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Abstract: The transport industry is a primary contributor towards emissions that impact climate change.  Fuel economy 

is also of critical importance to the profitability of road freight transport operators.  Empirical evidence 

identified a variety of factors impacting fuel consumption, including route inclination, payload and truck 

driver behaviour.  This creates the need for accurate fuel usage models and objective methods to distinguish 

the impact of drivers from other factors, in order to enable reliable driver performance assessment.  We 

compiled a data set for 331 drivers completing 7332 trips over 21 routes to obtain evidence of the impact of 

route, payload and driver behaviour on fuel economy.  We then extracted various regression and neural models 

for fuel economy and used these models to remove the impact of route inclination and payload, allowing the 

impact of driver performance to be measured more accurately.  All models demonstrated significant out-of-

sample predictive ability.  Neural models in general outperformed regression models, while amongst neural 

models radial basis models slightly outperformed multi-layer perceptron models.  The significance of 

compensating for factors not controlled by the driver was verified by demonstrating large differences in driver 

performance ranking before and after compensating for route inclination and payload. 

1 INTRODUCTION 

The contribution of the transport sector towards 

greenhouse gas emissions has been widely researched 

and is estimated at around 29% of all emissions caused 

by human activities (United States Environmental 

Protection Agency, 2019). While the contribution of 

passenger vehicles towards GHG emissions is 

expected to be gradually eliminated over the next few 

decades through a transition to electric vehicles and 

clean production of electricity, this transition will be 

more challenging for long haul freight trucks, due to 

the large distances covered by these vehicles. Heavy-

duty vehicle GHG EPA regulations are projected to 

reduce CO2 emissions by about 270 million metric tons 

over the life of vehicles built under the EPA program, 

saving about 530 million barrels of oil.  The proposed 

program includes standards that would further reduce 

GHG emissions and improve the fuel efficiency of 

medium and heavy-duty trucks (United States 

Environmental Protection Agency, 2019). 

While these efforts towards reducing the 

environmental impact of long haul trucks should be 

encouraged, road freight transport still remains an 

essential element of the global economy.  This is 

specifically relevant in regions with limited availability 

of rail infrastructure (Hoffman, 2010); for example 

road transport is responsible for 76% of cargo 

movement in South Africa; this figure is even higher in 

other African countries (Havenga, 2013).  Compared 

to the rest of the world the cost of transport in Africa is 

much higher as a fraction of the total cost of delivered 

goods - 18% compared to a global average of less than 

10%  (Anon., 2014). Fuel cost is the single biggest 

contributor to the cost of road transport operations, 

representing approximately 40% of operating costs 

(Naidoo, 2013).  Fuel economy is therefore a critical 

element to be managed by road freight transport 

operators to ensure continued profitability in a very 

competitive industry.   

Historical research in the field of fuel consumption 

modeling identified the primary factors that impact on 

consumption; this includes driver proficiency, payload 

and route inclinations (Weille, 1966) (Biggs, 1988) 

(Bennett and Greenwood, 1995). Much of the work in 

this field focused on the modeling of fuel consumption 

in terms of engine characteristics and driving style 

(Rakha and Wang, 2017) (Delgado, et al., 2011).  Other 

studies applied a Big Data approach to large vehicle 

fleets, mostly driving on flat roads and at constant 

speeds (Perrottaa, et al., 2019) as well as the use of 
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telematics solutions to improve fuel consumption 

(Hoffman and Van der Westhuizen, 2014). 

The use of neural networks to model the fuel 

economy of trucks has been the topic of several 

research studies  (Zhigang Xu, 2018) (Jian-Da Wu, 

2012) (Elnaz Siami-Irdemoosa, 2015) (Hassanean S.H. 

Jassim, 2018). In all of these studies one of the 

objectives was to identify techniques that will provide 

the most accurate modeling of fuel economy in terms 

of the input factors mentioned above.  While 

satisfactory results were achieved through the research 

efforts listed above, none of those studies tried to 

remove the contributions of factors not controlled by 

the driver, like route inclinations and payload, before 

assessing the performance of the driver.  This is of 

critical importance, as the only factors that can be 

readily influenced to reduce emissions and fuel costs 

without negatively impacting the economic function 

fulfilled by transport is the behavior of the driver.  

Many road transporters offer schemes of incentives 

and penalties for fuel efficient driving behavior.  This 

creates the need for an accurate and objective method 

to distinguish the impact of drivers from other factors, 

in order to enable fair and consistent driver 

performance evaluations.   

In previous work we developed linear and nonlinear 

regression fuel economy models for long haul freight 

trucks using route inclination and payload as 

explanatory variables (Hoffman and Van der 

Westhuizen, 2019).  We also used these models to 

evaluate driver fuel economy performance after 

compensating for factors not controlled by the driver 

(Hoffman and Van der Westhuizen, 2019).  In the 

absence of such performance corrections, drivers are 

assessed by simply calculating their average fuel 

economy over all trips, completed over a variety of 

routes and carrying varying payloads.  This may lead 

to inaccurate outcomes as not all drivers are employed 

on identical sets of routes driving trucks carrying 

identical payloads.  The primary purpose of this paper 

is to improve on the modelling abilities of regression 

models by employing various neural network 

architectures.  In this study we included radial basis 

networks and multilayer perceptron networks. 

Based on available evidence we state the hypothesis 

that the presence of factors not under the control of the 

truck driver, like route inclinations and payload 

differences, will significantly impact the performance 

outcomes for truck drivers if not properly compensated 

for.  In order to prove our hypothesis, we will extract 

regression and neural models to quantify the impact on 

fuel economy of factors not controlled by drivers. 

These models will then be used to remove the impact 

of such factors in order to arrive at a residual fuel 

economy from which the impact of route and payload 

has been removed and that is mainly determined by 

driver performance.  This is expected to produce a 

performance measure that is more reliable than a 

simple average of the original fuel economy over all 

driver trips and that can be used to assess driver 

performance more objectively.   

We then compare the performance of drivers prior 

to model correction with driver performance after 

applying such correction.  For this purpose, we defined 

two measures of driver performance: the first is 

whether the driver performed above or below the 

average performance measured over all drivers; the 

second is the ranking achieved by each driver when 

sorting the performance of all drivers from best to 

worst.  In addition, we also investigate the extent to 

which driver identity and driver behaviour can be used 

to model the above residual fuel economy.  In each case 

the abilities of the different modelling techniques will 

be compared in terms of their out-of-sample abilities to 

correctly predict fuel economy and residual fuel 

economy. 

The rest of the paper is structured as follows: 

section 2 describes the process to collect a 

representative set of fuel consumption data, and 

describes the different routes that were covered by the 

available data set.  In section 3 we extract statistical 

measures of fuel economy for the population as well as 

per route and driver to provide evidence of the need for 

a driver performance model.  Section 4 focuses on the 

extraction of empirical models that will allow us to 

isolate the impact of the driver on fuel consumption. In 

section 5 we estimate the impact of model 

compensation on driver performance measurement. In 

section 6 we conclude and make recommendations for 

future research work. 

2 COLLECTION OF FUEL 

CONSUMPTION AND INPUT 

FACTOR DATA 

The purpose of our fuel usage data collection exercise 

was to ensure that we cover all the aspects to be 

investigated in this study.  We collected data from a 

fleet of 468 vehicles that cover most of the major routes 

in Southern Africa, as displayed in Figure 1 below. 

This allowed us to generate a significant amount of 

statistics on routes that include widely ranging 

inclinations (e.g. relatively flat from Johannesburg to 

Cape Town versus uphill and downhill from Durban to 

Johannesburg and back where the Drakensberg 

mountain range has to be crossed).  Data was collected 
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over a period of two calendar years, which is important 

as the road transport industry tends to be cyclic.   

 

Figure 1: Trip start positions for all trips in the study. 

To create a reliable set of fuel consumption 

performance benchmarks, we subdivided the data into 

subsets per major route that is covered.  Different fuel 

performance levels can be expected to be achieved on 

different routes based on the number of expected stops, 

the likelihood of encountering congested traffic and the 

average incline.  As the fleet of vehicles did not only 

cover a defined set of standard routes the major routes 

had to be derived from the GPS tracking data itself.  

This is discussed in more detail in the sections below. 

The GPS tracking systems used by these vehicles 

collect fuel usage data via the CAN bus system.  While 

fuel usage is measured continuously by way of a flow 

meter, most of the installed units of this system were 

configured to only store and communicate the 

aggregate consumption as from when the engine was 

switched on until it was switched off again; this is done 

mostly to save on communication costs.  Due to the 

way that trucks are operated many trips last only a very 

short duration, e.g. where a vehicle is moved within a 

depot.  As the fuel efficiency figures expressed as km/l 

would not be useful over such short distances and as 

the focus of this work is the fuel efficiency when trucks 

are driven over much longer distances, we filtered out 

all trips with a trip distance of shorter than 100 km.   

To obtain confirmation of the impact of route 

specific factors, we subdivided the data into subsets per 

major route that is covered.  In order to quantify the 

relationship between inclines and consumption, incline 

data was extracted from Google Maps by using the 

route descriptions as defined by the set of GPS 

coordinates representing each route (Gong, et al., 

2014). The final determinant of fuel usage that was 

investigated is payload, as the load carried by a vessel 

is expected to have a major impact on its fuel usage 

over a specific route, specifically for routes that include 

steep inclines.  Payload data was collected from trip 

records and weighbridge measurements before 

departure from origin. 

3 EXTRACTING STATISTICS 

FOR ROUTE AND DRIVER 

FUEL ECONOMY 

The statistics for the variables related to fuel economy 

measured across 7,332 observations are summarised in 

Figure 2 below, while the histograms for trip time, fuel 

economy and payload are displayed in Figure 2 below.  

It is clear that fuel economy displays large variations 

between trips, which motivates our efforts to quantify 

the contribution of each significant factor towards such 

variations. 

Table 1: Trip statistics over all observations. 

Statistic Ave Median Std Min Max 

TripTime (h) 2,87 2,91 1,08 0,83 6,59 

Fuel Econ 

(km/l) 
2,06 2,03 0,43 1,18 7,34 

Payload (tons) 29,01 34,00 8,69 1,00 39,98 

MaxSpeed 

(km/h) 
85,29 85,00 1,74 75,00 98,00 

Speeding Time 22,62 0,00 172,39 0,00 5 621 

MaxBrake 5,28 5,00 1,59 2,00 27,00 

Excessive 

BrakeTime 
0,00 0,00 0,10 0,00 6,00 

MaxAccel 2,74 3,00 0,74 2,00 24,00 

Excessive 

AccelTime 
0,01 0,00 0,36 0,00 25,00 

MaxRPM 1930 1900 203 1500 7600 

Excessive 

RPMTime 
0,01 0,00 0,47 0,00 28,00 

Excessive 

IdleTime 
42,71 0,00 124,73 0,00 2 187 

Standing Time 

(s) 
447 311 444 15 1073 

ElevGain (m) 1159 967 892 148 2746 

ElevLost (m) -969 -968 586 -1873 -163 

MaxSlope asc 0,09 0,07 0,07 0,01 0,28 

MaxSlope desc -0,06 -0,07 0,05 -0,18 -0,01 

AveSlope asc 0,01 0,01 0,01 0,00 0,04 

AveSlope desc -0,01 -0,01 0,01 -0,04 0,00 

ElevGain 

(m/km) 
6,63 4,45 4,84 0,79 21,74 

ElevLost 

(m/km) 
-5,68 -5,88 3,47 -22,33 -0,94 

Neural Models for Benchmarking of Truck Driver Fuel Economy Performance

381



The available data included observations for 21 

different routes, most of which were frequently 

driven over the relevant period by a set of 331 drivers.   

In order to investigate the impact of route 

characteristics and driver behaviour, the available 

data set was categorized per route.  Figure 3 displays 

the number of trips available per route as well as the 

average fuel economy per route, sorted from highest 

to lowest.  It can be seen that the average fuel 

economy per route varies by almost a factor of two 

from the least to the most fuel efficient. Figure 4 

displays the histogram of average fuel economy per 

driver across all routes.  For drivers the spread of 

averages is even wider than for routes; this may 

however partly be as a result of route inclination and 

payload variations. 

 

Figure 2: Histograms for trip times, fuel economy and 

payload. 

 

Figure 3: Number of trips and average fuel economy per 

route. 

In Figure 5 we display the driver average fuel 

economy histograms for a few individual routes; it 

can be seen that within a specific route the variation 

in performance between drivers is not quite as big as 

across all routes.  The driver variations within the 

same route are however sufficiently large to justify a 

more accurate comparison between drivers, aimed at 

quantifying the potential for fuel economy 

improvement, should all drivers perform at the same 

level.   

 

Figure 4: Histogram of average fuel economy per driver for 

all routes. 

 

 

 

Figure 5: Histograms of average fuel economy per driver 

for individual routes. 

4 EXTRACTING EMPIRICAL 

FUEL ECONOMY MODELS 

In a previous article (Hoffman and Van der 

Westhuizen, 2019) we described the extraction of 

linear fuel economy regression models, as well as 

nonlinear regression models based on the following 

formula: 

Ŷi = β̂0 + β̂1X1i
β2

 + β̂3X2i
β4

 + … + β̂2n-1Xni
β2n

 (1) 

where 

𝑌̂i is the estimated fuel economy value for observation 

i 

Xni are the values of input variables for observation i 
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𝛽̂0 - 𝛽̂2n are the estimates of the population regression 

slopes and exponents as indicated above. 
In this paper we expand this work by also 

extracting neural network models using identical input 
and target variables, and comparing the results 
produced by the different models.  The first type of 
neural model is a generalized regression neural 
network (GRNN) that is a variation on radial basis 
function networks.  The network architecture is 
illustrated in Figure 6 below. 

 

 

Figure 6: Architecture of the GRNN network. 

This network uses a spread parameter to regularize 

the input-output relationship; the value of spread is the 

distance between the centre of a radial basis function 

and the points where its magnitude has decreased by a 

factor of 2.  Larger values of spread therefore result in 

smoother input-ouput mappings.  We experimented 

with GRNN models where the value of spread was 

allowed to vary between 1 and 2024 in steps by a factor 

of 2.  The number of radial basis functions equalled the 

number of training observations. 

The second type of neural network that was used is 

the multilayer perceptron, using a single hidden layer 

with sigmoid transfer functions and a linear output 

layer.  In this case the number of hidden nodes is used 

to regularize the input-output mapping: larger numbers 

of hidden nodes provide more accurate fitting within 

the training set, but may lead to overfitting, resulting in 

lack of generalization ability in the test set, while a 

smaller number of hidden nodes will result in less good 

fits for the training set but more closely matching 

goodness of fit for the test set.  In our case we allowed 

the number of hidden nodes to vary between 2 and 32. 

We extracted models using all four modeling 

techniques (linear regression, nonlinear regression, 

GRNN and MLP NN) from the earliest 70% of all 

observations, and predicted fuel economy for the 

remaining 30% of observations.  In order to compare 

our results with results from previous research, we first 

extracted models using driver, route and payload 

factors as inputs.  Input factors were selected by 

ranking potential inputs based on absolute value of 

linear correlations between inputs and fuel economy.  

Table 2 provides the Pearson correlation coefficients 

between a list of available input factors and fuel 

economy.  We only included input factors with a 

correlation coefficient of at least 0.1 with the model 

target.  Once a ranked input factor has been selected, 

we only considered additional factors that had a 

correlation with already selected factors of less than 

0.4, as the use of several higly correlated inputs results 

in unstable model parameters. 

Table 2: Correlation coefficients between fuel economy and 

potential explanatory variables. 

Inputs Corr Inputs Corr 

Max Speed -0,133 Payload -0,174 

Speeding Time -0,044 Elev Gain (m) -0,627 

Max Brake 0,018 Elev Lost (m) 0,465 

Excessive Brake Time -0,010 Max Slope Asc -0,581 

Excessive Accel Time -0,016 Max Slope Desc 0,333 

Max RPM -0,378 Ave Slope Asc -0,594 

Excessive RPM Time -0,014 Ave Slope Desc 0,443 

Excessive Idle Time 0,026 Elev Gain (m/km) -0,611 

Standing Time 0,061 Elev Lost (m/km) 0,385 

The list of model parameters selected on this basis 

included Elevtion Gain, Max RPM, Payload and Max 

Speed.  Elevation Lost and some other factors were not 

selected based on their high correlations with Elevation 

Gain, that was selected first as it had the highest 

absolute correlation with fuel economy. 
The regression coefficients for the linear and 

nonlinear regression models are displayed in Table 2 to 
Table 4 below.  For the nonlinear regression models 
both the input factor coefficients and exponents are 
given; for the linear models the exponents are always 
1 as indicated.  It can be seen that the relationships 
between some inputs factors and fuel economy is 
significantly nonlinear, as some exponents deviate 
substantially from a value of 1. 

Figure 7 and Figure 8 displays scatterplots of 

Target vs Output for the regression and neural models 

respectively. Based on the scatterplots the model fits 

for the test sets appear to be very similar to that for 

the training sets, which indicates that the models have 

good generalization capability.  It can also be seen 

that the neural models provide a superior fit of output 

to target compared with the regression models, while 

the GR neural network seem to be slightly superior to 

the MLP network.  These observations will be 

confirmed using correlation analysis.   
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Table 3: Regression coefficients for general fuel economy 

models. 

Input Factor   Linear Nonlinear 

Constant   3,279 4,292 

Max Speed 

  

Coeff 0,006 0,007 

Exp 1,000 0,945 

Max RPM 

  

Coeff -0,001 -0,001 

Exp 1,000 0,933 

Payload 

  

Coeff -0,008 -0,101 

Exp 1,000 0,514 

Elevation Gain 

  

Coeff 0,000 -0,136 

Exp 1,000 0,348 

 

Figure 7: Scatterplots for linear and nonlinear regression 

Targets and Outputs. 

More insight into nature of the various modelling 

techniques is obtained by constructing input-output 

graphs where one input is varied across its entire 

range of values, while the remaining variables are 

kept constant at their average values.  As we created 

the outputs using artificial inputs values, it is not 

possible to display corresponding target values.  We 

constructed such graphs for the four model types, and 

repeated this for different levels of regularization 

applied to the neural models to observe the impact of 

changing the spread parameter and the number of 

hidden nodes.  In the Figure 9 and Figure 10 below 

we display the relationship between Elevation Gain 

as input and the modelled Fuel Economy as output for 

different levels of regularization applied to the neural 

models.   

It can be seen that all models display a similar 

trend in the modelled relationship.  When low levels 

of regularization are applied to the neural models, 

they tend to display extreme variations in the output, 

which is indicative of overfitting.  When the level of 

regularization is increased, most of this behaviour 

disappears, and the relationships are much closer to 

those for the regression models.  Similar results are 

obtained when using Payload as input variable, as 

displayed in Figure 11 and Figure 12. 
 

 

Figure 8: Scatterplots for GRNN and MLP neural network 

Targets and Outputs. 

We subsequently extracted models that only used 

inputs not impacted by driver behaviour;  regression 

coefficients for these models are displayed in Table 4 

below. To assess driver impact on  performance, we 

extracted both a driver behavioural model, that 

utilizes behavioural variables like Maximum RPM, 

Speeding Time and Maximum Speed as inputs 

(regression coefficients displayed in Table 5), as well 

as a driverID model, that uses driver identity as input.   

To model the impact of driver identity we defined 

driver dummy variable inputs (one variable per driver 

that assumes the value of one when the respective 

driver is present and zero otherwise).  A positive 

driver ID regression model coefficient indicates 

above average performance while a negative model 

coefficient indicates below average performance.  We 

then proceeded to extract both driver models using 

the residuals of the route inclication and payload 

models as targets.  For the driverID model we thus 

obtain regression model coefficients that provide a 

direct indication of driver performance, compensated 

for the impact of route and payload.  Comparison 

between the two sets of driver ID model coefficients 

before and after correcting for non-driver factors will 

provide a clear indication of the impact of model 

correction. 
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Figure 9: Elevation Gain vs Fuel Economy for all four 

model types, using low levels of regularization for neural 

models. 

 

Figure 10: Elevation Gain vs Fuel Economy for all four 

model types, using high levels of regularization for neural 

models. 

In order to evaluate model accuracy, we 

calculated the correlations between model outputs 

and target variables both for the training and test sets, 

as displayed in Table 6 to Table 9 below.  It can be 

seen that the models that include driver, route and 

payload inputs have the biggest correlations between 

output and target, as would be expected.  Most of the 

correlation obtained in the training set is retained in 

the test set, indicating that the observed relationships 

between fuel economy and the respective explanatory 

variables are strong and consistent.  It can also be seen 

that the nonlinear regression models perform slightly 

superior to the linear regression models, while the 

neural models outperform the regression models, both 

for the general, the route & payload and the driver 

models.  The driver behavioural model, that uses Max 

RPM, Max Brake and Max Speed as inputs, perform 

slightly better than the driver ID model, that uses 

driver identity as input.   

 

Figure 11: Payload vs Fuel Economy for all four model 

types, using low levels of regularization for neural models. 

 

Figure 12: Payload vs Fuel Economy for all four model 

types, using high levels of regularization for neural models. 

Table 4: Regression coefficients for route and payload 

models. 

Input Factor   Linear Nonlinear 

Constant   2,707 4,540 

Payload 

  

Coeff -0,012 -0,104 

Exp 1,000 0,568 

Elevation Gain 

  

Coeff 0,000 -0,407 

Exp 1,000 0,243 

We investigated the consistency in driver 

performance over time by correlating both the 

uncompensated and compensated driver fuel 

economies between the training and test sets.  In 

Table 10 below it can be seen that the consistency in 

driver performance is increased by compensating for 

the impact of route inclination and payload, as the 

correlation between training and test set performance 
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is higher for compensated compared to 

uncompensated performance.  This confirms that 

factors like route inclination and payload add 

variability to driver performance measures that is 

unrelated to actual driver performance.  It is 

furthermore observed that, after also compensating 

for driver identify, the correlation of residual driver 

performance between the training and test sets is 

almost zero.  This is to be expected as most of the 

driver impact is now present in the driver model 

output, with the remaining model residual fuel 

economy being mostly noise. 

Table 5: Linear regression coefficients for driver fuel 

economy models (both uncompensated and compensated 

for route and payload factors). 

Input Factor Uncompensated Compensated 

Const 4,702 -0,205 

Max Speed -0,001 0,001 

Max RPM -0,012 -0,009 

Max Brake 0,019 -0,014 

Table 6: Correlation coefficients between fuel economy 

model outputs and targets for the training set. 

Inputs LinRegr NonLinR GRNN MLPNN 

All Var 0,695 0,721 0,856 0,800 

Route 0,627 0,660 0,740 0,735 

Payload 0,174 0,184 0,221 0,257 

Route&Payload 0,671 0,705 0,814 0,783 

DriverBeh 0,381 0,381 0,392 0,400 

DriverID 0,357 - 0,300 0,327 

Table 7: Correlation coefficients between fuel economy 

model outputs and targets for the test set. 

Inputs LinRegr NonLinRe GRNN MLPNN 

All Var 0,592 0,655 0,763 0,741 

Route 0,607 0,636 0,710 0,706 

Payload 0,180 0,202 0,240 0,282 

Route&Payload 0,640 0,678 0,768 0,744 

DriverBeh 0,139 0,159 0,315 0,341 

DriverID 0,121 - 0,127 0,148 

Table 8: Training set correlation coefficients between 

outputs and targets for models trained on the route and 

payload residual fuel economy.  

Inputs LinRegr NonLinR GRNN MLPNN 

DriverBeh 0,263 0,262 0,271 0,277 

DriverID 0,435 0,067 0,368 0,414 

 

 

Table 9: Test set correlation coefficients between outputs 

and targets for models trained on the route & payload 

residual fuel economy. 

Inputs LinRegr NonLinR GRNN MLPNN 

DriverBeh 0,024 0,044 0,173 0,200 

DriverID 0,134 0,033 0,112 0,131 

Table 10: Correlations between driver fuel economy 

performance measured over the training and test sets. 

Fuel Economy Measure Train vs Test Corr 

Uncompensated 0,292 

Route&Cargo Compensated 0,326 

Driver,Route&Cargo Compensated 0,012 

5 ESTIMATING MODEL 

COMPENSATION IMPACT ON 

DRIVER PERFORMANCE 

MEASUREMENTS 

One of our stated objectives is to measure driver 

performance more consistently by compensating for 

those factors over which the driver has no control. We 

therefore calculated a compensated fuel economy 

figure for each trip by subtracting the route & cargo 

fuel economy model output from the original fuel 

economy, and then adding the population average 

fuel economy to this residual to obtain a fuel economy 

figure that is mostly attributed to driver behaviour: 

𝐷𝑟𝑖𝑣𝑒𝑟 𝑓𝑢𝑒𝑙 𝑒𝑐𝑜𝑛𝑜𝑚𝑦 = 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑓𝑢𝑒𝑙 𝑒𝑐𝑜𝑛𝑜𝑚𝑦 − 

𝑅𝑜𝑢𝑡𝑒&𝐶𝑎𝑟𝑔𝑜 𝑚𝑜𝑑𝑒𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 +  𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (2) 

We expect variations in driving performance to be 

reduced after compensating for the impact of route 

and payload.  To verify if this is the case we 

calculated the standard deviation of uncompensated 

driver fuel economy averages over all drivers, and 

obtained a figure of 0.192 km/l.  The compensated 

driver fuel economy in equation 2 above was used to 

calculate compensated driver averages.  The standard 

deviation of compensated driver averages was then 

calculated as 0.158 km/l, which is indeed somewhat 

lower than the figure before compensation.   

Figure 13 displays histograms of the compensated 

fuel economy using both the linear and nonlinear 

route and payload models.  When compared against 

the uncompensated histogram the distributions have 

clearly changed.  In Figure 14 we compare 

uncompensated versus route and cargo compensated 

fuel economy histograms for a sample of drivers.  The 

change in distribution is clearly visible; in cases 
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where the average did not change much, as for driver 

923, the spread became narrower as expected, due to 

removal of the impact of varying route inclinations 

and payloads. 

 

Figure 13: Histograms for route and cargo compensated 

fuel economy. 

To investigate the relationships between 

uncompensated and compensated driver performance 

measures, we calculated correlations between driver 

fuel economy averages and the linear regression 

model coefficients of the Driver ID based models. 

Table 11 below displays the correlations between the 

coefficients of both the uncompensated and route & 

payload compensated Driver ID models, versus the 

uncompensated and compensated fuel economies, as 

observed over both the training and test sets.  The 

correlation between the uncompensated fuel 

economy and uncompensated driver ID model 

coefficients is almost 1 for the training set as 

expected, as the model coefficients were extracted 

from this data.   For the test set it is still significantly 

positive, confirming that driver ID explains a 

significant fraction of observed fuel economy. We 

also observe a large positive correlation between the 

compensated driver ID model coefficients and 

compensated fuel economy over the training set. 
In contrast the correlations between the route 

compensated Driver ID model coefficients and 
uncompensated fuel economy are negative for both 
the training and test sets; this indicates significant 
differences between driver performance before and 

after eliminating the impact of route inclination and 
payload.  It is confirmed by the fact that the route & 
payload compensated fuel economy is also negatively 
correlated with the uncompensated Driver ID model 
coefficients for both the training and test sets. The 
correlation of -0.729 between driver ID regression 
coefficients before and after compensation confirms 
how drastically driver performance assessment is 
changed by the model correction.  This is a very 
important result, as it provides evidence for the 
acceptance of our hypothesis that driver performance 
measures are drastically impacted by the presence of 
factors that are not identical for all drivers and not 
within the driver’s control. 

 

Figure 14: Comparison of uncompensated and route and 

cargo compensated fuel economy histograms for different 

drivers. 

Table 11: Correlations between driver average fuel 

economy and Driver ID based model coefficients. 

Driver Fuel Economy 
Coeff 

Uncomp 

Coeff Route 

Comp 

Uncompensated Train 0,976 -0,594 

Uncompensated Test 0,243 -0,066 

Route & Payload Comp Train -0,581 0,525 

Route & Payload Comp Test -0,124 0,082 

Driver & Route Comp Train 0,014 0,000 

Driver & Route Comp Test -0,383 0,536 

DriverID Coeff Route Comp -0,729 1 

As a further confirmation of these results we 

calculate correlations between average driver fuel 

economy performance before and after 

compensation.  Table 12 indicates that driver 

performance before and after route and payload 

compensation is negatively correlated.  The fact that 

this is almost equally strong for the training and test 

sets provides evidence that it is not as a result of 

model overfitting.  We furthermore observe that when 

also removing the impact of driver ID the remaining 
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correlation for the training set is almost zero, as the 

remaining model error will now have little 

resemblance to the original fuel economy.  A small 

positive correlation remains for the test set as the 

models could not capture all variations present in the 

data; this is also to be expected as not all factors 

impacting fuel economy are present in the model (e.g. 

wind speed and traffic conditions). 

Table 12: Correlations between compensated and 

uncompensated driver fuel economy performance. 

Variable Train Test 

Route&Cargo Compensated -0,598 -0,554 

Driver,Route&Cargo Compensated 0,007 0,240 

To quantify the degree to which driver 

performance measures are impacted by model 

compensation we calculated each driver’s ranking 

compared to other drivers, firstly based on 

uncompensated and secondly based on compensated 

performance averages.  For each driver the difference 

in ranking position was determined before and after 

model compensation; this change in ranking was 

normalized by division through the total number of 

drivers.  The average absolute change in ranking 

differences was then calculated over all drivers to 

obtain an overall figure of the degree to which 

ranking was impacted by performance compensation, 

as indicated in equation 3 below: 

Ave Relative Ranking Change =  ∑
Abs(Ranking Change)k

N 
⁄

N

k=1

 (3) 

where N is the total number of drivers.   

For random changes to all driver rankings this 

figure will be 0.5; for no ranking changes it will be 

zero.  To verify the consistency in driver performance 

over time, we first calculated the relative change in 

ranking between the training and test sets for both the 

uncompensated and compensated fuel economies.  

We obtained a relative ranking change of 0.27; this 

indicates that performance does change over time, but 

that it is not entirely random, with some level of 

consistency.  We then proceeded to compare the 

ranking of driver performances between the case with 

no compensation and the case after model 

compensation.  Table 13 and Table 14 displays the 

relative ranking changes for different compensation 

models for the training and test sets.  It can be seen 

that the change in driver ranking before and after 

compensation is bigger than the difference of 0.27 

observed between the training and test sets; this 

indicates that, over and above changes in 

performance over time, the model based 

compensation results in a significant difference in 

driver ranking.   

Table 13: Average relative change in driver performance 

ranking before and after compensation for the training set. 

Inputs LinRegr NonLinR GRNN MLPNN 

All Var 0,468 0,468 0,447 0,456 

Route 0,477 0,469 0,465 0,466 

Payload 0,493 0,489 0,495 0,494 

Route&Payload 0,479 0,471 0,472 0,473 

DriverBeh 0,460 0,459 0,482 0,458 

DriverID 0,343 0,494 0,500 0,411 

Table 14: Average relative change in driver performance 

ranking before and after compensation for the test set. 

Inputs LinRegr NonLinR GRNN MLPNN 

All Var 0,471 0,468 0,462 0,462 

Route 0,483 0,472 0,471 0,467 

Payload 0,493 0,486 0,493 0,493 

Route&Payload 0,482 0,464 0,473 0,475 

DriverBeh 0,470 0,467 0,477 0,472 

DriverID 0,414 0,495 0,499 0,445 

 

 

Figure 15: Comparison between driver ranking before and 

after compensating for route and cargo. 

These results are confirmed by the scatterplot of 

driver rankings before and after compensation as 

displayed in Figure 15.  The series of drivers that 

seem to have retained the same ranking before and 

after (straight line in the middle of the graph) are 

drivers with no trips in the test set and to whom we 

allocated average performance; they therefore 

assumed sequential positions in the ranking list.   

As a last measure of the impact of model 

compensation we calculated the fraction of drivers for 

whom performance relative to the population average 

changed from positive to negative or vice versa after 
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compensation.  If performance before and after model 

compensation is unrelated (e.g. random performance 

changes) the total fraction of changes should be 0.5.  

Table 15 displays the fraction of drivers with reversed 

relative performance.  We observe that for the route 

& cargo model compensations the relative changes 

are the biggest.  For the driver models the fraction of 

changes approach 0.5, because the residues from 

these models are largely unrelated to driver identity 

and would therefore appear to be random. 

To compare the impact of the different models on 

driver performance after correction, we calculated the 

differences in average relative change in ranking 

between the models.  The comparison matrix in Table 

16 provides evidence that all the models largely agree 

in terms of the required changes in driver ranking, as 

these differences are fairly close to zero (in those 

cases where a model was compared against itself a 

result of exactly zero was obtained).  Lastly we 

performed a similar comparison between route 

models and payload models that used the same 

modelling technique; these results appear in Table 17. 

The differences are slightly larger than in the previous 

case, as payload represents a smaller fraction of fuel 

economy changes compared to route inclination and 

is therefore less effective when used on its own. 

Table 15: Fraction of drivers with reverse in relative 

performance before and after compensation. 

Inputs LinRegr NonLinR GRNN MLPNN 

All Var 0,565 0,565 0,529 0,511 

Route 0,577 0,565 0,544 0,532 

Payload 0,601 0,592 0,592 0,583 

Route&Payload 0,577 0,583 0,544 0,571 

DriverBeh 0,565 0,553 0,577 0,562 

DriverID 0,363 0,607 0,598 0,447 

Table 16: Difference in average relative change in driver 

performance ranking after compensation between on 

different route and payload models. 

Model Type LinRegr NonLinR GRNN MLPNN 

LinRegress 0,000 0,070 0,091 0,078 

NonLinRegr 0,070 0,000 0,109 0,095 

GRNN 0,091 0,109 0,000 0,059 

MLPNN 0,078 0,095 0,059 0,000 

Table 17: Difference in average relative change in driver 

performance ranking after compensation based on different 

route vs payload models. 

LinRegress 0,082 

NonLinRegress 0,123 

GRNN 0,100 

MLPNN 0,121 

6 CONCLUSIONS AND FUTURE 

WORK 

In this paper we derived models for truck fuel 

economy using four different modelling techniques.  

We proved that neural models outperform linear and 

nonlinear regression models, regardless of the set of 

input factors that are used, and that both radial basis 

and MLP networks produced satisfactory results.   We 

also demonstrated that selecting the width of the 

radial basis functions or the number of hidden layer 

nodes can be used to obtain the required level of 

accuracy and generalization ability. 

The point of departure of our research was a 

hypothesis that factors beyond the control of a truck 

driver has a significant impact on fuel economy 

performance measures. The results reported in this 

paper provides conclusive evidence that the 

hypothesis can be accepted. Firstly, we found that 

factors like route inclination and payload explain a 

significant fraction of total observed fuel economy 

deviations.  Secondly we observed that variations 

between averages of driver performance are reduced 

after compensating for route and payload.  Thirdly we 

found that there is more consistency between driver 

performance in the training and test sets after 

compensating for route and payload than before.  In 

the fourth place we proved that average driver 

performance measured before and after compensating 

for route and payload are negatively correlated.  In the 

fifth place we observed large changes in driver 

performance ranking after compensation, and lastly 

we found that the fuel economy performance of the 

majority of drivers, relative to the population average, 

changes in sign after compensating for route and 

payload.  

The default measure currently used for driver fuel 

performance is the observed average over all 

completed trips.  The new performance measure that 

we propose, to replace the default measure of average 

over all completed trips, is to use the residual of the 

model that predicts fuel economy in terms of route 

inclinations and payload.  The population average for 

fuel economy is then added to this residual to obtain 

a realistic fuel economy figure for each driver. 

Future work will involve the inclusion of additional 

input factors not related to driver behaviour, like wind 

speed and traffic conditions, as factors to be 

compensated for, as well as the use of more 

sophisticated neural network techniques, e.g. using 

clustering techniques to determine the optimal 

number of radial basis functions. 
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