
Future CMS for e-Business: Will Microservices and Containerization
Change the Game?

Carina Landerer and Philipp Brune
Neu-Ulm University of Applied Sciences, Wileystraße 1, Neu-Ulm, Germany

Keywords: Web Services, Microservices, e-Commerce, CMS, Node.js, Docker.

Abstract: Content Management Systems (CMS) are widely adopted commodity applications today. Well-established
implementations exist since many years, both commercial and Open Source, e.g. WordPress or Drupal. In
consequence, research on CMS has strongly declined since its peak more than a decade ago. However, in
recent years new trends for building and running large-scale web applications emerged, such as Node.js,
microservice architectures and containerization, while most established CMS still use a traditional monolithic
architecture. This rises the question how these emerging new technologies will challenge those established
CMS implementations. Therefore, in this paper a microservice architecture for an examplified e-business CMS
is proposed, and a Proof-of-Concept implementation is described. The approach is evaluated with respect to
its feasibility using a qualitative empirical study. Results indicate that the approach is well-suited for building
more state-of-the-art CMS in the near future, which are likely to challenge the position of the traditional
monolithic implementations.

1 INTRODUCTION

According to Gartner, it took 20 years for Content
Management System (CMS) market to become the
“over-night-success” it now is (Gartner, 2017). But
from the beginning in the late 1990s, it was expected
to be very promising. Therefore, a lot of research con-
cerning (Web) CMS (WCMS) was published during
that time (McKeever, 2003; Vidgen et al., 2001). E.g.,
core functionalities such as storing content separately
from its formatting and presentation attracted a lot of
interest (van de Weerd et al., 2006; Fernandez et al.,
1998).

However, since (W)CMS became a commodity
and well-established implementations such as Word-
Press1 or Drupal2 exist for more than a decade
now, research activities declined and new publica-
tions on CMS-related topics became scarce, with one
of the few exceptions being studies comparing well-
established CMS against each other (Martinez-Caro
et al., 2018; Mirdha et al., 2014).

On the other hand, in recent years new con-
cepts and technologies for building and running large-
scale web applications emerged, such as server-side

1https://wordpress.org
2https://www.drupal.org

JavaScript using Node.js3, microservice architectures
and containerization, e.g. using Docker4. Despite
this, most established CMS such as Wordpress or
Drupal still use a traditional monolithic architecture,
mostly extendable by plugins. The impact of these
new technologies on the further evolution of CMS has
not been addressed in the literature so far.

Therefore, in this paper a microservice architec-
ture for an example e-business CMS is proposed, and
a respective Proof-of-Concept implementation is de-
scribed. The approach is evaluated with respect to its
feasibility using a qualitative empirical study.

The rest of this paper is organized as follows: In
section 2 the related work is reviewed in detail and
the respective research gap is derived. Section 3 illus-
trates the proposed software architecture and section 4
its Proof-of-Concept implementation. The qualitative
empirical evaluation of its feasibility and the obtained
results are discussed in sections 5 and 6, respectively.
We conclude with a summary of our findings.

3https://nodejs.org/en/
4https://www.docker.com

210
Landerer, C. and Brune, P.
Future CMS for e-Business: Will Microservices and Containerization Change the Game?.
DOI: 10.5220/0008065002100217
In Proceedings of the 15th International Conference on Web Information Systems and Technologies (WEBIST 2019), pages 210-217
ISBN: 978-989-758-386-5
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



2 RELATED WORK

There are few publications about the general impact
of e-commerce applications on enterprises. Most of
them are from the time when e-commerce was still
in its childhood (Wu et al., 2003; Sanders, 2007),
but few more recent studies exist on the impact of
e-commerce applications in more specific domains
(Benitez et al., 2017a; Benitez et al., 2017b). Pri-
vacy, trust and e-business adoption have also widely
been studied (McKnight and Chervany, 2001; Ni-
lashi et al., 2015), as they play a crucial role for e-
commerce success. The same holds true for security
of e-commerce applications (Kraft and Kakar, 2009;
Niranjanamurthy and Chahar, 2013).

However, most research on e-commerce applica-
tions deals with the possibilities of value-creation in
such systems, starting already at the beginning of the
e-business era in the very early years of this century
(Amit and Zott, 2001) until today (Shea et al., 2017).

Regarding web service and web application de-
velopment in general, Service-oriented Architectures
(SOA) have been discussed as a major archtectural
paradigm for some time (Erl, 2005; Papazoglou,
2003; Al-Rawahi and Baghdadi, 2005). More re-
cently, it evolved into the state-of-the-art approach
of “Microservice Architectures”, which are currenly
frequently discussed in the literature (He and Yang,
2017; Messina et al., 2016; Khazaei et al., 2016), in-
cluding their relation to SOA (Pautasso et al., 2017;
Xiao et al., 2016). Specific topics such as perfor-
mance and scalability of microservices compared to
monolthic architectures (Villamizar et al., 2015) or
the mapping of architectural challenges to microser-
vice architectures (Alshuqayran et al., 2016; Pahl and
Jamshidi, 2016) have been investigated as well.

Containerization is another architecture design
pattern that is closely related to deploying microser-
vices in the cloud. Containerization technologies like
Docker5 offer a high level of agility in “develop-
ing and running applications in cloud environment”
(Kang et al., 2016), which has been discussed by var-
ious authors (Jaramillo et al., 2016; Kratzke, 2017).

With respect to the languages and platforms for
implementing CMS and e-commerce applications,
PHP6 is still the dominating server-side programming
language, with a total share of 82% in 20177. There-
fore, since its release in 1995, the development of
web applications using PHP has been comprehen-
sively studied (Cholakov, 2008; Cui et al., 2009).

5https://www.docker.com/
6http://php.net
7https://w3techs.com/technologies/history overview/
programming language

Since there are many more server-side programming
languages, multiple studies exist comparing web de-
velopment technologies. As PHP is still the predom-
inating language in this area, most of these studies
include PHP as one benchmark language (Suzumura
et al., 2008; Trent et al., 2008; Purer, 2009).

For the development of the web frontends of
CMS and other applications, Angular and React.js
are the two most popular technologies at the moment
(Shahzad, 2017; Aggarwal, 2018).

Angular is the strongly redesigned successor to
the well-known JavaScript framework Angular.js.
There is plenty of literature about Angular.js, the pre-
cursor of Angular (Jain et al., 2015; Jadhav et al.,
2015). However, while Angular is rather different
from its predecissor, studies about the use of the new
Angular framework since version 2+ are scarce.

On the other hand, in recent years also server-
side development using JavaScript with Node.js is
becoming increasingly popular (Tilkov and Vinoski,
2010; Bermudez-Ortega et al., 2015; Madsen et al.,
2015; Chaniotis et al., 2015; Lei et al., 2014). Com-
paring Node.js to PHP, according to some studies
Node.js provides better performance and scalability
due to its event-driven architecture and Javascript’s
asynchronous request-handling (McCune, 2011).

In contrast, a big advantage of PHP is its broad
support by powerful frameworks and its use by pop-
ular CMS. Most of the currently used and predomi-
nating CMS like Wordpress or Drupal as well as most
of their plugins are written in PHP. Therefore, there
are some studies about correlations between the lan-
guage and the CMS functionalities or issues (Eshke-
vari et al., 2014; Koskinen et al., 2012). Overall,
a large body of literature about PHP and CMS ex-
ists, while literature about CMS in combination with
Node.js is rather scarce.

In addition, the software architecture of the tra-
ditional PHP-based CMS systems like WordPress or
Drupal is rather monolithic. Nearly no research exists
so far on using microservice architectures for CMS
development. Only one paper addresses the imple-
mentation of a collaborative rich text editor, which
is most closely to the functions provided by a CMS
(Gadea et al., 2016a).

On the other hand, there is a close connection be-
tween Node.js and microservice architectures. Most
applications based on microservice architectures use
at least one component that is running on Node.js on
the server-side (Gadea et al., 2016b).

In the last years, CMS more and more became
a commodity and not much has been added to the
body of knowledge on CMS anymore, neither in re-
search nor in practice. However, the described emerg-

Future CMS for e-Business: Will Microservices and Containerization Change the Game?

211



ing technologies for building and running large-scale
web applications, such as server-side JavaScript us-
ing Node.js, microservices and containerization, now
suggest to review and re-think the implementation of
CMS as well.

The dominating CMS implementations such as
WordPress or Drupal currently still exhibit a mono-
lithic software architecture, mostly extendable by plu-
gins. This bears the permanent risk of version con-
flicts during updates due to compatibility problems,
in particular if custom plugins are used. Using a
microservice architecture for CMS presumable could
help to overcome these problems, but has never been
studied so far in the literature.

A special case of a CMS is one that is used
for building e-business applications, which not only
needs to serve static content or interactive compo-
nents, but also has to provide the secure handling of
the online shopping process.

Therefore, in this paper the question is addressed,
how a prototypical microservice architecture for an
e-business CMS could be designed and implemented
using different modern web technologies, particularly
for those functionalities where they might offer a spe-
cific advantage.

3 DESIGN OF THE SOFTWARE
ARCHITECTURE

The functionalities of a prototypical e-business CMS
could be grouped according to the three typical user
groups: the administrator, the registered user and the
website visitor.

The administrator should be able to change con-
tent on the system and furthermore manage the ac-
cess control of other user groups. The website visitor
should only see the actual website of the online shop
where he can look around and search for products.
Website visitors should have the possibility to regis-
ter on its own and thereby becoming a registered user.
Registered users can place orders and save personal
data like delivery addresses after they are logged in.

Since the administrator should be able to change
content on the website, there is the need of a separated
area containing a dashboard, where only users with
administrator rights can access and change data. In
context of CMS, this area including the dashboard is
called the backend of the CMS. Those main adminis-
tration functions are: Manage offered products, man-
age users, manage additional static content sites and
manage basic site settings.

Since the CMS is basically developed to create an
e-business application, it should contain the typical

important shop components by default. Thus, after
articles are created by the administrator, customer(s)
should instantly be able to order products in the online
shop. This includes the process of searching, choos-
ing and finally ordering a product. For this processes,
the following components are obligatorily required: a
product listing page, an article details page and a bas-
ket component.

In an online shop, there are always problems that
can arise during the ordering process. Therefore, a
customer support is needed to provide customers the
possibility of directly asking questions to responsible
staff members. In the application proposed in this pa-
per, the customer support is implemented by a live
chat in which registered users and website visitors can
always request help. Therefore, a separated compo-
nent in the admin area is needed, where staff mem-
bers that have administrator rights can handle those
requests.

To address these requirements, a microservice-
based software architecture for the e-business CMS
was designed, illustrated in figure 1.

On top of the application, a central Angular-based
web frontend integrates the different microservices.
All requests are made towards the Nginx reverse
proxy server that distributes the request to the corre-
sponding microservices.

Each microservice has its own, independent data
store, which could be a NoSQL database, relational
database, REST endpoint, SOAP endpoint, a web-
socket server or a combination of any or all of these
data sources. All services provide a single endpoint
API which handles all external communication from
the client side as well as from other microservices.

This encapsulation allows to choose different
technologies like databases or program languages for
each microservice. To verify this, different technolo-
gies were used for the services of the prototype. Mi-
croservices or their components each run in individual
Docker containers, e.g. allowing for an easy scale-out
in production environments.

4 PROOF-OF-CONCEPT
IMPLEMENTATION

To evaluate the proposed architecture, a prototype
CMS application was implemented using the compo-
nents described in the following.

4.1 Angular Frontend

Based on the analysis of different frontend technolo-
gies, Angular was selected as it seemed best suited

WEBIST 2019 - 15th International Conference on Web Information Systems and Technologies

212



Figure 1: Proposed prototypical microservice architecture for an e-business CMS. Its different functionalities (page adminis-
tration, article administration, authentication, etc.) are implemented as microservices made up of multiple Docker containers.
The respective port mappings for Docker are shown for each container.

for the special case, as CMS require a high level of
modularity. On the other hand, the user interface (UI)
does not have to offer especially complex user inter-
actions as customers are used to simple handlings in
online shops and decline high complexity. Moreover,
for special cases of online shops with large level of
individual user interactions, typically a custom appli-
cation is implemented instead of a CMS.

For routing between the pages of the application,
the Angular Router is used8. As in CMS, it is highly
important to clearly restrict accessibility, there is a
need of inhibiting access of unauthorized users. This
is realized through the possibility of Angular Router
to create a guard class that can check if a route should
be activated depending on a specific condition.

For this authorization, a token is stored in the
cookies of the browser and every time authorization
is needed, the token is sent to the authentication ser-
vice to approve the authority of the user. If the ad-
min authorization is valid, the dashboard components
are loaded and the user can enter the admin area for
changing content and adding data.

4.2 Article Microservice

The first microservice implemented was the article
microservice. According to the previous analysis pre-
sented in section 2, Node.js was chosen for the server-
side scripting language as passing article objects to
the angular frontend leads to a low amount of pars-
ing problems if both client and server-side are written
in the same language. This is especially important as
passed data can vary a lot depending on user’s settings
for one article type.

8https://angular.io/tutorial/toh-pt5

In this service, the database is cloud-hosted by a
platform-as-a-service provider which fully manages
MongoDB instances in the cloud. Cloud hosting was
chosen for reasons of scalability as different web-
shops can use a completely different number of prod-
ucts that are offered.

4.3 Order Microservice

For the order microservice, another software stack
was used with technologies close to the well-
established LAMP stack. Here, only the Apache web-
server was replaced by the lightweight nginx. Ng-
inx however has turned out to be the faster and more
lightweight choice while the setup for an nginx server
is a little harder, if there are any adaptions to be made.
In the provided example, the image could be used un-
modified directly from a Docker image.

The main reason for choosing a relational
database was the decision to use a PHP framework
which is aligned to SQL databases. The selected
framework, Lumen, is a fast and lightweight micro-
framework that is built on components of the popular
PHP framework Laravel.

For creating an order, the user must be registered
and logged in. The token sent to the user after login is
passed to the order controller for checking the identity
of the user again on the server side.

4.4 Authentication Microservice

Authentication is a main requirement in the context of
a CMS, as different user roles contain different access
rights.

In an environment of microservices, it is implicitly
necessary to provide an authentication method that

Future CMS for e-Business: Will Microservices and Containerization Change the Game?

213



guarantees user authentication in every independent
service as it is not possible to store the user data on
the backend side and request it while needed.

For secure requesting and passing data belonging
to a specific user over an API, typically token-based
authentication is used. This kind of authentication
method allows third-party applications and other ser-
vices to access user-specific data with minimum risk
of security breaches. Therefore, an Authentication
Service was needed for generating, returning and val-
idating those tokens after user login.

For the authentication service, a solution from
DockerHub was selected, which provided a ready-to-
run microservice that fully implemented token-based
authentication. It consists of three different docker
containers that constitute a stack consisting of a ng-
inx server, a Node.js backend and a Mongo database.

4.5 Additional Services vs. Plugins

In a common CMS architecture, additional function-
alities are accomplished by adding plugins to the
monolith. They run quite independent from the core
system as communication also works over predefined
APIs, but they are still closer connected to the core
system then microservices. Plugins can not be run
or deployed independently, there is a need of a main
CMS instance handling the processes.

In contrast, for adding features in a microser-
vice architecture environment, microservices would
be added instead of plugins, which run independently
and can be changed or substituted at any time. This
reduces compatibility problems as it decreases the
risk of version intolerance if a the system is updated.

5 EVALUATION

To analyze the feasibility of the proposed approach,
a qualitative empirical study was performed. The
purpose of this study was twofold: First to evaluate
the CMS functionality of the prototype from a user’s
perspective, and second to evaluate the underlying
microservice-based software architecture. A conve-
nience sample of seven persons was selected for the
study, as listed in table 1. According to their re-
spective skills, interviewees 1 to 5 were selected to
evaluate the actual CMS functionality, and intervie-
wees 6 and 7 as experts to evaluate the software archi-
tecture.All interviews were audio-recorded for subse-
quent analysis.

To evaluate the CMS functionality, interviewees
1 to 5 were asked to first perform some given tasks

Table 1: Interviewees for the qualitative evaluation.

Interviewee 1 no precognitions with CMS,
Student

Interviewee 2 experienced with CMS,
Student

Interviewee 3 experienced with CMS,
working in a marketing
department

Interviewee 4 some precognitions in CMS,
Student

Interviewee 5 some precognitions in CMS,
Student

Interviewee 6 Head of software development
in a smaller company

Interviewee 7 Software developer
for some years

within the prototype and afterwards answer some
questions about their experiences.

A test case was handed out to the participants, in
which they were asked to create a fully-implemented
online shop using the prototype CMS and afterwards
using it from the customers’ point of view. The pur-
pose of this test was not to evaluate the user experi-
ence design, but the mere feasibility to perform the
task using the given systems with its microservice ar-
chitecture. The participants were observed and asked
to “think aloud” during performing the tasks, which
was audio-recorded for analysis.

For evaluating the software architecture of the pro-
vided prototype, two qualitative interviews were con-
ducted with two experts with long-term experience in
the field of software development and architecture (in-
terviewees 6 and 7).

6 RESULTS

6.1 Evaluation of the CMS
Functionality

First, the test persons were asked to enter the adminis-
trative area with the provided admin login credentials
and customize the site towards the provided compa-
nies’ details, including a modification of the design
and the site name. No obvious problems occurred dur-
ing this task, and every user directly navigated to the
settings section, where they could change both.

The second step was to create a static content page
that provides additional contact details of the com-
pany. Users seemed to be positively surprised from
the possibility of supervising the entered details di-
rectly and in real-time in a section next to the cre-

WEBIST 2019 - 15th International Conference on Web Information Systems and Technologies

214



ation area. In the subsequent interview, some of the
test persons mentioned this feature as especially use-
ful (Interviewee 1: “It was really useful, that there
was a preview of my content site directly while en-
tering the data”, Interviewee 4: “It is quite simple to
create an additional content page if you have a direct
preview”).

The next task was to create a new article for the
online shop employing article details that were pro-
vided in the task sheet. There were no problems that
occurred during this process , the workflow was even
mentioned as a positive feature of the CMS (Intervie-
wee 4: “Creating articles was very intuitive and easy”,
Interviewee 2: “Creating articles was easy and self-
explanatory.”, Interviewee 1: “There was no problem
creating articles, except the fact that it should be ex-
plained that there is no need of adding units to the
price”).

There was a moment of irritation during every test.
Participants did not realize if the article was already
saved as they did not receive a confirmation message
(Interviewee 5: “It was not clear if the article is al-
ready saved”, Interviewee 1: “It was not possible to
see if the content of the article is saved”, Interviewee
4: “Sometimes I didn’t recognize if the content was
already saved”). This issue is also easily avoidable
and even quite easy to implement within the proto-
type.

The last task was to register as a new customer and
login to check the online shop’s functionality from the
customer’s point-of view by ordering an article. No
issues occured during this process.

6.2 Evaluation of the Software
Architecture

First, the architecture of the prototype was presented
and the experts were asked to describe the differences
from a common CMS like Wordpress. One expert
claimed, that microservice architecture is already self-
explanatory. Hence, “the modularity is much higher
than in common CMS like Wordpress. The code is
more independent and therefore it is structured clearer
than in a common system because many components
are stuck together to one system” (Interviewee 6).

The first important positive characteristic men-
tioned is modularity and scalability. There is the big
advantage of easily “substituting or replacing parts of
the system” (Interviewee 6). Also, the opportunity is
mentioned that it is possible to complementary deploy
a second service, which adds further functionalities to
the first one “without the need of rewriting a broad
part of the code” (Interviewee 7).

Another advantage noted is the opportunity of bet-

ter load distribution. In an architecture that is based
on a monolith, the whole application must be on one
single physical server while it is easily possible to
spread the services of a microservice to more physical
servers and therefore reach a better load balance (In-
terviewee 7). The possibility “of putting the services
to the cloud” (Interviewee 6) is also highly rated, de-
spite issues of security mentioned at this point as well
as possible latency problems.

If the microservice architecture affects the secu-
rity of an application, depends in general on the setup
of the services and the application. “If they are still
running on one physical server and all microservices
and data are called internally, there is no need of fur-
ther encryptions than in common systems” (Intervie-
wee 6).

If using different technologies and platforms in
different microservices is useful, will depend on the
companies and applications size and hard to evaluate.
The advantage of programming all code in the same
language is staff flexibility as team members can “eas-
ily switch between the single services or teams and
directly get along with the structure and the code” (In-
terviewee 7).

On the other hand, switching between technolo-
gies sometimes can be “a requirement because tech-
nologies are too slow or make things extremely com-
plicated at one part of the code” (Interviewee 6). In
this case, the big advantage is that microservices pro-
vide the possibility of switching to a new technol-
ogy without changing all the rest of the code. In this
case, using different technologies highly affects per-
formance in a positive way (Interviewee 6).

The question if microservices would affect the
daily workflow in a department was clearly con-
firmed. “It is possible to build teams for every
microservice and independently chose technologies
within this unit.” (Interviewee 7).

It was also mentioned, that in a big project code
“is getting complex very fast” (Interviewee 6). In this
context, the advantage for new staff members is seen
of getting along faster in those “smaller code parts
than in a big monolith” (Interviewee 6).

In context of CMS, scalability is a very important
topic as extending existing functions adds customized
additional functionalities to the system. This depends
on the size and the kind of application that is embed-
ded. Using microservices brings a “little more over-
head in implementation in the beginning as it needs to
be decided about the setup of the API and error han-
dling” (Interviewee 6).

On the other hand, one expert claims that this
overhead in contrast is “making the code clearer and
cleaner” (Interviewee 7). Programming towards an

Future CMS for e-Business: Will Microservices and Containerization Change the Game?

215



API is much cleaner than “getting into additional
dependencies with plugins that are using the same
databases or services” (Interviewee 7).

All test persons agreed on an overall positive ex-
perience of creating an online shop with the provided
CMS.

7 CONCLUSION

In conclusion, in this paper a microservice archi-
tecture for a CMS for e-business applications was
proposed and evaluated. Starting from typical re-
quirements for e-business-applications, the architec-
ture was designed and implemented by Proof-of-
Concept implementation using state-of-the-art tech-
nologies like Node.js, Angular and Docker. This pro-
totype then was evaluated by means of a qualitative
empirical study.

The results indicate that a microservice-based ar-
chitecture could be beneficial for e-business CMS as
well, allowing to build better maintainable applica-
tions without exhibiting any drawbacks with respect
to functionality.

Further research is needed to extend the prototype
to a full-fledged CMS application and evaluate it in
more comprehensive lab and field tests.

REFERENCES

Aggarwal, S. (2018). Modern web-development using re-
actjs.

Al-Rawahi, N. and Baghdadi, Y. (2005). Approaches to
identify and develop web services as instance of soa
architecture. In Services Systems and Services Man-
agement, 2005. Proceedings of ICSSSM’05. 2005 In-
ternational Conference on, volume 1, pages 579–584.
IEEE.

Alshuqayran, N., Ali, N., and Evans, R. (2016). A
systematic mapping study in microservice architec-
ture. In Service-Oriented Computing and Applications
(SOCA), 2016 IEEE 9th International Conference on,
pages 44–51. IEEE.

Amit, R. and Zott, C. (2001). Value creation in e-business.
Strategic management journal, 22(6-7):493–520.

Benitez, J., Chen, Y., Teo, T. S., and Ajamieh, A. (2017a).
Evolution of the impact of e-business technology
on operational competence and firm profitability: A
panel data investigation. Information & Management.

Benitez, J., Chen, Y., Teo, T. S., and Ajamieh, A. (2017b).
Impact of e-business technology on operational com-
petence and firm profitability over time.

Bermudez-Ortega, J., Besada-Portas, E., López-Orozco, J.,
Bonache-Seco, J., and De la Cruz, J. (2015). Re-
mote web-based control laboratory for mobile de-

vices based on ejss, raspberry pi and node. js. IFAC-
PapersOnLine, 48(29):158–163.

Chaniotis, I. K., Kyriakou, K.-I. D., and Tselikas, N. D.
(2015). Is node. js a viable option for building mod-
ern web applications? a performance evaluation study.
Computing, 97(10):1023–1044.

Cholakov, N. (2008). On some drawbacks of the php plat-
form. In Proceedings of the 9th international confer-
ence on computer systems and technologies and work-
shop for phd students in computing, page 12. ACM.

Cui, W., Huang, L., Liang, L., and Li, J. (2009). The re-
search of php development framework based on mvc
pattern. In 2009 Fourth International Conference
on Computer Sciences and Convergence Information
Technology, pages 947–949. IEEE.

Erl, T. (2005). Service-Oriented Architecture: Concepts,
Technology, And Design. Pearson Education India.

Eshkevari, L., Antoniol, G., Cordy, J. R., and Di Penta, M.
(2014). Identifying and locating interference issues in
php applications: the case of wordpress. In Proceed-
ings of the 22nd International Conference on Program
Comprehension, pages 157–167. ACM.

Fernandez, M., Florescu, D., Kang, J., Levy, A., and Suciu,
D. (1998). Catching the boat with strudel: Experi-
ences with a web-site management system. In ACM
SIGMOD Record, volume 27, pages 414–425. ACM.

Gadea, C., Trifan, M., Ionescu, D., Cordea, M., and
Ionescu, B. (2016a). A microservices architecture
for collaborative document editing enhanced with face
recognition. In Applied Computational Intelligence
and Informatics (SACI), 2016 IEEE 11th International
Symposium on, pages 441–446. IEEE.

Gadea, C., Trifan, M., Ionescu, D., and Ionescu, B. (2016b).
A reference architecture for real-time microservice api
consumption. In Proceedings of the 3rd Workshop
on CrossCloud Infrastructures & Platforms, page 2.
ACM.

Gartner (2017). Magic quadrant for web content manage-
ment. Report, Gartner.

He, X. and Yang, X. (2017). Authentication and authoriza-
tion of end user in microservice architecture. In Jour-
nal of Physics: Conference Series, volume 910, page
012060. IOP Publishing.

Jadhav, M. A., Sawant, B. R., and Deshmukh, A. (2015).
Single page application using angularjs. International
Journal of Computer Science and Information Tech-
nologies, 6(3):2876–2879.

Jain, N., Bhansali, A., and Mehta, D. (2015). Angularjs:
A modern mvc framework in javascript. Journal of
Global Research in Computer Science, 5(12):17–23.

Jaramillo, D., Nguyen, D. V., and Smart, R. (2016). Lever-
aging microservices architecture by using docker
technology. In SoutheastCon, 2016, pages 1–5. IEEE.

Kang, H., Le, M., and Tao, S. (2016). Container and mi-
croservice driven design for cloud infrastructure de-
vops. In Cloud Engineering (IC2E), 2016 IEEE Inter-
national Conference on, pages 202–211. IEEE.

Khazaei, H., Barna, C., Beigi-Mohammadi, N., and Litoiu,
M. (2016). Efficiency analysis of provisioning mi-
croservices. In 2016 IEEE International Conference

WEBIST 2019 - 15th International Conference on Web Information Systems and Technologies

216



on Cloud Computing Technology and Science (Cloud-
Com), pages 261–268. IEEE.

Koskinen, T., Ihantola, P., and Karavirta, V. (2012). Qual-
ity of wordpress plug-ins: an overview of security and
user ratings. In Privacy, Security, Risk and Trust (PAS-
SAT), 2012 International Conference on and 2012 In-
ternational Confernece on Social Computing (Social-
Com), pages 834–837. IEEE.

Kraft, T. A. and Kakar, R. (2009). E-commerce security.
In Proceedings of the Conference on Information Sys-
tems Applied Research, Washington DC, USA.

Kratzke, N. (2017). About microservices, containers and
their underestimated impact on network performance.
arXiv preprint arXiv:1710.04049.

Lei, K., Ma, Y., and Tan, Z. (2014). Performance com-
parison and evaluation of web development technolo-
gies in php, python, and node. js. In 2014 IEEE 17th
International Conference on Computational Science
and Engineering (CSE), pages 661–668. IEEE.

Madsen, M., Tip, F., and Lhoták, O. (2015). Static analy-
sis of event-driven node. js javascript applications. In
ACM SIGPLAN Notices, volume 50, pages 505–519.
ACM.

Martinez-Caro, J.-M., Aledo-Hernandez, A.-J., Guillen-
Perez, A., Sanchez-Iborra, R., and Cano, M.-D.
(2018). A comparative study of web content manage-
ment systems. Information, 9(2):27.

McCune, R. R. (2011). Node. js paradigms and bench-
marks. STRIEGEL, GRAD OS F, 11:86.

McKeever, S. (2003). Understanding web content manage-
ment systems: evolution, lifecycle and market. Indus-
trial management & data systems, 103(9):686–692.

McKnight, D. H. and Chervany, N. L. (2001). What trust
means in e-commerce customer relationships: An
interdisciplinary conceptual typology. International
journal of electronic commerce, 6(2):35–59.

Messina, A., Rizzo, R., Storniolo, P., Tripiciano, M., and
Urso, A. (2016). The database-is-the-service pattern
for microservice architectures. In International Con-
ference on Information Technology in Bio-and Medi-
cal Informatics, pages 223–233. Springer.

Mirdha, A., Jain, A., and Shah, K. (2014). Compara-
tive analysis of open source content management sys-
tems. In Computational Intelligence and Computing
Research (ICCIC), 2014 IEEE International Confer-
ence on, pages 1–4. IEEE.

Nilashi, M., Ibrahim, O., Mirabi, V. R., Ebrahimi, L., and
Zare, M. (2015). The role of security, design and con-
tent factors on customer trust in mobile commerce.
Journal of Retailing and Consumer Services, 26:57–
69.

Niranjanamurthy, M. and Chahar, D. D. (2013). The study
of e-commerce security issues and solutions. Inter-
national Journal of Advanced Research in Computer
and Communication Engineering, 2(7).

Pahl, C. and Jamshidi, P. (2016). Microservices: A system-
atic mapping study. In CLOSER (1), pages 137–146.

Papazoglou, M. P. (2003). Service-oriented computing:
Concepts, characteristics and directions. In Web Infor-
mation Systems Engineering, 2003. WISE 2003. Pro-

ceedings of the Fourth International Conference on,
pages 3–12. IEEE.

Pautasso, C., Zimmermann, O., Amundsen, M., Lewis, J.,
and Josuttis, N. M. (2017). Microservices in practice,
part 1: Reality check and service design. IEEE Soft-
ware, 34(1):91–98.

Purer, K. (2009). Php vs. python vs. ruby–the web scripting
language shootout. Vienna University of Technology.

Sanders, N. R. (2007). An empirical study of the impact
of e-business technologies on organizational collabo-
ration and performance. Journal of Operations Man-
agement, 25(6):1332–1347.

Shahzad, F. (2017). Modern and responsive mobile-
enabled web applications. Procedia Computer Sci-
ence, 110:410–415.

Shea, V. J., Dow, K. E., Chong, A. Y.-L., and Ngai, E. W.
(2017). An examination of the long-term business
value of investments in information technology. In-
formation Systems Frontiers, pages 1–15.

Suzumura, T., Trent, S., Tatsubori, M., Tozawa, A., and On-
odera, T. (2008). Performance comparison of web ser-
vice engines in php, java and c. In Web Services, 2008.
ICWS’08. IEEE International Conference on, pages
385–392. IEEE.

Tilkov, S. and Vinoski, S. (2010). Node. js: Using javascript
to build high-performance network programs. IEEE
Internet Computing, 14(6):80–83.

Trent, S., Tatsubori, M., Suzumura, T., Tozawa, A., and On-
odera, T. (2008). Performance comparison of php and
jsp as server-side scripting languages. In Proceedings
of the 9th ACM/IFIP/USENIX International Confer-
ence on Middleware, pages 164–182. Springer-Verlag
New York, Inc.

van de Weerd, I., Brinkkemper, S., Souer, J., and
Versendaal, J. (2006). A situational implementation
method for web-based content management system-
applications: method engineering and validation in
practice. Software process: improvement and prac-
tice, 11(5):521–538.

Vidgen, R., Goodwin, S., and Barnes, S. (2001). Web con-
tent management. In Proceedings of the 14th Interna-
tional Electronic Commerce Conference, pages 465–
480.

Villamizar, M., Garcés, O., Castro, H., Verano, M., Sala-
manca, L., Casallas, R., and Gil, S. (2015). Evaluating
the monolithic and the microservice architecture pat-
tern to deploy web applications in the cloud. In Com-
puting Colombian Conference (10CCC), 2015 10th,
pages 583–590. IEEE.

Wu, F., Mahajan, V., and Balasubramanian, S. (2003). An
analysis of e-business adoption and its impact on busi-
ness performance. Journal of the Academy of Market-
ing science, 31(4):425–447.

Xiao, Z., Wijegunaratne, I., and Qiang, X. (2016). Reflec-
tions on soa and microservices. In 2016 4th Interna-
tional Conference on Enterprise Systems (ES), pages
60–67. IEEE.

Future CMS for e-Business: Will Microservices and Containerization Change the Game?

217


