleton- upper limb system using a terminal 
sliding mode algorithm and the EMG signal as 
desired trajectories. In presence of parametric 
uncertainties and to study the robustness as well as 
the performance of the proposed controller, a Monte 
Carlo simulation was used. 

The paper is organized as follows: section 2, 
deals with the different stages of EMG signal 
extraction. Section 3 describes the modeling of the 
exoskeleton- upper limb system, the control and the 
stability study using the terminal sliding mode as 
well as the robustness analysis using Monte Carlo 
simulation. In section 4, simulation results and 
discussions are given. Finally, section 5 is reserved 
for the conclusion and future work. 

2 EMG SIGNAL EXTRACTION 

As a control signal, the EMG muscle signal is sensitive 
to electrical noise since it is at the mV scale. This 
produces interference during the measurements, for this 
reason it must be highly transformed. 

The muscle signal is acquired and amplified in a 
first stage and then filtered in a second stage in order 
to remove the DC component, it will be sent to a 
third stage where the high frequency noise will be 
eliminated (Reaz et al., 2006). 

The extraction of the EMG muscular signal is 
done through three stages (Abolfazl and Pourmin, 
2016). These different stages (Fig. 1) are:  

- Acquisition and differential amplification of the 
muscular signal: The EMG signal is acquired 
thanks to the differential amplification technique. 
The differential amplifier must have a high input 
impedance and a very low output impedance. 
Ideally, the differential amplifier has infinite 
input and zero output impedance. 
Indeed, the differential amplification is obtained 
using an instrumentation amplifier. The latter 
performs the differential amplification by 
subtracting the voltages V1 and V2. In this way, 

the noise signal which is common to V1 and V2 
(potentials collected by the input electrodes) for 
example the disturbance of the supply line will 
be eliminated. 

- Remove the DC component: an active high-pass 
first order filter will be used to get rid of any DC 
offset. The use of the active component can 
isolate the filtering from the rest of the circuit. 
We need a high-pass filter to remove low 
frequencies. In fact, the cutoff frequency of the 
filter is the frequency below which all 
frequencies are eliminated. All frequencies above 
this value are reported. 

- High Frequency Noise Suppression: This stage 
uses a low pass filter to smooth our signal and 
remove high frequency noise. In this floor we 
will use a low-pass filter. The concept of low-
pass filters is quite opposite to that of high-pass 
filters. In these filters, only the frequencies that 
are lower than the cutoff frequency are 
transmitted. 

G1 and G2 presented respectively the amplification 
gain of the first and the second stages. 
The EMG signal (Fig.2) was recorded during flexion 
movement of the elbow.  
This signal will be used in the next  
section as a desired trajectory to control  
the elbow articulation of the exoskeleton- upper limb 
system.  

3 EXOSKELETON- UPPER LIMB 
SYSTEM CONTROL 

In this section, we aim to control the exoskeleton- 
upper limb system by the terminal sliding mode in 
order to track the desired trajectories defined by the 
EMG signal extracted from the human arm during 
the flexion movement of the elbow joint. 
The considered system is presented by figure 3. 
The modeled system is a robot with two degrees of 
freedom (controlling the shoulder and the elbow). We 
will be interested only in the articulation of the elbow. 
So the other articulation will be fixed in the next part. 

Based on Euler Lagrange equation, the dynamic 
model of the system having two degrees of freedom 
(DoF) given by Fig.1 in the presence of friction can 
be expressed using the following second-order 
nonlinear differential equation: 

M(q)ݍሷ + C(q,ݍሶ ሶݍ(  +G(q)+F(q,	ݍሶ ) = τexo+ τarm +τex (1)

Where: 

F (q, qሶ ) = fv qሶ  + ki sign (qሶ i) (2)
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Figure 1: Different stages of the muscular signal extraction. 

   

 
Figure 2: EMG signal obtained for a contraction movement of the elbow. 

 

Figure 3: General configuration of a 2 DoF exoskeleton. 

With: 
- q ∈ Թ2 is the vector of joint positions; 
- qሶ  ∈ Թ2 is the vector of joint velocities; 
- q	ሷ ∈Թ2 is the vector of joint accelerations;  
- M(q)∈Թ 2x 2 is the inertia matrix; 
- C(q,qሶ )∈Թ 2x2 is the Coriolis matrix; 
- G(q) ∈ Թ2 is the gravitational vector; 
- F(q,qሶ ) ∈ Թ2 is the force generated by friction; 
- τ exo∈ Թ 2 is the control vector applied by 

exoskeleton;  
- τ arm ∈ Թ 2  is the torque applied by the human; 
- τ ext ∈ Թ 2  is the external torque. 

a. A Terminal Sliding Mode Control. 
Instead of using a linear sliding surface, the 
Terminal Sliding Mode Control (TSMC) with a 
nonlinear sliding surface has been proposed 
(Behnamgol and Vali, 2015), (Chaoxu and Haibo, 
2018), (Yuqiang et al., 1998).The terminal sliding 
mode was developed by adding the nonlinear 
fractional power element to the sliding phase to 
provide some superior properties, such as finite state 
convergence of state variables, faster and better 
tracking accuracy. 

A nonlinear sliding variable in TSMC can also 
improve static performances. 

Terminal Sliding mode control adds non-linear 
functions to the design of the sliding top plane 
(Yong and Zhihong, 2002). Thus, a terminal sliding 
surface is constructed and tracking errors on the 
sliding surface converge to zero in a finite time. 
For the terminal sliding mode control, the sliding 
surface is defined by: 

St=	x2 +	λx1	q/p (3)

   EMG                    Vout1 = (V2-V1)*G1                             Vout2 = (Vout1-DC)*G2                                                   EMG signal

Electrodes                                                                                                                                                                        filtered and 
                                                                                                                                                                                         amplified 
     
            Signal acquisition stage                      Signal conditioning stage                               Second amplification                     
                                                                          And first amplification                                          stage 
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With: λ > 0 ; q and p > 0 ; 0< q< p. 
 

We consider the following system: 
 

ሶݔ 1 = x2 
 

ሶݔ 2 = f(x) + g(x) u 
 
We have: 
 

[ሶ2ݔ - f(x)] ሶ2 = f(x) + g(x) u                     u = - g –1ݔ (4)

For St= 0, we get: 

x2	=	‐λx1	q/p (5)
	

ሶݔ 2= -λ 
௤

௣
 x1 q/p-1ݔሶ 1 = -λ 

௤

௣
 x1 q/p-1(6) 2ݔ

We have: 

u = - g –1 [f(x) - ݔሶ 2] (7)

u = - g –1 [f(x) + λ 
௤

௣
 x1 q/p-1(8) [2ݔ

ut = - g –1 [f(x) +λ 
௤

௣
 x1 q/p-12ݔ + k sign(St)] (9)

b. Stability Proof. 
Consider the Lyapunov candidate function:  

V= 
ଵ

ଶ
 St

2 (10)

V	ሶ = St Sሶ t (11)

We calculate Sሶ t : 

Sሶ t = xሶ2 + λ 
୯

୮
 x1 (q/p)-1x2 (12)

Sሶ t = f(x) + g(x) u + λ 
୯

୮
 x1 (q/p)-1x2 (13)

With: 

g(x u = xሶ 2 – f(x) = - λ 
୯

୮
 x1 (q/p)-1x2 –f(x) – k 

sign(St)
(14)

So: 
 

Sሶ t = f(x) - λ 
୯

୮
 x1 q/p-1x2 –f(x) + λ 

୯

୮
 x1 (q/p)-1x2 

– k sign (St) 
(15)

Sሶ t = – k sign (St) (16)

We get: 

V	ሶ = St Sሶ t = – St k sign (St) < 0 (17)

As: 
- The term -kSt sign (St) is negative because: k ≥ 

0 and since the sign function is constant in 
pieces so St,sign (St) = +1, ∀St. 

 

Then Vሶ  is semi-definite negative. 

Like V ≥ 0 and Vሶ ≤ 0, the system is asymptotically 
stable. 
 

Applying this command to our system, we obtain: 

ut = - g –1 [f(x) +λ 
୯

୮
 x1 (q/p)-1x2 + k sign(St)] (18)

The system is presented by: 

qሷ   = f(q, qሶ ) + g(q , qሶ ) u (19)

With:  

- f(q, qሶ )= - M-1(q , qሶ ) (C(q , qሶ ) qሶ  + G(q)) 
- g(q , qሶ )= M-1(q , qሶ ) 

We get: 

ut = C(q qሶ ) qሶ  + G(q) - M-1 [λ 
୮

୮
 (qሶ d - qሶ ሻ (q/p)-1 qሷ d 

+ k sign(St)] 
(20)

c. Robustness Analysis. 
To study the performance and the robustness of the 
proposed controller face to parametric uncertainties, 
we used the Monte Carlo method which is a 
probabilistic technique based on the use of a large 
number of random disturbances. 

The Monte Carlo method (Gersende, 2009) refers 
to any calculation technique that involves successive 
resolutions of a deterministic system incorporating 
uncertain parameters modeled by random variables 
(Laura and Robert, 1993). It is a powerful and very 
general mathematical tool which has earned it a wide 
range of applications. 

To conduct a Monte Carlo simulation, it is 
necessary to identify the type of distribution of the 
uncertainties applied to the input system.  

In this case, an uniform random distribution is 
applied to the system which will have the following 
form in presence of parametric uncertainties: 

qሷ = (f (q, qሶ , t) + ∆f) + (g (q) + ∆g ) u(t) (21)

4 SIMULATION AND RESULTS 

Simulation results are provided to prove the 
efficiency of the proposed controller law. 

In a first time, the EMG signal extraction of the 
elbow flexion movement is done from a healthy 
person. Then this signal was used as a desired 
trajectory. 

The measured and the desired trajectories of the 
released tests as well as the tracking errors 
trajectories are given in Figs. 4 and 5. 

Figs. 6 and 7 present the velocities tracking and 
errors of the tested algorithm. 
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From these figures, we can clearly note that 
using the second order terminal sliding mode 
controller, we get a good position as well as 
velocity tracking of the desired trajectories defined 
by the EMG signal in presence of parametric 
uncertainties. 

In order to prove the robustness and the 
performance of the tested controller, we applied 
some disturbances and we calculate the Root-Mean-
Square (RMS), the mean (Mean) and the standard 
deviation (Std). 

 

The RMS is calculated using the following 
expression: 

q RMS =ට
ଵ

୒
∑ |q୒
୬ୀଵ n|2 (22)

The Std can be expressed by: 

Σq= ඥEሾq െ Eሾqሿሻ2] = ඥEሾqଶሿ െ Eሾqሿ2 (23)

And the sample mean is defined as: 

qത = 
ଵ

୫
 ∑ q୫

୧ୀଵ i (24)
 

 

 

Figure 4: Simulation results of the desired EMG signal and the measured signal during the flexion movement of the elbow 
in position. 

 

 

Figure 5: Measured error simulation when the tracking desired trajectories in position. 

 
 
 
 

200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

390 400 410 420 430 440 450 460 470
0

1

2

3

4

5

0 200 400 600 800 1000 1200 1400 1600
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

 

 

error

340 360 380 400 420 440 460 480 500 520
-0.2

-0.1

0

0.1

 

error

   :Desired EMG 
: Measured signal 

A Terminal Sliding Mode Control using EMG Signal: Application to an Exoskeleton-Upper Limb System

563



 

 

 

Figure 6: Simulation results of the desired EMG signal and the measured signal during the flexion movement of the elbow 
in velocity. 

 

 

Figure 7: Measured error simulation when the tracking desired trajectories in velocity.

The uncertainties applied to the exoskeleton- 
upper limb system are uniform random distributions 
with ∆f and ∆g ∈ [0; 0.005] at t= 0.2s. 
 

Table 1: Calculation of RMS, Mean and Std of the elbow 
joint of the exoskeleton- upper limb system during the 
elbow flexion movement. 

Terminal Sliding Mode Control 

Position simulation Velocity simulation 
RMS [rad] 0.0043 RMS [rad/s] 0.0037 
Mean [rad] 0.0037 Mean [rad/s] 0.0028 

Std [rad] 0.0021 Std [rad/s] 0.0012 

The results (Table.I) are given when controlling 
the exoskeleton-upper limb system in the presence of 
parametric uncertainties. 

We can clearly see from this table that the 
proposed algorithm gave a good tracking of the 
desired trajectories (RMS in order of 10-3). 

5 CONCLUSION  

This paper deals with the control, the stability study 
and the robustness analysis of an exoskeleton-upper 
limb system, used for rehabilitation, in presence of 
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uncertainties using the EMG signal. The different 
stages of the EMG signal extraction were presented. 
Then, a terminal sliding mode algorithm is used to 
control the system. A robustness study using Monte 
Carlo simulation was done to analyse the 
performance of the exoskeleton in presence of 
parametric uncertainties. Simulation results are 
provided to prove the performance and the 
robustness of the proposed algorithm when tracking 
the desired trajectories. As a future work, 
experimental results will be given when the 
exoskeleton is worn by the human upper limb. 
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