
Generation of Task Models from Observed Usage 

Application to Web Browsing Assistance  

Karim Sehaba1 a and Benoît Encelle2 b 
1Université de Lyon, CNRS, Université de Lyon 2, LIRIS, UMR5205, France 

2Université de Lyon, CNRS, Université de Lyon 1, LIRIS, UMR5205, France 

Keywords: Knowledge Extraction, Interaction Traces, Task Model, ConcurTaskTrees (CTT), Web Browsing Assistance. 

Abstract: This work focuses on the extraction of knowledge from observed usage. More specifically, it aims to design 

a Web browsing assistance system that helps the user in carrying out his browsing task, or the designer in 

adapting or redesigning his Web application, according to real usage. The proposed approach consists of 

generating task models from interaction traces, which are then used to perform assistance. The characteristics 

to be supported by a task metamodel for assistance purposes are first identified and then confronted with the 

characteristics of existing task metamodels. This first study led us to choose the ConcurTaskTrees (CTT) 

metamodel. We then developed processes to generate CTT task models from traces. Finally, to validate our 

approach, we conducted unit testing and validation based on two real web browsing scenarios. 

1 INTRODUCTION 

This article focuses on knowledge extraction from 

data coming from observed usage. More precisely, it 

is part of Web browsing assistance and redesign of 

Web applications. The question under concern is how 

to set up a system able to assist the user in carrying 

out a web browsing task and the designer in the 

adaptation and/or the redesigning of his Web 

application. 

In most existing assistance systems, the helps 

provided, and in general the assistance knowledge, 

are predefined during the design phase and 

correspond to the uses envisaged by the designers. 

Nevertheless, it is often difficult to apprehend for a 

given system, and for a Web application more 

particularly, the full spectrum of the real uses: users 

can have very different profiles, the user needs can be 

in constant evolution, there may have different 

conditions of use, etc. If tools and methodologies 

exist to predict certain uses (including requirements 

analysis, rapid prototyping and assessments in 

ecological situation), these will remain intended uses 

and may in some cases not cover / correspond to all 

real uses. This may be due to several difficulties 

related to: the analysis of all the contexts of use, the 

                                                                                              

a  https://orcid.org/0000-0002-6541-1877 
b  https://orcid.org/ 0000-0002-0734-6480 

representativeness of the observed sample, the 

achievement of truly ecological conditions in 

assessments, etc. Thus, the design of an assistance 

system with a complete representation of the needs of 

future users and their evolution is very difficult, if not 

impossible. 

To remedy these difficulties, we propose to base 

the assistance on the real uses, observed after the 

installation of the system. More precisely, the 

approach developed in this paper aims to generate 

task models based on these real uses. As an input in 

the task model generation process, we start from 

interaction traces (i.e. logs). Here, a trace represents 

the history of the actions of a given user on a Web 

application. At the output, a task model represents the 

different possibilities of performing a given task. 

Formally, a task model is a graphical or textual 

representation resulting from an analysis process, 

making it possible to logically describe the activities 

to be carried out by one or more users to achieve a 

given objective, such as booking a flight or hotel 

room. 

The task models obtained by the proposed process 

will then be used, in an assistance system, to guide the 

users in the accomplishment of their tasks and the 

74
Sehaba, K. and Encelle, B.
Generation of Task Models from Observed Usage Application to Web Browsing Assistance.
DOI: 10.5220/0008068300740082
In Proceedings of the 11th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2019), pages 74-82
ISBN: 978-989-758-382-7
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



designers in the analysis of their applications, or even 

to carry out possible redesigns of them. 

In this paper, we begin by identifying the 

characteristics that should be supported by task 

models so that they can be used for assistance 

purposes. We thus identified two main properties, 

namely: 

1. The intelligibility of the task model for the user; 

and 

2. The expressiveness of the task model and its 

ability to be manipulated by a computer system, 

more specifically an assistance system. 

In the literature, several metamodels have been 

proposed to represent task models. Therefore, we 

confront these metamodels with the characteristics 

previously identified to determine the most suitable 

for our purpose of assistance. This study leads us to 

choose the ConcurTaskTrees (CTT) metamodel. 

Then, we develop a process for generating task 

models, representing real uses, based on interaction 

traces. 

In summary, the work presented in this paper aims 

at three contributions: 

1. The specification of the characteristics of the task 

metamodels for assistance purposes; 

2. The confrontation of existing metamodels 

regarding the characteristics identified: the choice 

of the CTT metamodel; 

3. A process for generating CTT task models from 

interaction traces. 

This article is organized as follows. Section 2 

presents a state of the art on web browsing assistance 

based on traces and task models. Section 3 details the 

target characteristics of a task model for assistance 

purposes. Section 4 presents a comparison of existing 

task models against our target characteristics, leading 

in the choice of the CTT model that we present next. 

Section 5 describes our approach for generating task 

model from interaction traces. Section 6 is dedicated 

to the validation process and results. Finally, we 

conclude and state some perspectives in the last 

section. 

2 TASK MODELS GENERATION 

The design and/or the generation of task models has 

been the subject of several studies in the literature. In 

this work, we are interested in generating task models 

from traces. In this context, the methods proposed in 

the literature can be classified into two main 

approaches, namely: the generation of task models 

from one task instance (1) and from multiple task 

instances (2). 

2.1 From an Instance to a Task Model 

The first approach is to start from one instance (i.e. a 

particular way of performing a task) to generate a 

model. In this context, let us mention the CoScripter 

system (Leshed et al., 2008) which makes it possible 

to automate web tasks via a scripting language, used 

among other in the Trailblazer assistant (Bigham, Lau 

and Nichols, 2009). 

1. goto 

“http://www.mycompany.com/timecard/” 

2. enter “8” into the “Hours worked” 

textbox 

3. click the “Submit” button 

4. click the “Verify” button. 

Figure 1: Example of a CoScript (from (Bigham, Lau and 

Nichols, 2009)).  

Figure 1 shows an example of a CoScript representing 

the actions for performing a "book purchase" task on 

Amazon. As this example shows, a CoScript is very 

close to a trace and possibly generalizes it to a 

minimum. Indeed, the scripting language integrates 

only one element of generalization (with the notion of 

personal database (Leshed et al., 2008)). Therefore, a 

CoScript is more an instance than a task model itself. 

In addition, control structures such as the condition 

(e.g. if A then B else C) or iteration do not exist in 

CoScripter (Leshed et al., 2008). Therefore, to 

generate a task model from a CoScript, the challenges 

of a generalization process from an instance remain 

open as pointed out in (Allen et al., 2007). 

To answer these challenges, namely the elicitation 

of a task model from an instance, the approach used 

in PLOW (Procedural Learning on the Web) (Allen et 

al., 2007) increases the description of a task instance 

by knowledge provided during its performance. This 

knowledge makes it possible to represent the 

conditions, the iterations, etc. This "expert" 

knowledge is, within the framework of PLOW, 

provided by a certain kind of user named 

demonstrator. The latter teaches the system new task 

models by providing this expert knowledge orally, 

while he/she is performing the task. This knowledge 

is then interpreted using natural language processing 

technologies. This approach requires 1) that the 

demonstrator keeps in mind to bring a maximum of 

knowledge and 2) that the tool is able to correctly 

interpret this knowledge to modify the model 

accordingly. Thus, the more a demonstrator brings 

knowledge and more a model can be generic. Overall, 

Generation of Task Models from Observed Usage Application to Web Browsing Assistance

75



with respect to this knowledge, the more it is 

expressed in language similar to that used by the 

system to model the task, the less likely it is that it 

will be misinterpreted. 

2.2 From Instances to a Task Model 

The second approach attempts to eliminate the need 

of expert knowledge by using multiple instances to 

generate a task model, as in LiveAction (Amershi et 

al., 2013). The latter focuses on the identifying and 

modeling of repetitive tasks, tasks represented using 

CoScripter scripts. In LiveAction, a task model is 

generated using a set of CoScripts and Machine 

Learning techniques. With this kind of approach, task 

models are represented as finite state automata (FSA) 

(Amershi et al., 2013)(Mahmud et al., 2009). 

However, to our knowledge, an assistant based on 

such automata has not been developed yet. 

With this kind of approach, the level of genericity 

of the models obtained depends on the quantity of 

instances as well as their quality (variability in 

particular). It should be noted that, as suggested in 

(Amershi et al., 2013) and with the aim of quickly 

reaching satisfactory models, users should be able to 

add knowledge to generated models by manipulating 

them directly. 

2.3 Synthesis 

In summary, the first approach, from instance to 

model, allows the generation of more specific than 

generic task models and requires expert knowledge. 

The second, from instances to model, requires a large 

number of different instances to produce in 

sufficiently complete / generic models. 

We base our work on models that can be 

generated from multiple instances to limit the amount 

of expert knowledge to be provided initially and that 

are necessary to obtain complete models, sufficiently 

generic. Then, to minimize the constraint due to the 

sufficient number and the necessary variability of 

these instances, we will opt for "user-friendly" task 

models, i.e. allowing users to 1) understand them 

easily and 2) intuitively add knowledge by modifying 

the generated models. These additions of knowledge 

will have to be made directly on the models by 

handling them, thus evacuating the risks of no or bad 

interpretation which can lead to erroneous models 

(risks existing in PLOW for example). 

Therefore, reusing an approach such as the one 

described in LiveAction seems interesting to us, 

except that the generated models are represented by 

finite state automata (FSA). These FSAs are indeed 

difficult to understand and manipulated by end users: 

 no decomposition, hierarchical relationships 

between the tasks and their subtasks. Hierarchy 

makes it easier to read and understand a model; 

 large number of elements: many states and 

transitions even for a simple browsing task, which 

generates difficulty of reading and 

comprehension. 

To solve these problems, we propose to use more 

user-friendly task metamodels than FSAs. To do this, 

we will first identify a set of characteristics to be 

supported by a metamodel dedicated to browsing 

assistance. Then, we will confront the existing 

metamodels with the characteristics identified in 

order to choose one. The metamodels studied were 

designed to be quickly understandable and 

manipulable by "novice" (i.e. user-friendly). 

3 METAMODEL 

CHARACTERISTICS 

As mentioned above, task models generated from 

traces must be user-friendly, easily understandable, 

and even directly manipulable by the user. In 

addition, these models must also be machine-friendly 

to be automatically used by an assistance system to 

guide the user in performing his task. This 

characteristic implies that a machine can a) be able to 

identify models that do not conform to the 

metamodels (i.e. models that can lead to 

misinterpretations) and b) understand and interpret 

these models at a certain level. This requires a certain 

level of formality, a very precise semantics of the 

elements constituting these metamodels. 

To these two main characteristics, we add other 

secondary ones. The first is related to the set of tasks 

we want to model and their intrinsic properties. We 

want to model web browsing tasks, essentially 

sequential tasks (actions to be carried out one after 

another) and single-user tasks (collective tasks are not 

considered). This characteristic therefore corresponds 

to the expressiveness of the metamodels and more 

specifically to their ability to represent browsing 

tasks. In this perspective, elements of a metamodel 

must make it possible to specify the component of the 

user interface to be manipulated. Another important 

thing is that the metamodels must also allow the 

expression of optionality (to model the fact that a sub-

task is optional to carry out a given task), for a 

sufficiently generic modeling of Web browsing tasks. 

For example, the modeling of a "ticket reservation" 

KMIS 2019 - 11th International Conference on Knowledge Management and Information Systems

76



task must be able to represent optional steps, such as 

the possibility of entering a discount card id. 

The second secondary characteristic is related to 

the adaptability and extension capabilities of 

metamodels: these are initially designed to be used in 

a set of software engineering phases (Balbo, Ozkan 

and Paris, 2004), but they must be adaptable to meet 

our assistance goal. However, these adaptations may 

require complements (e.g. concepts), i.e. new 

elements added to the metamodels. As a result, 

metamodels have to be extensible if necessary 

(extensibility characteristic). 

The third is related to the plurality of devices that 

can be used to browse the Web (smartphone, tablet, 

computer, etc.) and their respective characteristics 

(screen sizes, proposed interaction modalities, etc.). 

Indeed, several variants of user interfaces or process 

of accomplishing tasks may exist for the same Web 

application ("responsive" aspect). These variations of 

the context of use must be able to be supported by the 

chosen metamodel: the same task has to be described 

in several ways according to the context of use. 

In summary, a "candidate" metamodel that could 

integrate the assistance process we wish to develop, 

must have key characteristics (user-friendly and 

machine-friendly) and secondary ones (expressivity, 

adaptability/ extensibility, support variations in the 

context of use). The following section presents a 

study comparing existing metamodels with the above 

characteristics. 

4 TASK MODELS FOR 

ASSISTANCE 

4.1 Comparison of Metamodels with 
Target Characteristics 

Several comparative studies of the most well-known 

metamodels have been proposed in the literature 

(Limbourg and Vanderdonckt, 2004) (Balbo, Ozkan 

and Paris, 2004) (Jourde, Laurillau and Nigay, 2014), 

including: 

 HTA: Hierarchical Task Analysis, 

 MAD: "Méthode Analytique de Description", 

 GOMS: Goals, Operators, Methods and Selection 

rules, 

 CTT: Concur Task Trees. 

These studies propose an analysis framework to 

compare the metamodels between them and even to 

guide the choice of one or more specific metamodels 

for a given objective. These analyzes are based on a 

set of characteristics, including those we target (see 

previous section). 

Concerning the user-friendly aspect, the authors 

of (Balbo, Ozkan and Paris, 2004) refer to it through 

the "usability axis in communication" and specify in 

particular that, in relation to textual or formal 

metamodels, the graphic metamodels are more 

suitable. The authors of (Paternò, 2004) also approve 

this position. For example, the highly textual GOMS 

metamodel is moderately user-friendly (Balbo, 

Ozkan and Paris, 2004). Being able to break down 

tasks into sub-tasks (decomposition characteristic 

(Balbo, Ozkan and Paris, 2004)), how to break down 

tasks and thus describe the relationships between 

tasks and sub-tasks are also important. For example, 

a tree-like representation of tasks / sub-tasks appears 

intuitive (Paternò, 2001), as in MAD or CTT, and 

offers several levels of detail, including the ability to 

unfold/fold branches of the tree. Similarly, the ability 

of the metamodel to allow the reuse of elements helps 

to minimize the number of elements present and 

improve readability. 

Concerning the machine-friendly characteristic, 

the degree of formality of a metamodel is related to 

what must be generated (Balbo, Ozkan and Paris, 

2004): a formal metamodel can be used for the 

automatic generation of code while a semi-formal 

model can be used to generate user documentation for 

example. The authors of (Limbourg and 

Vanderdonckt, 2004) confirm the need for a certain 

level of formality of the metamodels to be machine-

readable: for example, a plan in HTA described 

informally (textual descriptions) the logic of 

execution of the sub-tasks that make up a task, which 

can lead to interpretation ambiguities. On the 

contrary, CTT has a set of formal operators, based on 

the LOTOS language (Bolognesi and Brinksma, 

1987), to describe this same logic, which guarantees 

an unambiguous automatic interpretation. 

Regarding the secondary characteristics, 

concerning the expressivity of the metamodels for 

Web browsing tasks, in addition to sequentiality and 

single-user criteria, certain models such as MAD or 

GOMS do not allow the expression of the optionality 

(Balbo, Ozkan and Paris, 2004), unlike CTT. In 

addition, some models, such as HTA for example, are 

not intended to indicate the user interface components 

that must be manipulated to perform the tasks / 

subtasks while others, such as CTT, allow it. We also 

have to mention that the W3C Working Group 

Generation of Task Models from Observed Usage Application to Web Browsing Assistance

77



“Model-Based User Interfaces” has chosen CTT to 

model web tasks3. 

Concerning adaptability/extensibility, graphical 

metamodels are more easily extensible to express 

relationships or concepts that were not initially 

planned (Balbo, Ozkan and Paris, 2004). For 

example, several extensions have been proposed for 

models of this type, such as MAD or CTT (e.g. 

MAD*, CCTT). 

Regarding the characteristic "context of use 

variations support", few metamodels integrate this 

dimension as underlined by (Limbourg and 

Vanderdonckt, 2004). Nevertheless, CTT integrates 

this dimension through the platform concept (Paternò, 

2004). 

Table 1: Comparison of metamodels with target 

characteristics. 

 U
se

r-
fr

ie
n

d
ly

 

M
ac

h
in

e 
fr

ie
n
d

ly
 

E
x

p
re

ss
iv

it
y

  

A
d

ap
ta

b
il

it
y

/ 

ex
te

n
si

b
il

it
y

 

V
ar

ia
ti

o
n

s 
to

 t
h

e 
co

n
- 

te
x

t 
o

f 
u

se
 

CTT + + + + + 

HTA + - - - - 

MAD + + - + - 

GOMS - + - - - 

Table 1 gives a summary of our confrontation of 

metamodels with regard to our target characteristics. 

It thus appears that the CTT metamodel, among the 

metamodels studied, is the only one that meets all the 

characteristics previously identified. The following 

section provides a short introduction to this model. 

4.2 CTT metamodel 

A Concur Task Tree (CTT) model exposes a 

hierarchical structure of tasks as a tree. Each tree node 

corresponds to a task or a subtask. The node icon 

identifies the category of the task or subtask: 

 cloud: abstract task, decomposable; 

 user and keyboard: interaction task; 

 computer: task performed by the system. 

Logical or temporal relationships between tasks 

are indicated by operators. For example, the operator 

"[]" represents the choice and the operator "[] >>" 

                                                                                              

3 https://www.w3.org/TR/task-models/ 

represents the enabling with information operator. In 

Figure 2, the room booking task can only be done if 

the user has specified the type of the room he wants 

to reserve (single or double). Thus, the "Make 

reservation" sub-task is only activated if the "Select 

room type" task has been performed. 

 

Figure 2: CTT modeling of a room booking task (Paternò, 

2004).  

These operators are formally defined (mainly from 

the LOTOS language (Bolognesi and Brinksma, 

1987)). CTT allows to add features to tasks as needed: 

iteration (indefinite or finite) and optionality. Finally, 

the tasks can be correlated to the application domain 

objects (the type of room for example) and to their 

representation(s) on a given user interface (for the 

selection of a type of room for instance, radio buttons 

or other). 

5 TASK MODEL GENERATION 

AND ASSISTANCE 

Remember that our goal is to propose a task model 

generation approach based on observed usage. These 

task models will assist the user in performing their 

web browsing task and the designer in the adaptation 

and redesign of their web application. To represent 

the tasks, we propose to use CTT and, for the 

observed uses, we rely on the traces / logs resulting 

from the actions of the user on the Web application. 

 

Figure 3: Task model generation process and assistance. 

Figure 3 presents the general principle of our 

approach. At first, the logs / traces are transformed 

(T1) into finite state automata (FSAs) or, more 

KMIS 2019 - 11th International Conference on Knowledge Management and Information Systems

78



precisely, deterministic finite state automata 

(DFSAs). We already mentioned that a bunch of work 

related to web browsing assistance generate FSAs 

from the traces, such as LiveAction. If these automata 

have the advantage of being relatively simple to 

process automatically (machine-friendly), they 

remain difficult to understand for the general public 

given: a) the large number of states and transitions 

they can contain, even for represent a simple 

browsing task, and b) their linear reading as there is 

no hierarchy of states to represent task / subtask 

relations. Therefore, the second step of our approach 

is to transform these automata into CTT models (T2). 

In this section, we are interested only in 1) the 

transformation T2 (FSAs-> CTT models), since T1 

(Traces-> FSAs) has already been treated by other 

works, notably (Amershi et al., 2013), as well as to 2) 

assistance based on task models. 

5.1 Task Model Generation from 
Deterministic Finite State 
Automata 

Formally, a deterministic finite state automaton 

(DFSA) is a 5-tuple (Q, Σ, R, qi, F) consisting of: 

Q: a finite set of states (Web resources/pages) 

Σ: an input alphabet, which in our case represents 

all the events applied to web resources (e.g. button 

click, typed text, etc.) 

R: a part of Q × Σ× Q called the set of transitions 

qi: the initial state. qi ∈  Q 

F: a part of Q called the set of final states 

Since the automaton is deterministic, the 

relationship R is functional in the following sense: 

If (p, a, q) ∈  R and (p, a, a, q') ∈  R then q = q' 

In the following subsections we detail the 

algorithms for converting DFSAs to CTT models, 

focusing for the example only on CTT enabling and 

independence operators. 

5.1.1 Enabling Operator (“>>”)  

The CTT enabling operator indicates that a subtask B 

cannot start until a subtask A is performed. From the 

DFSA point of view, if there is an endState state for 

which there is only one transition from a previous 

startState state, we can deduce that there is an 

enabling operator (see figure 4 for an example of 

conversion from DFSA to CTT). 

 

Figure 4: Example of an DFSA to CTT conversion, two 

enabling operators (between states 1,2 and 2,3). 

DFSA to CTT model conversion algorithm 

(pseudocode) - enabling operator identification:  

Input: State startState, State endState 
Output: Boolean (true if enabling op. 

between startState and endState, false 

otherwise) 

 

If(!existTransactionBetween(startState, 

endState)) 

 return false 

EndIf 

 

For each state s of (AEF.states - 

startState) // 

 If (existTransactionBetween(s, 

endState)  

 return false 

 EndIf 

EndFor 

return true 

5.1.2 Order Independency Operator (“|=|”) 

There is an order independency operator between two 

or more subtasks if they can be performed in any 

order. From the DFSA point of view, if there are two 

startState and endState n paths (n>1) that link them, 

each path has the same k labels (which will then be in 

a different order) and k = n!, then we can conclude 

that these are subtasks that can be performed in any 

order, expressed in CTT using independence 

operators (see Figure 5 for an example of conversion). 

Generation of Task Models from Observed Usage Application to Web Browsing Assistance

79



 

Figure 5: Example of an DFSA to CTT conversion, one 

order independency operator (between states 1 and 4, two 

equivalent paths (through state 2, through state 3)). 

DFSA to CTT model conversion algorithm 

(pseudocode) - order independency operator 

identification:  

Input: State startState, State endState 

Output: Boolean(true if independance 

op. exist, false otherwise)  

paths <- 

getAllPossiblePaths(startState, 

endState) 

 

If (paths.size<=1) 

 return false 

Endif 

j = paths[0] 

if (factorial(j.transitions.size) != 

paths.size) 

 return false 

Endif 

For (i = 1 to paths.size-1) 

If(!hasSameTransitionLabels(j,paths[i])

) 

  return false 

Endif 

EndFor 

return true 

5.2 Task Model-based Assistance 

Once task models are generated from traces, they will 

be used to assist: 

 the user in his task performance by showing him 

the actions that must be performed to achieve his 

objective, or  

 the designer in the adaptation of his Web 

application by highlighting the observed uses of 

his application. 

In both cases, we assume that tasks are organized 

by categories and that each task model is associated 

with metadata specifying the name of the task, its 

purpose and, possibly, the traces that generate it. 

User assistance can be provided in three modes: 

manual search, search through the declaration of the 

purpose of the task and automatic search. In the first 

mode, as a classic help, the user is supposed to select 

the task by navigating in a task tree. The second mode 

is a keyword search, entered by the user, specifying 

his objective. It is a question of searching in the task 

database those whose objective matches the user's 

keywords. In automatic mode, as the user performs 

his task, the assistance system displays the tasks that 

match the actions performed by the user. 

Re-design assistance simply consists of 

displaying tasks that have emerged from usages and 

that were not initially planned by the designer. This 

will allow the designer to become aware of these uses 

and eventually adapt his Web application to these 

uses through CHI re-design for instance. 

6 TESTS AND RESULTS 

In order to validate our approach, we implemented 

our CTT operator identification algorithms from 

DFSAs, performed unit testing first and then tested 

our approach on two real scenarios. The Java 

language was used for coding the algorithms and the 

DFSAs were stored in XML files. 

Unit Testing. 

We checked our algorithms for generating CTT 

operators on 24 XML files, each containing a DFSA 

that correspond to a particular CTT operator. The 

generation of CTT operators was successful for 21 

out of 24 files, that leads to an average success rate of 

87.5% (see Table 2).  

 

 

 

 

 

KMIS 2019 - 11th International Conference on Knowledge Management and Information Systems

80



Table 2: Results of unit testing. Each row represents a 

DFSA (an XML file) that corresponds to a CTT operator. 

Operator Nb. of 

states 

Result Rate 

Enabling 

5 Success 

100% 

7 Success 

13 Success 

5 Success 

3 Success 

Disabling 

9 Success 

100% 4 Success 

3 Success 

Choice 

4 Success 

100% 
12 Success 

14 Success 

48 Success 

Order 

independency 

4 Success 

100% 
12 Success 

14 Success 

48 Success 

Optionality 
6 Failure 

50% 
4 Success 

Iteration 

5 Failure 

33% 6 Success 

4 Failure 

Finite iteration 

9 Success 

100% 9 Success 

13 Success 

Real Scenarios Testing. 

We have also tested our CTT task model generation 

algorithms on two real scenarios that represent 

respectively the booking of a flight on 

"www.airfrance.fr" and the search for an itinerary on 

“www.google.fr/maps”. For testing these scenarios 

and thus evaluating our algorithms, we studied 

algorithm capacities to correctly identify CTT 

operators. 

The Air France scenario DFSA is composed of 265 

states and mainly contains CTT operators that are 

often encountered in web browsing tasks (choice, 

order independency, enabling, disabling, iteration). 

We obtained an average operator identification 

accuracy rate of 76.58% (see Table 3). Some 

identification errors are related to each other, 

especially in the case of the disabling operator which 

can only take place in an iteration. Therefore, if the 

identification of an iteration operator that contains a 

disabling operator fails, then the disabling operator 

will not be identified either. 

For the Google Maps scenario, the DFSA is 

composed of 64 states and the average operator 

identification accuracy rate is 71.73% (see Table 4). 

Most operators are correctly identified except the 

optional one (i.e. optionality of tasks). 

 

Table 3: Results of the Air France scenario CTT operator 

identification. 

Operator Instances Identified 

instances 

Rate 

Enabling 104 80 76,92% 

Disabling 1 0 0% 

Choice 49 38 77,55% 

Order 

independency 

3 3 
100% 

Iteration 1 0 0% 

Total 158 121 76,58% 

Table 4: Results of the Google maps scenario CTT operator 

identification. 

Operator Instances Identified 

instances 

Rate 

Enabling 30 21 70% 

Choice 13 10 76,92% 

Order 

independency 

2 2 
100% 

Optionality 1 0 0% 

Total 46 33 71,73% 

7 CONCLUSIONS 

This article deals with the extraction of knowledge 

from data coming from observed usage in the context 

of Web browsing assistance. Our approach is based 

on the generation of task models from interaction 

traces (logs). A task represents all the user's actions 

performed on a device to achieve a given objective. A 

trace represents the history of the user's actions on the 

digital environment. The aim is therefore to consider 

the traces left by users as sources of knowledge that 

an assistance system can use to generate user-specific 

help, and thus overcome the limitations of assistance 

based on intended uses during the design phase of a 

system.  

From a usage perspective, the task model generated 

from traces could thus be used automatically or semi-

automatically to assist a user in performing his task or 

a designer in adapting the digital environment to the 

observed uses.  

Our contributions focused on 1) specifying the 

characteristics of task metamodels for user assistance, 

2) comparing existing task metamodels with the 

identified characteristics, this study allowed us to 

choose the CTT metamodel, and 3) developing a 

process for generating CTT task models from traces. 

In future work, we plan, as an extension of the work 

already done, to continue the study of task 

metamodels - being aware that not all existing task 

metamodels (and there are many) have been covered. 

For instance, UML statecharts and the task modeling 

Generation of Task Models from Observed Usage Application to Web Browsing Assistance

81



part of Web Semantics Design Method (WSDM) 

(based on CTT) (De Troyer, Casteleyn and Plessers, 

2008) deserve to be studied in the light of the 

identified characteristics. A comparative study of the 

selected, compliant metamodels, assessing their 

ability to be quickly understood and manipulated by 

“novice” - "first time users", could also be carried out 

to consolidate the choice of a given metamodel. 

Concerning Web task model’s generation using CTT, 

an interesting study could be conducted to compare 

our approach against another one based on the 

analysis of web sites code (Paganelli and Paterno, 

2003), and for investigating to what extend both of 

them could be used in a complementary manner. To 

do this, we also have to develop further conversion 

algorithms to cover all metamodel operators and 

evaluate these algorithms using Web browsing data. 

Then, an assistance system using our approach has to 

be developed and evaluated in an ecological situation. 

REFERENCES  

Allen, J., Chambers, N., Ferguson, G., Galescu, L., Jung, 

H., Swift, M., & Taysom, W. (2007, July). Plow: A 

collaborative task learning agent. In AAAI (Vol. 7, pp. 

1514-1519). 

Amershi, S., Mahmud, J., Nichols, J., Lau, T., & Ruiz, G. 

A. (2013). LiveAction: Automating web task model 

generation. ACM Transactions on Interactive 

Intelligent Systems (TiiS), 3(3), 14. 

Balbo, S., Ozkan, N., & Paris, C. (2004). Choosing the right 

task-modeling notation: A taxonomy. The handbook of 

task analysis for human-computer interaction, 445-465. 

Bigham, J. P., Lau, T., & Nichols, J. (2009, February). 

Trailblazer: enabling blind users to blaze trails through 

the web. In Proceedings of the 14th international 

conference on Intelligent user interfaces (pp. 177-186). 

ACM. 

Bolognesi, T., & Brinksma, E. (1987). Introduction to the 

ISO specification language LOTOS. Computer 

Networks and ISDN systems, 14(1), 25-59. 

De Troyer, O., Casteleyn, S., & Plessers, P. (2008). 

WSDM: Web semantics design method. In Web 

engineering: Modelling and implementing web 

applications (pp. 303-351). Springer, London. 

Jourde, F., Laurillau, Y., & Nigay, L. (2014). Description 

of tasks with multi-user multimodal interactive 

systems: existing notations. Journal d’Interaction 

Personne-Système (JIPS), 3(3), 1-33. 

Leshed, G., Haber, E. M., Matthews, T., & Lau, T. (2008, 

April). CoScripter: automating & sharing how-to 

knowledge in the enterprise. In Proceedings of the 

SIGCHI Conference on Human Factors in Computing 

Systems (pp. 1719-1728). ACM. 

Limbourg, Q., & Vanderdonckt, J. (2004). Comparing task 

models for user interface design. The handbook of task 

analysis for human-computer interaction, 6, 135-154. 

Mahmud, J., Borodin, Y., Ramakrishnan, I. V., & 

Ramakrishnan, C. R. (2009, April). Automated 

construction of web accessibility models from 

transaction click-streams. In Proceedings of the 18th 

international conference on World wide web (pp. 871-

880). ACM.  

Paganelli, L., & Paterno, F. (2003). A tool for creating 

design models from web site code. International 

Journal of Software Engineering and Knowledge 

Engineering, 13(02), 169-189. 

Paternò, F. (2001). Task models in interactive software 

systems. In Handbook of Software Engineering and 

Knowledge Engineering: Volume I: Fundamentals (pp. 

817-836) 

Paternò, F. (2004). ConcurTaskTrees: an engineered 

notation for task models. The handbook of task analysis 

for human-computer interaction, 483-503. 

KMIS 2019 - 11th International Conference on Knowledge Management and Information Systems

82


