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Abstract: This paper focuses on determining best body sensor position among calf, thigh, upper trunk and forearm when 

classifying Run Up, Delivery Stride and Follow Through phases during fast bowling in cricket by the usage 

of a machine learning model. Nine-axis Inertial Measurement Units (IMU) were used to collect data at 350Hz 

and Madgwick’s quaternion based algorithm was used for orientation estimation. The study also focused on 

determining best quaternion to be considered for such activity classification requirements in fast bowling. 

Three fast bowlers with Mixed type bowling action were considered for the study. A sliding window with 200 

samples/window with 50% overlap collected eight, time domain statistical features from the sensor data and 

Principal Component Analysis was used to reduce dimensionality of the feature set. A linear kernel based 

Support Vector Machine classified the features into the three main phases and five-fold cross validation was 

used to determine model performance. The results indicate that fourth quaternion on calf or forearm is the 

best quaternion and body position to be considered for activity classification of fast bowling action in cricket. 

1 INTRODUCTION 

1.1 Phases in Fast Bowling Action 

Biomechanical analysis of fast bowling action in 

cricket reveals that there are three key phases during 

motion: Run Up, Delivery Stride and Follow Though. 

As illustrated in Figure 1, each of these phases 

comprises of sub key motion activities as well.  

 

Figure 1: Phases in fast bowling action (Craig, 2013). 

In cricket, fast bowlers are more prone to injures. 

Research (Craig, 2013; Burnett et al., 1998) has 

demonstrated different types of injuries occurring in 

each of the key phases during fast bowling. Most 

injuries in fast bowling occur during Delivery Stride 

phase. Further, research (Worthington et al., 2013; 

Wickington et al., 2017) points to biomechanical 

parameters contributing towards enhancing 

performance of fast bowlers. Motion analysis can be 

used to monitor such biomechanical parameters for 

performance enhancement. Therefore, there is a 

requirement to analyse the motion of fast bowlers in 

each phase for the purposes of injury prevention and 

performance enhancement.  

However, wearable sensors (when used for 

motion analysis) provide continuous data samples 

during motion. As a result, a model is necessary to 

segment the data samples into its key phases for 

analysis purposes.  

1.2 Body Sensor Locations 

As the first step towards this activity segmentation, it 

is important to determine which body sensor location 

would provide the best results during classification of 

key phases in fast bowling action. Therefore, 

wearable sensors were placed on different locations 

on the body during bowling to collect data. However, 

it was evident that certain locations would provide 

more deviations of the sensor values during bowling.  

Sensor placement for Inertial Measurement Unit 

(IMU) based bowling action legality classification 

(Salman et al., 2017) used three IMU sensors placed 

on upper arm, forearm and wrist. Previous research 

(Attal et al., 2015; Olguin et al., 2006; Pirttikangas et 

al., 2006) has conducted extensive analysis to 

understand the effect of placing sensors on different 

body locations and their effect on measurement of 
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bodily movements. The effect of placing sensors on 

wrist, thigh, neck, chest, lower back, waist, calf, etc. 

have been examined. There has been a general 

tendency to obtain better results when sensors were 

placed on the waist. It is assumed, that this may be 

due to the proximity of waist towards the centre of 

mass in the human body. Further, research (Attal et 

al., 2015) illustrated that accuracy of human activity 

recognition decreased when the number of wearable 

sensors used increased beyond a certain number. 

Therefore, it was important to determine the best 

number of sensors to be used for such human activity 

classification tasks. Following research concentrated 

on studying the effect of activity classification for 

sensors placed on the forearm, upper trunk, thigh and 

calf (Figure 2).  

 

Figure 2: Body sensor placement positions for the study. 

1.3 Inertial Measurement Units 

Most of the research on activity classification (Groh 

et al., 2015; Aoki et al., 2013; Wu et al., 2016) with 

wearable sensors have focused on using Inertial 

Measurement Units (IMU’s) which comprises of a 

three-axis accelerometer, three-axis gyroscope and 

three-axis magnetometer. The range of 

accelerometer, gyroscope, magnetometer values and 

resolution depend on the specific application. IMU’s 

used for trick classification (Groh et al., 2015) during 

snowboarding used +/- 16g accelerometer and +/- 

2000o /s gyroscope with 16-bit resolution. When the 

movement speed increases accelerometer range needs 

to increase accordingly. Fast bowling in cricket 

requires a sampling rate of beyond 300Hz. However, 

a major constraint at present is finding IMU’s with 

greater accelerometer ranges. In most IMU based 

applications, magnetometer is also included to help 

eradicate drifting errors which are caused due to 

gyroscopic drifting. Magnetometer assists to provide 

the earth’s horizontal magnetic field and 

accelerometer provides the vertical acceleration due 

to gravity which act as the base for drift compensation 

(Roetenberg, 2006). Another key parameter for IMU 

selection is its physical size. Since, majority of the 

IMU based applications are wearable, most studies 

(Salman et al., 2017; Groh et al., 2015; Gowda et al., 

2017) have focused on physically smaller IMU’s. 

IMU developers have managed to reduce the size of 

the component while also increasing their 

performance parameters. Hence, 9-axis IMU’s were 

used as relevant wearable sensors for this research. 

This was achieved by using Kairos (Gawsalyan, et al., 

2017; Kathirgamanathan et al., 2018) motion analysis 

system for data collection.  

1.4 Orientation Estimation Algorithm  

The outputs from the Kairos motion analysis system 

were four quaternion values per each sensor. The 

orientation estimation algorithm used in the system 

was based on Madgwick’s orientation estimation 

filter (Madgwick, 2010) (quaternion based). By 

visualization, it is easier to understand a quaternion 

with reference to the rotation created by rotating 

frame B to A as illustrated below in Figure 3. In a 

nutshell, it represents the orientation of frame B with 

reference to frame A.  

 

Figure 3: Quaternion rotation (Norris, 2011). 

𝑞 =  𝑞1 +  𝑞2𝑖 + 𝑞3𝑗 + 𝑞4𝑘 = [ 𝑞1, 𝑞2, 𝑞3, 𝑞4] 
𝑞1 =  cos (𝜃/2) 

𝑞2 =  𝑛𝑥 × sin (𝜃/2) 
𝑞3 =  𝑛𝑦 × sin (𝜃/2) 

𝑞4 =  𝑛𝑧 × sin (𝜃/2) 

Where, 

𝑞1  = quaternion real component 

𝑞2, 𝑞3, 𝑞4 = quaternion imaginary components 

𝑖, 𝑗, 𝑘 = imaginary vectors with 𝑖2 = 𝑗2 = 𝑘2 = -1 

𝜃 = rotation angle 

𝑛𝑥, 𝑛𝑦 , 𝑛𝑧 = rotation axis components 
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As a result, in this research, the effect of each 

quaternion on each body sensor location for activity 

classification of three key phases in fast bowling was 

analysed. 

1.5 Activity Classification in Cricket 

Most common classification related problem for 

bowling is centred at determining if a certain bowling 

action is legal or not. Vision based systems are 

generally used to segment the bowling window to 

analyse the legality of bowling actions. However, 

modern research (Attal et al., 2015) has also used 

wearable sensors to collect three-dimensional 

rotational data and used supervised classification 

techniques such as k-Nearest Neighbour, Naïve 

Bayes, Support Vector Machines, etc. to classify the 

legality of bowling actions. Initial research 

(Rowlands et al., 2009) on usage of wearable sensors 

in cricket has used inertial sensors placed at the centre 

of mass of a ‘Front On’ fast bowler to determine Run 

Up speed, Pre-Delivery Stride length and Hip 

Rotational Angle. 

2 METHOD 

This research focuses on extraction of time domain 

statistical features from IMU data, which act as inputs 

to a supervised classifier to classify the three main 

phases of Run Up, Delivery Stride and Follow 

Through for every quaternion at each of the four 

specified body locations. Five-fold cross validation 

was used to determine model performance. The body 

locations and corresponding quaternions were 

analysed for their performance during classification. 

The body position which produces best classification 

results can be considered as the suitable location to 

collect data for such classification tasks in fast 

bowling. Therefore, a pattern recognition algorithm 

was developed to determine the best on body sensor 

position.  

2.1 System Design 

As illustrated in Figure 4, the system initiates with 

IMU sensors (MPU 9250) being placed on the 

specific locations collecting quaternion data at 

350Hz. The collected data were sent wirelessly by an 

ESP 8266 microcontroller to a PC to be stored in a 

.csv file in real time for post processing. Data were 

collected for each of the three phases (Run Up, 

Delivery Stride and Follow Through). During post 

processing, a sliding window collected time domain 

features from the data followed by a dimensionality 

reduction step. The dimensionally reduced data set 

was fed into a supervised classifier and its 

corresponding performance was analysed. Data from 

each quaternion on every specified body location 

were classified and the body position and quaternion 

with best performance was selected. R programming 

language was used for all machine learning aspects of 

the analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: System flow diagram. 

2.2 Signal Processing and Connectivity  

Microcontrollers are generally used as the signal 

processing unit in motion analysis systems. Further, 

wireless transmission of orientation data, 

visualization and analysis on a secondary computer 

ease the data collection process. Therefore, a Wi-Fi 

based ESP 8266 microcontroller was used in this 

research as the brain of the system to run the 

orientation estimation and data transmission 

algorithms. As illustrated in Figure 5, the Kairos 
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motion analysis system comprises of an ESP 8266 

module integrated with a MPU 9250 IMU.  

For this application, User Diagram Protocol 

(UDP) was used to transmit data from microcontroller 

to computer. It was possible to achieve sampling and 

transmission rates of better than 350Hz. However, a 

drawback of UDP was the loss of certain data packets 

during transmission (in some instances). A Python 

based socket programming application was 

developed to collect the transmitted data and store in 

a .csv file in the computer before being input to the 

machine learning model. Finally, a 180mAh Lithium 

Polymer battery was used to power the circuit after 

analysing peak power consumption during operation.   

 

Figure 5: IMU Sensor with battery and ESP module. 

2.3 Data Collection 

Three participants were selected for the initial data 

gathering to determine body sensor position that 

would provide best accuracy results for classification. 

All participants belonged to ‘Mixed type’ fast 

bowling action type and were active cricketers at the 

instance of data collection. Official consent was 

obtained from each participant to participate in the 

data gathering and to take photos and videos during 

the session. Table 1 represents age, height and weight 

for the three participants.  

Table 1: Fast bowlers age, height and weight distribution. 

Bowler Age Height (cm) Weight (Kg) 

 1 27 164 63 

 2 17 172 60 

 3 17 170 65 

Sensors mounted using Velcro straps were placed 
on specific body positions (Figure 6,7) and the 
subjects were requested to bowl with the sensors. As 
specified previously, four positions on the body were 
considered as potential sensor placement areas.  

• Thigh – Sensors were placed on the front leg (left 

leg for right arm bowlers and vice versa).  

• Forearm – Sensors were placed on the bowling 

arm (right arm for bowlers delivering with right 

arm and vice versa). 

• Trunk – Sensors were placed on the upper trunk.  

• Calf – Sensors were placed on the front leg (same 

as the thigh).  
 

       

Figure 6: Second bowler.     Figure 7: Third bowler. 

2.4 Definition of Classes for Supervised 
Classification 

One critical parameter for the classification model 

was to derive the separate classes for every phase: 

Run up, Delivery Stride and Follow through. 

Therefore, data gathering was conducted separately 

for each phase. Data collection was initiated and 

ended visually for each phase (Figure 8).  

• Full delivery – 5 iterations per subject 

• Run Up – 4 iterations per subject  

• Delivery Stride - 4 iterations per subject 

• Follow Through - 4 iterations per subject 

Table 2: Data gathering sequence per class. 

Segment Beginning End 

Run Up First Clap Pre-Delivery 

Stride end 

Delivery Stride Mid Bound 

Start 
Ball Release 

Follow Through Ball Release Final Clap 

The beginning and end for each phase was defined 

as specified above in Table 2. 
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Figure 8: Illustration of Delivery Stride phase. 

2.5 Feature Selection 

A sliding window was used to obtain features for the 

classification model. Each window comprised of 200 

samples and a window overlap of 50% was used 

(Figure 9). This was done independently for every 

quaternion on each body sensor position.  
 

 
 

 

 

Figure 9: Sliding window for feature collection. 

Time domain statistical features were used for this 

analysis. Hence, eight, time domain statistical 

features were calculated for each sliding window: 

Mean, Median, Variance, Skewness, Kurtosis, 

Median Absolute Deviation, Root Mean Square and 

Interquartile Range.  

2.6 Feature Scaling 

A standardization step was required prior to 

dimensionality reduction for features which were out 

of scale. In this approach, mean and standard 

deviation of entire feature vector was calculated. The 

dataset was scaled by subtracting every element by 

the mean and dividing by the standard deviation. 

2.7 Dimensionality Reduction 

2.7.1 Principal Component Analysis (PCA) 

To minimize over fitting and for visualization 

purposes PCA was used for dimensionality reduction. 

PCA transforms the original variables into a new set 

of small variables without losing the most important 

information of the original data. Owing to 

requirements of visualization in this study, the 

original dataset was transformed into two principal 

components. This was achieved by assuming 

directions with largest variances as the most 

important. In this instance PC1 (First Principal 

Component) and PC2 (Second Principal Component) 

were generated and they were orthogonal to each 

other with PC1 acting as the most important direction.  

2.8 Classification 

2.8.1 Support Vector Machine (SVM)  

Support Vector Machine (SVM) has been used as a 

classification (Attal et al., 2015; Fei et al., 2004) and 

regression algorithm. Throughout literature (Attal et 

al., 2015; Fei et al., 2004) SVM’s have been used for 

human movement classification as a supervised 

classifier. However, literature (Attal et al., 2015) 

illustrates that k-NN classifier has performed better in 

human movement classification tasks compared to 

SVM’s in certain instances. But in this scenario, the 

requirement was to compare one classifier against 

different datasets. In k-NN, selecting correct ‘k’ 

number across all datasets was challenging. Hence a 

SVM was more suitable in this instance. Following 

characteristics in SVM were also considered for its 

selection. 

• Suitable for instances with less number of classes. 

In this instance, there were three classes (bowling 

phases).  

• Suits classification with higher number of 

features. Current classification consisted of eight 

features.  

• When there is non-uniform weighing among 

features.  

In SVM’s, features are mapped into high dimensions 

and a corresponding hyperplane is selected to best 

classify the results. However, it was noted that 

application of PCA reduced dimensionality prior to 

classification. Therefore, a linear ‘kernel’ was used 

for the SVM for classification. 

2.9 Evaluation 

Five-fold Cross Validation was used to evaluate every 

model. The dataset was divided into five subsets 

where one of them acted as the test set and the others 

as training sets. For each subset Accuracy, Precision 

and Recall were calculated. This was repeated five 

times and the average of each parameter was 

considered as the final value. Finally, F-measure was 

calculated from the averages of Precision and Recall. 

Body sensor position and quaternion providing best 

values among the evaluation parameters were 

50% overlap 

200 samples/window 

Samples 
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selected as the suitable quaternion and best on body 

sensor position.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑝 + 𝑇𝑛)

𝑇𝑝 + 𝑇𝑛 + 𝐹𝑝 + 𝐹𝑛

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝 

𝑇𝑝 + 𝐹𝑝

             𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑝 

𝑇𝑝 + 𝐹𝑛

 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2 × 𝑀𝑒𝑎𝑛 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑀𝑒𝑎𝑛 𝑅𝑒𝑐𝑎𝑙𝑙

(𝑀𝑒𝑎𝑛 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑀𝑒𝑎𝑛 𝑅𝑒𝑐𝑎𝑙𝑙)
  

Where,  
  𝑇𝑝 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒     𝑇𝑛 =  𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

            𝐹𝑝 = 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒    𝐹𝑛 = 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒  

The above parameters were derived based on the 
confusion matrices generated for each classification.  

Table 3: Example 3x3 confusion matrix. 

 Run 

Up 

Delivery 

Stride 

Follow 

Through 

Run Up 13 0 1 

Delivery Stride 6 31 1 

Follow Through 9 0 27 

From the matrices (example in Table 3), 
Accuracy would be indicated by sum of diagonal 
values (correctly classified instances) divided by total 
number of instances. Precision would be defined from 
the confusion matrix as the ratio of number of 
correctly classified instances per phase (class) to the 
number of predictions per phase. Whereas Recall 
would be the ratio of number of correctly classified 

instances per phase to the number of instances per 
phase.  

3 EXPERIMENTAL RESULTS 

3.1 Original Data Patterns 

The first step was to observe the data patterns 
generated from the IMU sensors when each fast 
bowler completed his action. The experiment initiated 
with data collection from sensors on calf, followed by 
thigh, trunk and forearm.  

Collecting data from trunk was a challenge due to 
the difficulty in holding the sensors steady during 
delivery. Further, the sensors were positioned in a 
way not to discomfort the bowler during delivery.  

The experiment was conducted at ‘Cric Sri Lanka’ 
indoor cricket academy. The head coach of the 
academy was present and was given the responsibility 
to observe the deliveries. This was done to highlight 
if any variations were observed in the bowler’s 
actions from the normal action. The bowlers were 
requested to perform their deliveries with the 
intention of hitting a stump placed at the batmen’s 
end. This was done to generalize each delivery from 
the bowlers.  

Figures 10, 11, 12 and 13 illustrate the patterns 

generated from first bowler, during full delivery, for 

every quaternion at calf, thigh, forearm and trunk. 

The graphs illustrate normalized quaternion value on 

y-axis and the relevant sample number on the x-axis. 

 

Figure 10: Quaternion illustration of sensor data from calf for fast bowler 1. 
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Figure 11: Quaternion illustration of sensor data from thigh for fast bowler 1. 

 

Figure 12: Quaternion illustration of sensor data from forearm for fast bowler 1.  
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The initial graphs developed from the sensor on the 

calf (Figure 10) demonstrated fluctuations among all 

quaternions. Quaternion 1, 2 and 3 demonstrated 

consistent deviations and fourth quaternion showed 

sudden variations in the graph, which may indicate 

boundaries for different phases in bowling. Graphed 

data plot from thigh (Figure 11) demonstrated 

similarities to the data from the calf. Only fourth 

quaternion demonstrated higher variations in the plot. 

From the sets of data received from trunk (Figure 13), 

quaternion 3 and quaternion 4 demonstrated higher 

variations. All quaternion data from forearm (Figure 

12) demonstrated higher fluctuations/variations 

throughout the plot. However, it was difficult to 

determine separability of phases and performance by 

observing the original plots. Hence it was necessary 

to observe the results from the machine learning 

model to determine best sensor location for 

classification of three key phases in fast bowling.

 

Figure 13: Quaternion illustration of sensor data from trunk for fast bowler 1.  

3.2 Classification Results 

Table 4: Performance parameter results from classification. 

Evaluation Parameter 
Forearm Trunk 

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 

Accuracy (%) 93.02 89.76 83.79 96.39 78.14 92.24 78.34 93.92 

Standard Deviation (+/- %) 1.77 2.79 2.8 2.11 2.39 3.35 4.87 3.16 

Precision (%) 93.18 89.97 84.35 96.45 79.02 92.56 81.53 93.63 

Recall (%) 92.9 89.51 84.37 96.22 78.29 91.84 78.32 94 

F-Measure (%) 93.04 89.74 84.36 96.34 78.66 92.19 79.89 93.81 

Evaluation Parameter 
Thigh Calf 

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 

Accuracy (%) 73.73 58.57 54.44 89.17 96.38 85.67 75.9 99 

Standard Deviation (+/- %) 4.26 3.87 4.61 2.53 1.57 0.66 3.84 0.2 

Precision (%) 74.54 58.97 59.75 89.37 96.43 85.9 78.27 99 

Recall (%) 73.5 58.43 54.1 89.03 96.37 85.34 76.57 99 

F-Measure (%) 74.02 58.7 56.79 89.2 96.4 85.62 77.41 99 

Q1 – Quaternion 1  Q2 – Quaternion 2 Q3 – Quaternion 3 Q4 – Quaternion 4
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The results from Table 4 indicate that forearm and 

calf provided best classification results when 

classifying Run Up, Delivery Stride and Follow 

Through phases of fast bowling action in cricket. In 

all body positions, the fourth quaternion has produced 

good performance results with best Accuracy, 

Precision, Recall and F-Measure results. The fourth 

quaternion on calf has produced the best Accuracy, 

Precision, Recall and F- Measure of 99%. Fourth 

quaternion on forearm, also produced a good 

Accuracy level of 96.39%. During the study, it was 

observed that among the three phases, Run Up had 

more data points in comparison to the other two 

phases. Hence, Synthetic Minority Over-Sampling 

Technique (SMOTE) (Chawla et al., 2002) was used 

to balance the data sets by oversampling data in 

Delivery Stride and Follow Through phases after 

applying PCA to eradicate the errors that may be 

caused due to unbalanced classes (phases) on the 

SVM classification model. Corresponding results 

have been visualized in Figure 14. 

 

Figure 14: Balancing of data sets by using SMOTE. 

3.3 Visualisation of Classification Results 

 

Figure 15: Training set vs Test set plot of fourth quaternion data from calf. 

 

Figure 16: Training set vs Test set plot of fourth quaternion data from thigh. 
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Figure 17: Training set vs Test set plot of fourth quaternion data from trunk. 

 

Figure 18: Training set vs Test set plot of fourth quaternion data from forearm. 

Above visualization results in Figures 15,16,17 and 
18 presents fourth quaternion plots for every on-body 
sensor position derived from five-fold cross 
validation. Corresponding training and test sets have 
been plotted in relation to the subset providing best 
results among the five subsets. Hence, it is clearly 
visible that calf and forearm demonstrates best 
classification results from SVM classifier. 

4 CONCLUSION 

This paper introduces an analysis towards the 

determination of best Inertial Measurement Unit 

(IMU) body placement position to classify the three 

main phases (Run Up, Delivery Stride and Follow 

Through) of fast bowling action in cricket. The results 

indicate that both forearm and calf are suitable 

positions among calf, thigh, trunk and forearm for 

placing sensors in relation to activity classification of 

fast bowling in cricket. However, calf provides best 

overall performance from the SVM based 

classification model. Among all the quaternions 

considered the fourth quaternion provides best results 

among all quaternions. Hence it can be concluded that 

fourth quaternion on calf or forearm can be 

considered for future similar applications of activity 

classification in cricket. However, there is a case to 

continue the study further to determine the effect of 

using raw tri-axial accelerometer, gyroscope and 

magnetometer values in the classification. Further, 

the effect of using a more derived measurement such 

as a yaw, pitch and roll can also be considered.  

The above experiment used individual sensors for 

each on body position. Further, there is a requirement 

in future, to study the effect of using multiple sensors 

for similar activity classification of fast bowling 

action in cricket. The results from the study (Olguin 

et al., 2006) indicate a rapid increase in accuracy 

when a second sensor is added for classification. This 

trend of increase in classification accuracy continues 

when all three sensors are used for classification. 

Although the study (Olguin et al., 2006) uses an 

unsupervised classification method, there is a definite 

case to add a secondary sensor to increase 

classification accuracy of the discussed model in the 

current research. The results indicate that fourth 

quaternions on calf and forearm can be used for this 

purpose, since they represent high individual 

classification accuracies and represent upper and 

lower body segments. Finally, in future, the effect on 

model performance can be studied by increasing the 

number of participants and repeating the experiment.  
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