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Abstract: In the context of abstract argumentation frameworks, the admissibility problem is about deciding whether
a given argument (i.e. piece of knowledge) is admissible in a conflicting knowledge base. In this paper
we present an enhanced backtracking-based algorithm for solving the admissibility problem. The algorithm
performs successfully when applied to a wide range of benchmark abstract argumentation frameworks and
when compared to the state-of-the-art algorithm.

1 INTRODUCTION

Abstract argumentation frameworks (AFs), intro-
duced by (Dung, 1995), are a major topic within
the field of knowledge representation and automated
reasoning, see for example the reviews of (Modgil
et al., 2013; Charwat et al., 2015; Simari and Rah-
wan, 2009; Atkinson et al., 2017; Baroni et al., 2011;
Modgil and Caminada, 2009; Caminada and Gab-
bay, 2009). Particularly, AFs have been demonstrated
as a powerful mechanism for decision-support sys-
tems (Heras et al., 2013; Hunter and Williams, 2012;
Bench-Capon et al., 2015; Tamani et al., 2015), and
for handling inconsistency in knowledge bases (Mar-
tinez and Hunter, 2009; Hecham et al., 2017; Amgoud
and Cayrol, 2002; Croitoru and Vesic, 2013; Amgoud
and Vesic, 2010).

An abstract argumentation framework is a pair
(A,R) where A is a set of abstract arguments (i.e.
pieces of knowledge) and R ⊆ A×A is the attack re-
lation (representing conflicting knowledge). We say x
attacks y (or y is attacked by x) whenever (x,y) ∈ R.
For a given set of arguments B ⊆ A, B− (respectively
B+) denotes the set of arguments that attack (respec-
tively are attacked by) the arguments of B. Let S ⊆ A
be a set of arguments, then S is admissible if and only
if S− ⊆ S+ and S+∩S = /0. Let x ∈ A be an argument,
then x is admissible if and only if x is contained in an
admissible set.

The problem of admissibility is to decide whether
an argument, in a given AF, is admissible or not. Thus,
the problem can be naturally solved by finding an ad-
missible set containing the argument in question. For
example, assume we desire to decide the admissibility
of argument b in the framework of figure 1, then we

Figure 1: An example argumentation framework AF1.

find b admissible due to the admissibility of {b, f}.
It is known that the problem of admissibility

is NP-complete (Dvorák and Dunne, 2017; Dunne,
2007). However, as noted in the survey of (Charwat
et al., 2015), there are two approaches to the admissi-
bility problem: direct and reduction-based. In the lat-
ter approach one might put the admissibility problem
into a different form and then apply an off-the-shelf
solver to decide admissibility for a given problem in-
stance, see (Thimm and Villata, 2017) for reviews.

On the other hand, direct approaches to the admis-
sibility problem are ad hoc algorithms. In this paper
we present a new ad hoc algorithm for the admissi-
bility problem. In the literature one can see a number
of works that presented ad hoc algorithms for solv-
ing the admissibility problem. The work of (Doutre
and Mengin, 2001) introduced an algorithm for the
admissibility problem. Subsequently, the algorithm
of (Doutre and Mengin, 2001) was re-presented in the
article of (Cayrol et al., 2003). In fact, the algorithm
of (Doutre and Mengin, 2001) is a depth-first search
procedure that looks for an admissible set contain-
ing the argument in question. Later, (Verheij, 2007)
presented a breadth-first search procedure for solving
the admissibility problem. Afterwards, (Thang et al.,
2009) introduced a unified breadth-first search proce-
dure for deciding admissibility as well as for solving
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other decision problems related to AFs. The work of
(Nofal et al., 2014) presented a new depth-first search
algorithm that is likely faster than the previous algo-
rithms of (Doutre and Mengin, 2001; Verheij, 2007;
Thang et al., 2009), see (Nofal et al., 2014) for a
comprehensive evaluation of the aforementioned al-
gorithms. Recently, by a “look-ahead” mechanism
the work of (Nofal et al., 2016) improved on the al-
gorithm of (Nofal et al., 2014). Differently, (Dvořák
et al., 2012) proposed a dynamic programming ap-
proach to the admissibility problem. The focus of
(Dvořák et al., 2012) was to show the role of “fixed-
parameter” tractable methods in the context of AFs.
Lastly, we note that another line of research is more
focused on building procedures for handling dynamic
changes in AFs, see for example (Liao et al., 2011;
Doutre and Mailly, 2018; Alfano et al., 2017).

In this paper we present new enhancements that
improve over the state-of-the-art backtracking algo-
rithm presented by (Nofal et al., 2016). Therefore,
in section 2 we recall the state-of-the-art algorithm
of (Nofal et al., 2016). In section 3 we present our
new algorithm. Then, we verify the running-time ef-
ficiency of the new algorithm in section 4. In section
5 we present a concrete scenario where deciding ad-
missibility being vital for argument-based legal rea-
soning. In section 6 we conclude the paper.

2 THE EXISTING
STATE-OF-THE-ART
ALGORITHM

In this section we recall the algorithm of (Nofal
et al., 2016) for deciding admissibility. We note
that it would be inefficient if one decided the
admissibility of some argument in a given AF by
generating admissible sets one after another until a
set, containing the argument in question, is found.
Obviously, following this approach will result in
a considerable wasted time in listing irrelevant
sets that do not contain the argument in question.
Moreover, using this approach one might waste time
in computing admissible sets that are larger than
needed. Take the framework of figure 1 and the
problem of deciding the admissibility of argument
b. Focusing on two admissible sets: {a,k} and
{ f ,b,d,h}, we note that the former set is irrelevant
because it does not contain the query argument (i.e.
b), whereas the latter set is larger than needed because
the admissible set { f ,b} is sufficient for proving
the admissibility of b. Hence, an efficient proce-
dure for the admissibility problem would start with a

Algorithm 1: Algorithm 10 from Nofal et al (Nofal
et al., 2016).

requires: an AF H = (A,R) and a query argument
s ∈ A.

ensures : a decision whether s is admissible or not.
1 Function isAdmissible(label)
2 propagate(label);
3 if label is admissible then return true;
4 if label is hopeless then return false;
5 label′← label;
6 select some x ∈ {y | label(y) = mustOut}−

with label(x) = blank;
7 in-trans(label′,x);
8 if isAdmissible(label′)=true then return true;
9 und-trans(label,x);

10 if isAdmissible(label)=true then return true
else return false;

11 Function main()
12 if (s,s) ∈ R then report s inadmissibile and

exit;
13 label : A→{in,out,und,mustOut,blank};
14 label← /0;
15 foreach x ∈ A do
16 label← label∪{(x,blank)};
17 if (x,x) ∈ R then label(x)← und;
18 in-trans(label,s);
19 if isAdmissible(label)=true then report s

admissible else report s inadmissible;

one-argument set, containing the argument in ques-
tion, and then incrementally try to include in the under
construction set relevant arguments that are necessary
to establish the admissibility of the argument in ques-
tion. In particular, we may decide the admissibility of
b in AF1 as follows:
1. We start with S = {b}, S− = {a}, and S+ = /0.

Since S− 6⊆ S+, we expand S trying to satisfy this
admissibility condition: S− ⊆ S+.

2. Then, we include f to get S = { f ,b}, S− = {a,e},
and S+ = {a,g,e}. Now, S is admissible since
S− ⊆ S+ and S+∩S = /0.
After this introduction we present algorithm 1,

which is algorithm 10 (with minor changes in the pre-
sentation) from (Nofal et al., 2016) for deciding ad-
missibility. If we run the algorithm on a given AF
H = (A,R) with a query argument s then the algo-
rithm decides whether s is admissible or not. We now
specify the actions and structures of the algorithm.
Starting at line 12 in the algorithm, if the query ar-
gument s is self-attacking, then we conclude with s
being inadmissible. At line 13 we create a total func-
tion label that maps every argument in A to a label
in {in,out,und,mustOut,blank} according to the fol-
lowing rules.
Remark 1 (Mapping Arguments). Let (A,R) be an
AF, label : A→ {in, out, mustOut, und, blank} be a

KEOD 2019 - 11th International Conference on Knowledge Engineering and Ontology Development

68



total mapping, x ∈ A be an argument with label(x) =
blank and S ⊆ A be a set of arguments, then x might
be re-mapped with respect to S as follows:

• If x ∈ S then label(x)← in.
• If x ∈ S+ then label(x)← out.
• If x ∈ S− \S+ then label(x)← mustOut.
• If x /∈ S∪S−∪S+ then label(x)← und.

At lines 14-17 in the algorithm, we initialize label
such that all arguments are mapped to blank except
self-attacking arguments, which are mapped to und.
Note that if a set of arguments, say S, contains some
self-attacking argument, then S will violate this ad-
missibility condition: S+∩S = /0.

Now, we come to the in transition routine (in-
trans for short), see lines 7 & 18 in the algorithm.
By applying the in-trans routine we re-map an argu-
ment to in and, subsequently re-map the neighbor ar-
guments as described in the following definition.

Definition 1 (In-trans). Let (A,R) be an AF, label :
A→ {in, out, mustOut, und, blank} be a total map-
ping and x∈ A be an argument with label(x) = blank,
then in-trans(label,x) is defined by the following set
of actions:

1. Label(x)← in.
2. For each y ∈ {x}+ do label(y)← out.
3. For each y ∈ {x}− with label(y) 6= out do

label(y)← mustOut.

At line 9 in the algorithm, we re-map an argu-
ment to und by an undecided transition (und-trans for
short) as defined below.

Definition 2 (Und-trans). Let (A,R) be an AF, label :
A→ {in, out, mustOut, und, blank} be a total map-
ping and x ∈ A be an argument with label(x) =
blank, then we define und-trans(label,x) by the ac-
tion: label(x)← und.

Now, we define propagate(label), see line 2 in
the algorithm. By invoking propagate(label) we ap-
ply the in-trans routine on some arguments as we de-
scribe in the next definition.

Definition 3 (Mappings Propagation). Let (A,R) be
an AF, label : A→ {in, out, mustOut, und, blank},
then propagate(label) is defined by the following ac-
tions:

1. If there is no x with label(x) = blank such that for
all y ∈ {x}− label(y) ∈ {out,mustOut} then halt.

2. Select some x with label(x) = blank such that for
all y ∈ {x}− label(y) ∈ {out,mustOut}.

3. In-trans(label,x).
4. Go to step 1.

Referring to line 3 in the algorithm, we describe
admissible mappings that correspond to admissible
sets.

Definition 4 (Admissible Mappings). Let (A,R) be
an AF, label : A→ {in, out, mustOut, und, blank} be
a total mapping, then label is admissible if and only
if for all x ∈ A label(x) 6= mustOut.

On the other hand, we define hopeless mappings
that correspond to inadmissible sets, see line 4 in the
algorithm.

Definition 5 (Hopeless Mappings). Let (A,R) be an
AF, label : A → {in, out, mustOut, und, blank} be
a total mapping, then label is hopeless if and only if
there is x ∈ A with label(x) = mustOut such that for
all y ∈ {x}− label(y) ∈ {out,mustOut,und}.

At this stage, we are ready to present a progression
of the algorithm in deciding the admissibility of b in
the framework of figure 1:

1. at lines 15-17 in the algorithm, we initialize label
with {(a,blank), (b,blank), (c,und), (d,blank),
(e,blank), ( f ,blank), (g,blank), (h,blank),
(k,blank)}.

2. at line 18, we apply in-trans(label,b), and so,
label is now equal to {(a,mustOut), (b, in),
(c,und), (d,blank), (e,blank), ( f ,blank),
(g,blank), (h,blank), (k,blank)}.

3. at line 19, we invoke isAdmissible(label). The ac-
tions of this routine are:

3.1. at line 2, we apply propagate(label). As
a result, label remains unchanged, equal
to {(a,mustOut), (b, in), (c,und), (d,blank),
(e,blank), ( f ,blank), (g,blank), (h,blank),
(k,blank)}.

3.2. at lines 3 & 4, we note that label is not admis-
sible nor hopeless.

3.3. at line 5, we copy label into label′. Thus,
label′ is now equal to {(a,mustOut), (b, in),
(c,und), (d,blank), (e,blank), ( f ,blank),
(g,blank), (h,blank), (k,blank)}.

3.4. at line 6, we select g from {g, f}.
3.5. at line 7, we apply in-trans(label′,g),

and so, label′ is changed to {(a,out),
(b, in), (c,mustOut), (d,mustOut), (e,out),
( f ,mustOut), (g, in), (h,blank), (k,blank)}.

3.6. at line 8, we call isAdmissible(label′) to take
the actions:

3.6.1. at line 2, we invoke propagate(label′).
In effect, label′ remains unchanged,
equal to {(a,out), (b, in), (c,mustOut),
(d,mustOut), (e,out), ( f ,mustOut),
(g, in), (h,blank), (k,blank)}.
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3.6.2. at line 4, we find that label′ is hopeless,
and so we return false.

3.7. at line 9, we apply und-trans(label,g) to
get label = {(a,mustOut), (b, in), (c,und),
(d,blank), (e,blank), ( f ,blank), (g,und),
(h,blank), (k,blank)}.

3.8. at line 10, we call isAdmissible(label), and so,
the next actions are:

3.8.1. at line 2, we call propagate(label).
Thus, label remains unchanged, equal
to {(a,mustOut), (b, in), (c,und),
(d,blank), (e,blank), ( f ,blank), (g,und),
(h,blank), (k,blank)}.

3.8.2. at line 5, we copy label into label′. Hence,
label′ is now equal to {(a,mustOut),
(b, in), (c,und), (d,blank), (e,blank),
( f ,blank), (g,und), (h,blank),
(k,blank)}.

3.8.3. at line 6, the only choice is argument f .
3.8.4. at line 7, we call in-trans(label′, f ). Now

label′ becomes equal to {(a,out), (b, in),
(c,und), (d,blank), (e,out), ( f , in),
(g,out), (h,blank), (k,blank)}.

3.8.5. at line 8, we call isAdmissible(label′) to
apply the actions:

3.8.5.1. at line 2, we call propagate(label′).
Note that label′ does not change and
so remains equal to {(a,out), (b, in),
(c,und), (d,blank), (e,out), ( f , in),
(g,out), (h,blank), (k,blank)}.

3.8.5.2. at line 3, we find label′ admissible,
and so, we return true.

3.8.6. at line 8, we return true.
3.9. at line 10, we return true.

4. at line 19, we report b admissible.
Building on the old algorithm, next we develop a

faster algorithm.

3 THE NEW ALGORITHM

As we did in the previous section, we introduce
the new algorithm by using a top-down presentation,
which means we give first the algorithm and then we
specify its structures. Algorithm 2 is our new algo-
rithm for the admissibility problem. If we run the al-
gorithm on a given AF H = (A,R) with a query argu-
ment s then the algorithm decides whether s is admis-
sible or not.

We note that the old algorithm and the new algo-
rithm have a similar high-level organization. How-
ever, we refine a number of constructs as we elaborate

Algorithm 2: The new algorithm.
requires: an AF H = (A,R) and a query argument

s ∈ A.
ensures : a decision whether s is admissible or not.

1 Function isAdmissible(label, toIn, toUnd,
undAtt, blankAtt)

2 if propagate(label, toIn, toUnd, undAtt,
blankAtt)=false then return false;

3 if label is admissible then return true;
4 label′← label, toIn′← toIn,

toUnd′← toUnd;
5 undAtt ′← undAtt, blankAtt ′← blankAtt;
6 select some x ∈ {y | label(y) = mustOut}−

with label(x) = blank;
7 if in-trans(x, label′, toIn′, toUnd′, undAtt ′,

blankAtt ′)=false then go to line 9;
8 if isAdmissible(label′, toIn′, toUnd′, undAtt ′,

blankAtt ′)=true then return true;
9 if und-trans(x, label, toIn, toUnd, undAtt,

blankAtt)=false then go to line 11;
10 if isAdmissible(label, toIn, toUnd, undAtt,

blankAtt)=true then return true;
11 return false;
12 Function main()
13 if (s,s) ∈ R then report s inadmissibile and

exit;
14 label : A→ {in, out, und, mustOut, blank,

mustIn, mustUnd};
15 label← /0, toIn← /0, toUnd← /0, undAtt←

/0, blankAtt← /0;
16 foreach x ∈ A do
17 label(x)← blank, undAtt(x)←

0, blankAtt(x)← |{x}−|;
18 if (x,x) ∈ R then label(x)← mustUnd,

toUnd← toUnd∪{x};
19 if |{x}−|= 0 then label(x)← mustIn,

toIn← toIn∪{x};
20 label(s)← mustIn, toIn← toIn∪{s};
21 if isAdmissible(label, toIn, toUnd, undAtt,

blankAtt)=true then s is admissible;
22 else s is not admissible;

throughout this section. Therefore, we will focus on
the differences between the old algorithm and the new
one.

At lines 14-19 in the new algorithm, we create and
initialize five structures: label, toIn, toUnd, blankAtt
and undAtt. We illustrate all these structures next.

Observe that in the new algorithm we follow
the basic mapping rules of the old algorithm,
see remark 1. However, we add two additional
labels: mustIn and mustUnd. In particular, for
a given AF (A,R), label is now a total func-
tion that maps every argument in A to a label in
{in,out,mustOut,mustIn,mustUnd,und,blank}.
Actually, we map an argument to mustIn for one of
two reasons as described next.

KEOD 2019 - 11th International Conference on Knowledge Engineering and Ontology Development

70



Definition 6 (mustIn Arguments). Let (A,R) be an
AF, label : A→{in, out, mustOut, mustIn, mustUnd,
und, blank} be a total mapping and x ∈ A be an ar-
gument with label(x) = blank. Then, x will be re-
mapped to mustIn (or equivalently we say x must be
in) if and only if:

• For every y ∈ {x}− \ {x}+ label(y) ∈
{out,mustOut}, or

• There is y ∈ {x}+ with label(y) = mustOut such
that |{z ∈ {y}− : label(z) = blank}|= 1.

We map an argument to mustUnd for the follow-
ing reason.

Definition 7 (mustUnd Arguments). Let (A,R) be an
AF, label : A→{in, out, mustOut, mustIn, mustUnd,
und, blank} be a total mapping and x ∈ A be an
argument with label(x) = blank. Then, x will be
re-mapped to mustUnd (or equivalently we say x
must be und) if and only if there is y ∈ {x}− with
label(y) ∈ {blank,und,mustUnd} such that for all
z ∈ {y}− label(z) ∈ {out,mustOut,und,mustUnd}.

Eventually, mustIn and mustUnd arguments will
be re-mapped to in and und respectively, but we de-
lay this to optimize the mapping propagation process
as we elaborate shortly. At line 15 in the algorithm,
we use toIn and toUnd sets, which respectively col-
lect mustIn and mustUnd arguments to allow for an
efficient access to them.

Also, at line 15 we use the total mappings: undAtt
and blankAtt. For a given AF (A,R) with a to-
tal mapping label : A→ {in, out, mustOut, mustIn,
mustUnd, und, blank}, undAtt maps every argument
x∈A to |{y∈{x}− : label(y)= und}|, while blankAtt
maps every argument x ∈ A to |{y ∈ {x}− : label(y) ∈
{blank,mustIn,mustUnd}}|. The purpose of these
mappings is to speed the process of checking the
conditions under which an argument is mapped to
mustUnd or mustIn. Further, these mappings stream-
line the computations around detecting hopeless la-
bellings.

Remark 2 (undAtt and blankAtt). Let (A,R) be an
AF, label : A→{in, out, mustOut, mustIn, mustUnd,
und, blank} be a total mapping, N be the set of non-
negative integers, undAtt : A → N with blankAtt :
A→ N be total mappings and x ∈ A be an argument.
Then,

• Checking if label(x) = blank, blankAtt(x) = 0
and undAtt(x) = 0, is equivalent to checking
whether x must be in.

• Checking if label(x) = mustOut, blankAtt(x) = 1
and ∃y ∈ {x}− with label(y) = blank, is equiva-
lent to checking whether y must be in.

• Checking if label(x) ∈ {blank,mustUnd,und},
blankAtt(x) = 0, and y ∈ {x}+ with label(y) =
blank is equivalent to checking whether y
must be und.
• Checking if label(x) = mustOut and

blankAtt(x) = 0 is equivalent to checking
whether label is hopeless.

Hence, remark 2 shows how we actually check
if an argument has to be re-mapped to mustIn or
mustUnd, or if the current mapping is hopeless.

At line 18, we map self-attacking arguments to
mustUnd and then include them in toUnd. Then, at
line 19 we map every x with |{x}−| = 0 to mustIn
and then add them to toIn. Referring to line 7 in the
algorithm, we re-define the in-trans routine as in the
following specification.

Definition 8 (In-trans Routine). Let (A,R) be an
AF, label : A → {in, out, mustIn, mustOut, und,
mustUnd, blank} be a total mapping, x ∈ A be an
argument with label(x) ∈ {blank, mustIn}, toIn ⊆ A
with toUnd ⊆ A be sets of arguments, N be the
set of non-negative integers, and undAtt : A → N
with blankAtt : A → N be total mappings. Then,
in-trans(x, label, toIn, toUnd,undAtt,blankAtt) is de-
fined by the set of actions:

1. label(x)← in.
2. for each y ∈ {x}+∪{x}− with label(y) 6= out do:

2.1. for each z ∈ {y}+ do:
2.1.1. if label(y) = und, then undAtt(z) ←

undAtt(z)−1.
2.1.2. if label(y) = blank, then blankAtt(z) ←

blankAtt(z)−1.
2.1.3. if label(z) = mustOut and blankAtt(z) =

0, then return false.
2.1.4. if z must be in, then toIn← toIn∪{z} and

label(z)← mustIn.
2.1.5. for each v ∈ {z}+ s.t. v must be und do:

2.1.5.1. toUnd← toUnd∪{v}.
2.1.5.2. label(v)← mustUnd.

2.1.6. if there is v ∈ {z}− s.t. v must be in, then:
2.1.6.1. toin← toIn∪{v}.
2.1.6.2. label(v)← mustIn.

2.2. if y ∈ {x}−, then label(y)← mustOut.
2.3. if y ∈ {x}+, then label(y)← out.
2.4. if label(y) = mustOut and blankAtt(y) = 0,

then return false.
3. return true.

Referring to line 9 in the algorithm, we re-define
und-trans.

Definition 9 (Und-trans Routine). Let (A,R) be an
AF, label : A → {in, out, mustIn, mustOut, und,
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mustUnd, blank} be a total mapping, x ∈ A be an ar-
gument with label(x) ∈ {blank, mustUnd}, toIn ⊆ A
with toUnd ⊆ A be sets of arguments, N be the set
of non-negative integers, and undAtt : A → N with
blankAtt : A → N be total mappings. Then, und-
trans(x, label, toIn, toUnd, undAtt, blankAtt) is de-
fined by the set of actions:

1. label(x)← und.
2. for each y ∈ {x}+ do:

2.1. undAtt(y)← undAtt(y)+1.
2.2. blankAtt(y)← blankAtt(y)−1.
2.3. if label(y) = mustOut with blankAtt(y) = 0,

then return false.
2.4. for each z ∈ {y}+ s.t. z must be und do:

2.4.1. toUnd← toUnd∪{z}.
2.4.2. label(z)← mustUnd.

2.5. if there is z ∈ {y}− s.t. z must be in, then:
2.5.1. toIn← toIn∪{z}.
2.5.2. label(z)← mustIn.

3. return true.

Referring to line 2 in the algorithm, we refine the
propagate routine.

Definition 10 (Propagate Routine). Let (A,R) be
an AF, label: A → {in, out, mustIn, mustOut, und,
mustUnd, blank} be a total mapping, toIn ⊆ A
with toUnd ⊆ A be sets of arguments, N be the
set of non-negative integers, and undAtt : A → N
with blankAtt : A → N be total mappings. Then,
propagate(label, toIn, toUnd,undAtt,blankAtt) is
defined by the following set of actions:

1. while toIn 6= /0 or toUnd 6= /0 do:
1.1. while toIn 6= /0 do:

1.1.1. remove an argument x from toIn.
1.1.2. if in-trans(x, label, toIn, toUnd, undAtt,

blankAtt)=false, then return false.
1.1. while toUnd 6= /0 do:

1.1.1. remove an argument x from toUnd.
1.1.2. if und-trans(x, label, toIn, toUnd, undAtt,

blankAtt)=false, then return false.
2. return true.

We note that the speedup of the new algorithm
comes mainly from refining the routines: in-trans,
und-trans, and propagate; together with the struc-
tures: label, toIn, toUnd, undAtt and blankAtt.

To see how these refined constructs have led to
a faster admissibility deciding, let us have a closer
look at two major actions: checking hopeless map-
pings, and mappings propagation. In the old algo-
rithm, these two actions are done at a global scope,
hence one needs to scan exhaustively all arguments to

check hopelessness or to propagate mappings. Since
these two actions are repeated enormously often at
run-time, they are extremely expensive. However, not
all arguments actually need to be checked (for hope-
lessness or propagation) because not all of them have
been affected by the last re-mappings that happened
during in-trans or und-trans. This is exactly what we
have addressed in the new algorithm: we restrict the
scope of these two major actions (i.e. hopelessness
check and mappings propagation) to a relatively small
subset of arguments, which roughly are the neighbors
of the arguments that recently have been re-mapped.
In the next section we verify practically the running-
time performance of the new algorithm.

However, before closing this section we recall two
other problems that are equivalent to the admissibility
problem. To elaborate on this correspondence, we de-
fine preferred and complete arguments.

Definition 11 (Preferred Arguments). Let (A,R) be
an AF and S ⊆ A be a set of arguments. Then, S is
a preferred extension of AF if and only if S is a set-
inclusion-maximal admissible set. Further, we call
x ∈ A preferred if and only if x is in a preferred ex-
tension.

Definition 12 (Complete Arguments). Let (A,R) be
an AF and S ⊆ A be an admissible set, then S is a
complete extension of AF if and only if for each x /∈ S
x∈ S+ or {x}− 6⊆ S+. Further, we call x∈ A complete
if and only if x is in a complete extension.

Therefore, it is not hard to see that every admissi-
ble set of a given AF is preferred/complete extension
or it can be expanded to become one. Thus, deciding
the admissibility of a given argument is equivalent to
deciding if the argument is preferred or complete.

4 VERIFICATION

We verified the running-time performance of the new
algorithm1 by using benchmark B of the second in-
ternational competition on computational models of
argumentation 2017 (ICCMA17)2. The benchmark is
a set of 350 different AFs. However, for evaluating the
admissibility problem 300 AFs of benchmark B have
been considered in ICCMA17, where 50 AFs were ex-
cluded due to triviality. In fact, ICCMA17 duplicated
the hardest 50 AFs of the benchmark by generating
two different queries on every AF. Thus, in total there

1The C++ source code is available for free download at:
https://sourceforge.net/projects/argtools.

2ICCMA17 is organized by Sarah A. Gaggl, Thomas
Linsbichler, Marco Maratea, and Stefan Woltran. See
http://argumentationcompetition.org/2017.
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were 350 problem instances using only 300 AFs. To
evaluate our algorithm we used a machine with Intel-
core-i7 processor alongside four gigabytes of system
memory. Note that the environment of ICCMA17 has
a more powerful Intel-xeon processor and, four giga-
bytes of system memory were allocated for each prob-
lem instance. Following ICCMA17, we set a timeout
of 10 minutes for each problem instance.

As this paper presents a direct approach to the
admissibility problem, we compare with the three
direct-based systems: ArgTools v1.0 (Nofal et al.,
2015), heureka (Geilen and Thimm, 2017), and ArgE-
qSolver (Rodrigues, 2017). ArgTools v1.0 imple-
ments algorithm 1, and it solved 234 problem in-
stances. The new algorithm (algorithm 2) is cur-
rently implemented within the ArgTools project, and
it solved 297 problem instances. To the best of our
knowledge, the specifications of admissibility check-
ing in heureka and ArgEqSolver are not published.
However, the two systems solved at best 148 problem
instances. For reduction-based solvers, at best 304
problem instances were solved in ICCMA17. Lastly,
note that the ICCMA17 solvers were evaluated (with
respect to the admissibility problem) under the task:
DC-PR (and respectively DC-CO), which stands for
Decide Credulous acceptance under PReferred (re-
spectively COmplete) semantics. Table 1 summarizes
the total running times of the new algorithm compared
to the systems mentioned above.

Table 1: Experimental performance.

system elapsed time
(seconds)

#solved prob-
lem instances

Algorithm 2 36,833 297
ArgTools v1.0 75,358 234
heureka 126,156 148
ArgEqSolver 122,604 148

5 AN EXAMPLE WITH LEGAL
REASONING

In this section we provide an application of the admis-
sibility checking using the following hypothetical ex-
change of allegations (as presented in (Jakobovits and
Vermeir, 1999) and which is actually adapted from
(Gordon, 1993)):

The plaintiff and the defendant have both
loaned money to Miller for the purchase of
an oil tanker, which is the collateral for both
loans. Miller has defaulted on both loans,
and the practical question is which of the two
lenders will first be paid from the proceeds of

Figure 2: The AF associated with the legal case.

the sale of the ship. One subsidiary issue is
whether the plaintiff perfected his security in-
terest in the ship or not.
• Argument a by the plaintiff: My security

interest in Miller’s ship was perfected. A
security interest in goods may be perfected
by taking possession of the collateral (UCC
Article 9). I have possession of Miller’s
ship.

• Argument b by defendant: Ships are not
goods for the purposes of Article 9.

• Argument c by the plaintiff: Ships are mov-
able, and movable things are goods accord-
ing to UCC Article 9.

• Argument d by the defendant: According to
the Ship Mortgage Act, a security interest
in a ship may only be perfected by filing a
financing statement.

• Argument e by the plaintiff: The Ship Mort-
gage Act does not apply, since the UCC is
newer and therefore has precedence.

• Argument f by the defendant: The Ship
Mortgage Act is federal law, which has
precedence over state law such as UCC.

Figure 2 shows these arguments and the attack rela-
tion between them.

Let us now check the admissibility of the plain-
tiff’s claim regarding her security interest in Miller’s
ship being perfected (argument a in Figure 2.) Subse-
quently, the question now is whether we can find an
admissible set S of arguments including a. Let us start
with S = {a}. Thus, S− = {b,d}. As S− 6⊆ S+, we
need to expand S further by an argument from (S−)−.
Let c join S. Now, S = {a,c}. But still S− 6⊆ S+.
Therefore, include e in S. At this point, S = {a,c,e},
S− = {b,d, f} and S− ⊆ S+. As now S is admissible,
the plaintiff’s claim for perfecting her security interest
in the Miller’s ship is admissible.

6 CONCLUSION

We implemented an improved algorithm for the ad-
missibility problem. Using benchmark B of the in-
ternational competition ICCMA17, we evaluated the

On Deciding Admissibility in Abstract Argumentation Frameworks

73



new algorithm and practically verified that it outper-
forms the old algorithm. As the speed gain is due to
a number of useful structures that optimize the under-
lying actions of the new algorithm, we plan to inves-
tigate the possibility of utilizing additional constructs
that might enhance further the admissibility-deciding
procedures. In particular, referring to line 6 in the new
algorithm, we currently select an argument by search-
ing in the whole set of arguments (i.e. A). An open
issue is finding a cost-effective mechanism to restrict
the search to a subset of candidate arguments.
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A., González, M., Gordon, T., Leite, J., Možina, M.,
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