
Yassir Alharbi¹,³, Daniel Arribas-Be² and Frans Coenen¹

¹Department of Computer Science, University of Liverpool, Liverpool, U.K.
²Geographic Data Science Lab., Department of Geography & Planning, University of Liverpool, U.K.
³Almahd College Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia

Keywords: Bottom-up Hierarchical Classification, Time Series Forecasting, UN Sustainable Development Goals.

Abstract: A framework is presented which can be used to forecast whether an individual geographic area will meet its UN Sustainable Development Goals, or not, at some time \(t \). The framework comprises a bottom up hierarchical classification system where the leaf nodes hold forecast models and the intermediate nodes and root node “logical and” operators. Features of the framework include the automated generation of the: associated taxonomy, the threshold values with which leaf node prediction values will be compared and the individual forecast models. The evaluation demonstrates that the proposed framework can be successfully employed to predict whether individual geographic areas will meet their SDGs.

1 INTRODUCTION

In the year 2000, leaders of the world gathered in the United Nations to finally agree, after a decade of conferences and summits, to adopt a set of eight Millennium Development Goals (MDGs) (United Nations Development programme, 2007). The eight goals were directed at different aspects of humanitarian well being. The success of the MDGs initiative prompted the United Nations (UN) to propose a further set of seventeen Sustainable Development Goals (SDGs) in 2015, with an attainment date of 2030. A series of targets and indicators were identified and listed in the United Nations’ “Transforming our World: the 2030 Agenda for Sustainable Development” (UN, 2015). An individual goal, a Sustainable Development Goals (SDG), is met if the associated indicator values meet some condition. This paper presents a framework for predicting whether a given country (geographic region) will meet its SDGs by a given date \(t \) with reference to the UN SDG dataset, a publicly available data set which at time of writing (2019) comprised 1,083,975 records.

Whether a country meets its SDGs or not is dependent on whether individual SDGs are met, which in turn depends on whether the component targets making up an individual SDG are met, which also depends on whether particular indicators, sub-indicators and, in some cases, sub-sub-indicators are met; which inherently suggests a hierarchical forecasting (classification) system. However, unlike established hierarchical classification systems, which work in a top down manner (Silla and Freitas, 2011), the envisaged prediction mechanism would work in a bottom-up manner. In both cases, the objective is to establish the “class” of an entity with respect to some predefined hierarchical taxonomy, and in both cases, the classification will operate in a level-by-level manner. However, the branches in the taxonomy in the top down case represent conjunctions, while the branches in the bottom up case represent conjunctions. In the top down case, the identified path in the hierarchy from the root node to the leaf node holds the labels to be assigned to the entity to be classified; In the bottom-up case, labels associated with the leaf nodes need to be established before labels associated with parent nodes can be established, all the way up to the root node. The taxonomy in the case of bottom up hierarchical classification can thus be thought of as a “dependency tree” (Zhang et al., 2018). An alternative way of differentiating the two approaches is to describe top down hierarchical classification as adopting a “coarse-to-fine” classification approach, whilst bottom up hierarchical classification adopts a “fine-to-coarse” classification approach. It should also be noted that top-down hierarchical classification was originally proposed as a mechanism for addressing classification problems that featured a large number
of classes. Techniques for top down hierarchical classification are well established, techniques for bottom up hierarchical classification have been less well studied.

In the proposed bottom up framework, each node will hold a time series forecasting model. At the root and intermediate nodes, the models will simply take binary input from their child nodes and apply a Boolean function to this input, passing the result to their parent node (or as output in the case of the root node). At the leaf nodes, the classification models will be more sophisticated addressing individual indicators, sub-indicators or sub-sub-indicators. The question to be addressed is then the nature of the forecasting models to be held at the leaf nodes. At their simplest such models would consider a single indicator (sub-indicator or sub-sub-indicator), operating on the assumption that there is no link between the indicator and other indicators.

The rest of this paper is organised as follows. Section 2 presents a brief literature review of the previous work underpinning the work presented in this paper. The SDG data set is described in further detail in Section 3. The proposed SDG bottom-up hierarchical classification framework is then presented in Section 4. The evaluation of the proposed framework is discussed in Section 5. The paper is concluded in Section 6 with a summary of the main findings.

2 LITERATURE REVIEW

In this section a brief literature review of the work underpinning the SDG prediction framework proposed in this paper is presented. The literature review commences, sub-section 2.1, with a review of existing work directed at the SDG challenge. The problem is essentially a time series forecasting problem; hence a review of time series forecasting is presented in sub-section 2.2. As noted in the introduction to this report, the SDG problem can be couched as a Hierarchical classification problem. Hierarchical classification is therefore discussed in some further detail sub-section 2.3.

2.1 Sustainable Development Goal Challenge

Many studies have been published on the SDG problem problem, and the SDG challenge in general. To monitor the progress of SDGs, the UN publishes a yearly report (UN,) to measure the progress towards the global attainment of the SDGs; the report provides a good annual general overview. The UN also publishes statistics used to monitor progress towards SDG attainment; this is the input data used with respect to the proposed framework and is therefore discussed in further detail in Section 3. The majority of the available literature has been directed at individual SDGs. For example, Cuaresma et al. (Crespo Cuaresma et al., 2018) considered the SDG “End poverty in all its forms everywhere” (SDG 1). The proposed forecasting mechanism was based on a single criteria GDP (Gross Domestic Profit) by using regression-based estimates. In Shumilo et al. (Shumilo et al., 2018) the SDG “Life on land” (SDG 15) was considered. Here the proposed forecasting mechanism was founded on the utilisation of satellite imagery by implementing neural networks to classify forest area. SDG 11 was considered in (Anderson et al., 2017) using data obtained from air quality sensors installed on data collection satellites.

2.2 Time Series Forecasting

Time series analysis has been the subject of much research (Konar and Bhattacharya, 2017; Hyndman, 2018). Much of this work has been directed at supervised learning, the mapping of time series to class labels of some kind (Bagnall et al., 2016). Many methods have been proposed to predict (forecast) future occurrences in time series data, examples include: Vector Autoregression (Stock and Watson, 2001), Holt Winters Exponential Smoothing (Gelper et al., 2010) and autoregressive (Gooijer and Hyndman, 2006). In the context of SDG prediction a particular challenge is the nature of the time series data available; at time of writing (2019) this was limited to 18 observation points per time series.

Any forecasting method, considered in the context of the proposed framework, must therefore be able to operate using such short time series. From the literature there are three models that seem appropriate: (i) Auto-Regressive Moving Average (Arma) (Lawrance and Lewis, 1980), (ii) Auto-Regressive Integrated Moving Average (ARIMA) (Hyndman, 2018), and (iii) Facebook Prophet (Fbprophet) (Taylor and Letham, 2017).

The ARMA model combines autoregression (Mills, 1990) with a moving average model. It can be expressed as shown in Equation 1, where \(\phi \) is the auto regressive models parameter, \(\theta \) is the moving average, \(c \) is a constant and \(\varepsilon \) is the error terms.

\[
X_t = c + \varepsilon_t + \sum_{i=1}^{p} \phi_i X_{t-i} + \sum_{i=1}^{q} \theta_i \varepsilon_{t-i} \quad (1)
\]

\[\text{https://unstats.un.org/SDGs/indicators/database/} \]
The ARIMA time series forecasting model is a generalisation of the ARMA model (Hyndman, 2018). It can be expressed as shown in Equation 2, where t is a temporal index, u is the mean term, B is the backshift operator, $\phi(B)$ is the autoregressive operator, $\theta(B)$ is the moving average operator, and a_t is the independent disturbance or the random error.

$$\left(1 - B\right)^d y_t = \mu + \frac{\theta(B)}{\phi(B)} a_t \quad (2)$$

Fbprophet is an additive regression model, directed at non-linear time series forecasting, developed by Facebook (Taylor and Letham, 2017). Fbprophet operates by decomposing a given time series into three different components, the “trend”, “seasonality”, and “holidays” components, and includes an error term as shown in Equation 3 where $g(t)$ is the trend, $s(t)$ is the the periodic change, $h(t)$ is the seasonality effect and ε is the parametric assumption. The result is a model that is robust to short time series and randomness in the observation points.

$$y(t) = g(t) + s(t) + h(t) + \varepsilon \quad (3)$$

An alternative to the above is to consider forecasting methods directed at hierarchical time series such as those proposed in (Wickramasuriya et al., 2018) and (Hyndman, 2018), applicable where the time series under consideration naturally divided hierarchically. The example given in (Athanasopoulos et al., 2009) is forecasting tourism in Australia. However, given that the available SDG time series are already very short the potential for a hierarchical division of these time series is very limited and unlikely to prove successful.

A further disadvantage of short time series forecast model generation is that there is very little opportunity for taking the presence of noise into consideration. It is argued that inaccuracy in time series forecasting is directly related to the amount of noise in the data; the proportion of noise in short time series is often higher than in long time series (Hyndman and Kostenko, 2007). In the context of the SDG application, it is unclear how much noise there is, or how this might be defined; it can be argued that, there is no spurious data and hence no noise. Whatever the case, given a collection of short time series the interaction between the different time series may be utilised, although this is not considered in this paper.

2.3 Hierarchical Classification

As noted in the introduction to this paper, hierarchical classification is a type of supervised learning where the output of the classification is derived from a hierarchical class taxonomy (Silla and Freitas, 2011). There are many methods directed at top-down classification, examples can be found in (Dangerfield and Morris, 1992) and (Edwards and Orcutt, 1969). As far as the authors are aware there has been little work directed at bottom-up hierarchical classification founded on a taxonomy. In (Rostami-Tabar et al., 2013) a new approach, called grouped time series, was discussed. This approach was applicable given an application where the required time series forecasting is to be conducted used multiple levels of granularity. For example in a warehouse stock forecasting application where there are thousands of products arranged according to a hierarchical categorisation; not quite the same as the SDG challenge but of interest because of its hierarchical nature.

3 THE SUSTAINABLE DEVELOPMENT GOALS DATA SET

Each of the UN’s 17 SDGs has between 3 and 13 targets, and each target, in turn, has a number of indicators associated with it. In most cases, the indicators have sub-indicators, and even sub-sub-indicator (Sapkota, 2019). An illustration of the SDG hierarchical structure is given in Figure 1. With reference to the figure, the time series forecast models will be held at the leaf nodes, while the remaining intermediate nodes and the root node will hold “logical and” functions. For ease of understanding a numbering system has been adopted to identify individual indicators, $g(i,t,s_1,s_2)$ (goal, target, indicator, sub-indicator, sub-sub-indicator), for example the identifier [1.1.1.1.1] indicates: Goal1, Target 1, Indicator 1, sub-indicator1, sub-sub-indicator1.

The SDG data set is publicly available from the SDG website\(^2\). At time of writing (2019) the data set spanned an 18 year period. The SDG data set is relatively large, 500MB, and is comprised of 1,083,975 records holding statistical SDG information covering individual geographic areas. An example record is given in Table 1. Here the indicator is 3.7.2, “Adolescent birth rate (aged 10-14 years; aged 15-19 years) per 1,000 women in that age group”, and the sub-indicator (series description) is Adolescent birth rate (per 1,000 women aged 15-19 years). The majority of geographic areas considered are countries that currently exist, 195 of them. The remainder comprise countries that currently are no longer in exist-

\(^2\)https://unstats.un.org/SDGs/indicators/database/
The SDG data set D, as described above, is therefore comprised of a single table measuring $r \times |A|$, where r is the number of records and $|A|$ is the size of the attribute set (the number of columns). At time of writing $r = 1,083,975$ and $|A| = 36$. To generate the desired forecast models the data set D had to be "reshaped" (Wang et al., 2019) to give a data set $D^{′} = e \times y$ where e is the number of leaf nodes that will feature in the SDG hierarchy, and y is the number of years for which data is available. At time of writing $D = 1803096 \times 128429$ and $y = 18$; it is anticipated that y will increase year-by-year as further data becomes available. The data set $D^{′}$ holds numeric values only. In effect each row in $D^{′}$ is a time series $\{v_{1}, v_{2}, \ldots, v_{y}\}$ which in turn can be used to build the desire forecast models. As noted above the data set spans an 18 year period, thus for a given geographic area and a given indicator (sub-indicator or sub-sub-indicator) there will be a time series comprised of a maximum of 18 points (values). There are records where the time series only feature a small number of points, the remaining values being missing.

As noted above the data set spans an 18 year period, thus for a given geographic area and a given indicator (sub-indicator or sub-sub-indicator) there will be a time series comprised of a maximum of 18 points (values). There are records where the time series only feature a small number of points, the remaining values being missing.
4 THE SDG PREDICTION FRAMEWORK

This section details the SDG Prediction Framework. There are three aspects to the Prediction Framework: (i) the generation of the taxonomy, (ii) the generation of the associated constraints to be embedded in the framework and (iii) prediction model generation. The first two are generic processes independent of the geographic region of interest; the third is a geographic region dependent process that will be repeated for each geographic region to be considered. Each is discussed in further detail in the following three sub-sections. A schematic of the proposed SDG framework is presented in Figure 3.

4.1 SDG Taxonomy Generation

Hierarchical classification (top-down or bottom-up) requires a taxonomy and associated hierarchy. In many cases of top-down hierarchical classification, the hierarchy and taxonomy are easily defined and are often quite trivial. In the case of the SDG hierarchy, the hierarchy and taxonomy are substantial as indicated in Figure 1. Further, the UN does not provide a taxonomy for the data. Therefore the taxonomy and hierarchy need to be extracted from D (the UN SDG data set). Hand-crafting of the taxonomy and hierarchy was clearly not a desirable option, as it would be time-consuming and prone to error; there is also the potential that the UN may change elements of the SDGs, or add a completely new goal or edit an existed one. An automated approach to generating the taxonomy and hierarchy was therefore seen as desirable. A Hierarchical Taxonomy Generator was developed for this purpose. The input for which was the raw SDG data for all geographical regions. This was developed using the Python Pandas library for data manipulation and analysis, specifically the cross-tabulation (Crosstab) function included in the Pandas library. Now Crosstab is used to do contingency table. So before using the method to produce the taxonomy, some columns must be removed from the data set such as Value and dates. We only keep what is important to produce the hierarchical representation of the data set; we also need a unique id for each different combination. So we do summation operation in all the columns together to create a unique ID. Now we use the crosstab with the following argument

4.2 Threshold Generation

Each node in the SDG hierarchy (Figure 1) has a boolean condition associated with it. At the root and intermediate nodes the conditions are expressed simply as “logical and” functions; if all the inputs have the value True the output value will be True, and False otherwise. At the leaf nodes, the conditions are more complex and are outlined in the SDG Handbook (Sapkota, 2019). These are typically expressed in the form of some conditional operator, such as greater than (>), less than (<) or equal to (=), some threshold σ. The challenge is that the σ values to be associated with the leaf nodes are not included in D and are not specified in (Sapkota, 2019). Instead, they are published separately in (UN, 2017). However, in (UN, 2017) some of the thresholds are not mathematically defined. A solution, in the context of the proposed hierarchical framework, was available in the (Lozano et al., 2018) where the authors published a mathematical interpretation for the health-related targets from the SDG published target goals document. The same methodology was replicated and used upon all other targets manually. The generated thresholds were added to the SDG Taxonomy produced by the Hierarchical Taxonomy Generator described above in sub-section 4.1, a fragment of the updated SDG taxonomy, with threshold conditions and expected compliance date, is given in Table 2. Once the full SDG Taxonomy had been generated, it could be used to generate the required SDG hierarchy automatically.

4.3 Forecast Model Generation

As noted above, each leaf nodes in the hierarchy will hold a forecast model. The forecast models at the leaf nodes are required to predict what the value associated with the indicator in question will be and then to determine whether that value meets its specified threshold value σ or not. However, unlike the
Table 2: Fragment of SDGs taxonomy and thresholds.

<table>
<thead>
<tr>
<th>Goal</th>
<th>Target</th>
<th>Indicator</th>
<th>Series Description</th>
<th>Series Code</th>
<th>Threshold</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1</td>
<td>1.1.1</td>
<td>Employed population below international poverty line (%)</td>
<td>ST_POV_EMP1</td>
<td>≤ 0.05%</td>
<td>2030</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SI_POV_EMP1_15-24_MALE</td>
<td>≤ 0.05%</td>
<td>2030</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SI_POV_EMP1_MALE_15+</td>
<td>≤ 0.05%</td>
<td>2030</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SI_POV_EMP1_MALE_25+</td>
<td>≤ 0.05%</td>
<td>2030</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SI_POV_EMP1_BOTHSEX_15+</td>
<td>≤ 0.05%</td>
<td>2030</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SI_POV_EMP1_BOTHSEX_25+</td>
<td>≤ 0.05%</td>
<td>2030</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SI_POV_EMP1_FEMALE_15+</td>
<td>≤ 0.05%</td>
<td>2030</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SI_POV_EMP1_FEMALE_25+</td>
<td>≤ 0.05%</td>
<td>2030</td>
</tr>
</tbody>
</table>

SDG hierarchy, generated as described above, the nature of the forecast models are specific to individual geographic regions and thus each needs to be generated on a “as required” basis. The forecast models held at the leaf nodes were generated using the available data for each indicator (sub-indicator or sub-sub-indicator) associated with each geographic area included in the SDG data set, \(e = 128429 \) of them. A number of forecast model generation mechanisms were considered, as noted in sub-section 2.2: (i) Auto Regression Moving Average (ARMA) (Lawrance and Lewis, 1980), (ii) Auto-Regression Integrated Moving Average (ARIMA) (Kinney, 1978) and (iii) Facebook Prophet (Fbprophet) (Taylor and Letham, 2017).

5 EVALUATION

The evaluation of the proposed framework is presented in this section. The evaluation comprised two elements: (i) evaluation of the forecast models and (ii) evaluation of the framework as a whole.

5.1 Forecasting Evaluation

As noted above, three forecast model generators were considered: (i) ARMA, (ii) ARIMA and (iii) Fbprophet. The evaluation metrics used were: Root Means Square Error (RMSE) and Means Absolute Percentage Error (MAPE) (Hyndman and Koehler, 2006). RMSE is calculated as shown in Equation 4 where \(f \) is the forecasted value and \(o \) is the observed value. RMSE provides results with the same unit as the forecasted values, it is therefore easy to compare RMSE values generated by alternative forecasting methods, however it is not an intuitive measure. MAPE is calculated as shown Equation 5 where \(f \) is the forecasted value and \(o \) is the observed value. MAPE offers an easy to understand forecasting error expressed in terms of a percentage:

\[
RMSE = \sqrt{(f - o)^2} \quad (4)
\]

\[
MAPE = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{o - f}{o} \right| \times 100 \quad (5)
\]

For the evaluation SDG Target 3.2, “By 2030, end preventable deaths of newborns and children under 5 years of age, with all countries aiming to reduce neonatal mortality to at least as low as 12 per 1,000 live births and under-5 mortality to at least as low as 25 per 1,000 live births”, was selected, together with the geographic area Egypt. This was selected because a complete set of data points was available for this target-geographic location pairing. Target 3.2 comprised six indicators; the associated time series are given in Figure 4. The forecast models were trained using the first seventeen data points and used to predict the eighteenth (2018) value. The accuracy of the prediction was measured using RMSE and MAPE. The results are given in Table 3. From the table, it can be seen that the Fbprophet prediction model produced the best results. For example in the case of forecasting “Neonatal mortality rate (deaths per 1,000 live birth)” the RMSE score was 0.55 using ARIMA, 5.24 using ARMA and 0.016 using Fbprophet. Figure 5 shows the output using Fbprophet.

5.2 Framework Evaluation

To evaluate the utility of the proposed SDG framework the geographic area Egypt was again used together with SDG Target 3.2. The framework was then
The results are presented in Table 4. From the Table 4: Framework evaluation using Target 3.2 and the geographic area Egypt.

<table>
<thead>
<tr>
<th>Goal</th>
<th>Series Description</th>
<th>Series Code</th>
<th>Initial Value</th>
<th>Prediction</th>
<th>Threshold value</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>Neonatal mortality rate (deaths per 1,000 live births)</td>
<td>SH_DYN_NMRT_BOTHSEX,<1Y</td>
<td>12.5</td>
<td>13.2</td>
<td>=25%</td>
<td>Not Met</td>
</tr>
<tr>
<td></td>
<td>Under-five deaths (number)</td>
<td>SH_DYN_MORT_MALE,<5Y</td>
<td>3237</td>
<td>3278</td>
<td><25%</td>
<td>Not Met</td>
</tr>
<tr>
<td></td>
<td>SH_DYN_MORT_FEMALE,<5Y</td>
<td>5924</td>
<td>6377</td>
<td><25%</td>
<td>Not Met</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SH_DYN_MORT_BOTHSEX,<1Y</td>
<td>27957</td>
<td>31528</td>
<td><25%</td>
<td>Not Met</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SH_DYN_MORT_MALE,<1Y</td>
<td>5775</td>
<td>6377</td>
<td><25%</td>
<td>Not Met</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SH_DYN_MORT_FEMALE,<1Y</td>
<td>22867</td>
<td>24871</td>
<td><25%</td>
<td>Not Met</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SH_DYN_MORT_BOTHSEX,<1M</td>
<td>19975</td>
<td>22967</td>
<td><25%</td>
<td>Not Met</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SH_DYN_MORT_MALE,<1M</td>
<td>3725</td>
<td>4041</td>
<td><25%</td>
<td>Not Met</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SH_DYN_MORT_FEMALE,<1M</td>
<td>2190</td>
<td>2487</td>
<td><25%</td>
<td>Not Met</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SH_DYN_MORT_BOTHSEX,<1Y</td>
<td>22.3</td>
<td>26.0</td>
<td><25%</td>
<td>Not Met</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SH_DYN_MORT_MALE,<1Y</td>
<td>21.4</td>
<td>23.1</td>
<td><25%</td>
<td>Not Met</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SH_DYN_MORT_FEMALE,<1Y</td>
<td>20.1</td>
<td>21.1</td>
<td><25%</td>
<td>Not Met</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SH_DYN_MORT_BOTHSEX,<1Y</td>
<td>18.7</td>
<td>20.1</td>
<td><25%</td>
<td>Not Met</td>
<td></td>
</tr>
</tbody>
</table>

Figure 5: Forecasted values for Target 3.2.

used to automatically predict whether the target will be met by 2030, as specified in the UN Agenda for Sustainable Development. Target 3.2, as noted above, encompasses six indicators, six forecast models were therefore generated using Fbprophet (because earlier evaluation, reported on in sub-section 5.1, had shown this produced best results). The prediction models were trained using the first eighteen data points and then used to predict the 2030 values which were then used to automatically determine, using the framework, whether the indicators were met, or not, by comparing the forecasted values with the appropriate threshold value. In the case of Target 3.2, for the SDG to be met in 2030, all forecasted values must be less than the 25% of the benchmark value for the year 2015. The results are presented in Table 4. From the table, it can be seen that in the case of the geographic area Egypt and Target 3.2 the target will not be met by 2030. However, if the "trend" for each indicator is examined, as shown in Figure 5, it can be seen that the SDG will be met at some time in the future.

5.3 Framework Visualisation

An additional feature of the proposed SDG framework is that it includes a visualisation of predictions in the form of dendrograms generated using the D3.js JavaScript library (Bostock et al., 2011). The prediction visualisation for Target 3.2, with respect to the geographic area of Egypt, is given in Figure 5.

6 CONCLUSION

A framework has been presented for predicting whether individual geographic areas will meet their UN SDGs at a given time. The framework comprises a bottom up classification hierarchy where the leaf nodes hold predictors founded on time series data and the intermediate nodes and root node simple "logical and" operators. A feature of the framework is that the required hierarchical classification taxonomy and threshold values to be held at leaf nodes (with which predicted values are compared) are both generated automatically. For individual geographic areas individual time series-based predictors are required, these are also generated in an automated manner. The framework was evaluated by considering a number of indicators...
prediction models, and by using it to predict whether individual geographic areas would meet their targets by 2030 as specified in the UN Agenda for Sustainable Development. The best prediction model was found to be Facebook’s Fbprophet. The evaluation indicated that the proposed framework could be successfully employed to predict whether geographic areas would meet their targets or not.

REFERENCES

