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Abstract: Testing of a software system is a resource-consuming activity that requires high-level expert knowledge.
Methods based on knowledge representation and reasoning can alleviate this problem. This paper presents
an approach to enhance the automation of the testing process using ontologies and inference rules. The ap-
proach takes software requirements specifications written in structured text documents as input and produces
the output, i.e. test scripts. The approach makes use of ontologies to deal with the knowledge embodied in
requirements specifications and to represent the desired structure of test cases, as well as makes use of a set
of inference rules to represent strategies for deriving test cases. The implementation of the approach, in the
context of an industrial case, proves the validity of the overall approach.

1 INTRODUCTION

The software market is increasing on a yearly basis
and shows no sign of slowing down. According to
Gartner, the worldwide IT spending is predicted to
grow 3.2% in 2019, to reach a total of USD 3.8 tril-
lion (Gartner, 2018). As software products and sys-
tems permeate every aspect of our lives, we become
more and more dependent on their correct function-
ing. Consequently, quality concerns become much
more vital and critical as end-users get more depen-
dent on software products and services. As is the case
in all product development, the quality of the soft-
ware must be verified and validated through painstak-
ing test activities, such as test planning and design,
ocular reviews of requirements documents and pro-
gram code, program testing, system testing, accep-
tance testing, and so on. Despite all these efforts, er-
rors have an annoying tendency to remain undetected
in the code. Accordingly to Capgemini World Quality
Report 2018-19 (CapGemini et al., 2018), the budget
allocation for quality assurance and testing, as per-
centage of IT expenditures in the software industry,
has come down in recent years but still accounted for
26% in 2018.

One way to reduce the cost related to software
testing has been to automate as many of the aforemen-
tioned activities as possible. As far as test manage-
ment and test script execution go, this is a mature field
where commercial products assist software testers
in their daily work, like TestingWhiz (TestingWhiz,
2018) or HPE Unified Functional Testing (HPE-UFT,
2018). Recent research results indicate that automati-

cally generated tests achieve similar code coverage as
manually created tests, but in a fraction of the time (an
average improvement of roughly 90%) (Enoiu et al.,
2017).

Despite successful achievements in automation of
script execution and white-box testing, there is still a
lack of automation of black-box testing of functional
requirements. Because such tests are mostly created
manually, which requires high-level human expertise,
modern methods from the area of knowledge engi-
neering are up to the challenge.

This paper proposes an approach to automate soft-
ware testing by modelling the testing body of knowl-
edge with formal ontologies and reasoning with in-
ference rules to generate test cases1. The main contri-
bution of this paper is to demonstrate that the use of
ontologies allows for automation of the full process of
software testing, from the capture of domain knowl-
edge in software requirements specifications (SRS) to
the generation of software test cases. The proposed
framework combines OWL ontologies, representing
the knowledge from SRS and test specifications, with
inference rules, representing the assembled knowl-
edge of expert software testers and testing documents,
and with ontological representation of generated test
cases.

The rest of this paper is structured as follows. Sec-
tion 2 describes the related work. The automated test-
ing process framework is presented in Section 3. Sec-
tion 4 presents an implementation of the framework
for a testing task in the avionics industry. It details

1The study presented in this paper is part of the project
Ontology-based Software Test Case Generation (OSTAG).
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the proposed approach and implementation for each
step in the framework, including ontologies provid-
ing the meta-data for software requirements and test
cases, inference rules capturing strategies for test case
generation, and the test scripts generation strategy.
Section 5 presents the evaluations of the implemented
approach. The conclusions of the study are given in
Section 6.

2 RELATED WORK

Until recently, the use of ontologies in software test-
ing has been one of the least explored areas of soft-
ware engineering (Ruy et al., 2016) and has thus not
been discussed as much as their use in other stages
of the software life-cycle process. In (Happel and
Seedorf, 2006), Happel and Seedorf present possi-
ble ways of utilizing ontologies for the generation of
test cases, and discuss the feasibility of reusing do-
main knowledge encoded in ontologies for testing. In
practice, however, few tangible results have been pre-
sented. Most of the research have had a focus on the
testing of web-based software and especially web ser-
vices, e.g. (Wang et al., 2007; Nguyen et al., 2008;
Sneed and Verhoef, 2013).

One mature area where ontologies have been suc-
cessfully applied is requirements engineering. There
exists a clear synergy effect between the ontological
modelling of domain knowledge and the modelling
of requirements performed by requirement engineers
(Dobson and Sawyer, 2006). Recently, a renewed in-
terest in utilizing ontologies in requirements engineer-
ing has surged due to the appearance of semantic web
technologies (Happel and Seedorf, 2006; Dobson and
Sawyer, 2006). Most of the research deals with in-
consistency and incompleteness problems in require-
ment specifications through reasoning over require-
ments ontologies.

The ontologies, presented in this paper, support an
automated testing process. First, a requirements on-
tology provides SRS’s meta data and supports extract-
ing information from requirements documents. Sec-
ond, a test case ontology describes the desired struc-
ture of test case descriptions and is used to guide the
test case generation process. In the end, the populated
test case ontology supports the test scripts generation.

3 A FRAMEWORK FOR TESTING
PROCESS AUTOMATION
USING ONTOLOGIES

A typical process of black-box testing of functional
software requirements comprises two activities. Dur-
ing the first activity, software testers design test cases
based on SRS and their own expertise from previous
work on testing software systems. The second activ-
ity is to develop test scripts. Finally, the tests are car-
ried out, either manually or using a test execution tool,
based on the automated execution of test scripts. In
this paper we present a framework to automate such
a testing process using ontologies. The framework is
shown in Fig. 1.

The requirements are often described in well-
structured or semi-structured textual documents.
First, a requirements ontology is built to represent
the structure of software requirements. With the help
of the ontology, the requirements information is ex-
tracted from the text documents and then used to pop-
ulate the ontology. The populated ontology serves as
an input for the test case generator.

In situations where the testers’ expertise is less
structured, the information is acquired through inter-
views with experienced testers and examination of
existing software test description (STD) documents.
The acquired testing strategies are represented with
inference rules. The rules are built on top of ontolo-
gies, following the W3C recommendation on a lay-
ered infrastructure of Semantic Web. The advantage
is that the ontologies can be reused for different ap-
plications when requirements specifications and test
cases are expressed in a similar way. The rules uti-
lize the populated requirements ontology for checking
conditions and querying data to generate test cases.

Furthermore, a test case ontology is provided to
specify what should be contained in test cases and
how each test case should be structured. The test case
ontology is used in the step of test case generation.
The ontology is populated when test cases are gen-
erated. Finally, the populated test case ontology is
employed to generate test scripts.

4 IMPLEMENTATION OF THE
FRAMEWORK

In this section we demonstrate an implementation of
the framework. The implementation is to support test-
ing of the components of an embedded sub-system
within an avionic system. The case data were pro-
vided by the fighter aircraft developer, Saab Avion-

KEOD 2019 - 11th International Conference on Knowledge Engineering and Ontology Development

58



Figure 1: A framework for automation of testing process using ontologies.

ics. In the avionics industry, many of the systems are
required to be highly safety-critical. For these sys-
tems, the software development process must comply
with several industry standards, like DO178B (RTCA,
1992). The requirements of the entire system, or units
making up the system, must be analyzed, specified
and validated before initiating the design and imple-
mentation phases. The software test cases are manu-
ally created and also have to be manually inspected.
The requirements and test cases that were used in the
framework implementation were provided in text doc-
uments and the results were manually validated by
avionic industry domain experts.

4.1 Requirements and Test Case
Ontologies

Although the requirements are written in natural lan-
guage, the requirements documents are well struc-
tured. The requirements ontology (see Fig. 2) was
built by ontology experts based on the structure of the
textual documents provided by Saab Avionics. Each
requirement has an unique ID and consists of at least:

1. Requirement parameters, which are inputs of a re-
quirement,

2. Requirement conditions,

3. Results, which are usually outputs of a require-
ment and exception messages.

Some requirements require the system to take actions.

Figure 2: The key entities in the requirements ontology.

More details about the ontology can be found in (Tan
et al., 2016).

The test case ontology (see Fig. 3) was also built
by ontology experts based on the structure of test
case descriptions created by the industrial partner.
Each test case has a unique ID, addresses one re-
quirement, and has prerequisite conditions. There is
a list of ordered steps needed to be followed in each
test case. Each step consists of input, procedure and
expected result. Therefore, the classes Test Input,
Test Procedure and Test Results are defined as
the subclasses of OWLList (Drummond et al., 2006),
which is a standard representation of a sequence in
OWL-DL.

4.2 Population of the Requirements
Ontology from the Requirements
Documents

Fig. 4 shows a fragment of the populated ontology
for one particular functional requirement, SRSRS4YY-
431. The requirement states that if the communica-
tion type is out of its valid range, the initialization
service shall deactivate the UART (Universal Asyn-
chronous Receiver/Transmitter), and return the result
“comTypeCfgError”. In Fig. 4, the rectangles repre-

Figure 3: The key elements in the test case ontology.
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Figure 4: Ontology fragment for the SRSRS4YY-431 requirement specification.

sent the concepts of the ontology; the rounded rect-
angles represent the individuals (instances); and the
dashed rectangles provide the data values of datatype
property for individuals.

The populated ontology contains 147 individuals
in total. In the implementation presented in this pa-
per, the information was manually extracted from the
requirements document and used to populate the on-
tology. To fully automate the testing process, the pop-
ulation can be accomplished automatically using dif-
ferent methods (Gangemi et al., 2017; Petasis et al.,
2011). For the well structured requirement speci-
fications provided by Saab Avionics, we have pro-
posed an approach based on BNF grammar as the so-
lution (Ismail, 2016).

4.3 Approach to Test Case Generation
based on Inference Rules

Test cases are generated through deriving informa-
tion from the populated requirements ontology with
the help of inference rules. The Prolog programming
language (Sterling and Shapiro, 1994) was chosen for
coding of inference rules because (1) it has both built-
in inference engine and standard programming facili-
ties, (2) it has means to represent inference rules in a
natural way, and (3) it has means to access the entities
in the ontology. The popular tool for business rules,
DROOLS, was not selected as a solution because of

its flaws and deficiencies, as reported in (Kaczor et al.,
2011) and (Ostermayer and Seipel, 2012)

The particular Prolog system used for the imple-
mentation was SWI-Prolog (Wielemaker et al., 2012).
The first necessary task is to translate the ontology
into the Prolog syntax to prepare the ontology for the
use by the inference rules. There exist a number of
serialisation formats that can be used to save an OWL
ontology to a file: RDF/XML, Turtle, OWL/XML,
Manchester OWL syntax or functional-style syntax.
The functional-style syntax was selected as it has the
closest resemblance to the Prolog syntax.

An ontology document in the functional-style syn-
tax is a number of prefix and import definitions fol-
lowed by a sequence of OWL constructs enclosed in
the Ontology statement (Motik et al., 2012). In turn, a
Prolog program consists of clauses. The term clause
denotes a fact or a rule in a knowledge base. A clause
is ended with full stop (.) and different terms in a
clause are separated with commas (,). The basic terms
that are used in Prolog programs are atoms, numbers,
variable and structures (Sterling and Shapiro, 1994).

In an ontology document in the functional-style
syntax, every construct is represented by one state-
ment that resides on a single line. During the OWL-
to-Prolog translation, a Python script processes the
ontology document line by line to translate each line
into the corresponding Prolog statement. The follow-
ing steps are carried out for every OWL statement:
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• Read an OWL statement,

• Tokenize the statement and convert each token
into lowerCamelCase notation because Prolog
atoms start with a lower case letter,

• Convert the list of tokens into a Prolog clause in
the form of a fact, encoding OWL prefixes as Pro-
log terms.

The translated OWL statements are annotations,
declarations, and axioms including assertions on
properties, classes, restrictions and facts. An example
of a translation of an OWL class assertion (statement
#1) into a corresponding Prolog clause (statement #2)
is given below.

1: ObjectPropertyDomain(:hasPart owl:Thing)
2: objectPropertyDomain(hasPart, owl(thing)).

The second necessary task to solve to derive test
cases from the requirements ontology is to repre-
sent testers expertise on how they use requirements
to create test cases. Such expertise embodies inher-
ent strategies for test case creation, knowledge that
can be expressed in the form of heuristics represented
as if-then rules. This kind of knowledge is acquired
from two sources. First, literature on software test-
ing contains few general guidelines, e.g. boundary
value testing. These general test strategies apply to
all domains. Second, expert testers were interviewed
to capture their expertise that is specific to particular
types of software systems and/or particular domains.
Such testing knowledge needs to be acquired for each
domain type. Additionally, existing test cases and
their corresponding requirements were examined and
analysed. The details of the test case generation with
inference rules are provided in (Tarasov et al., 2017).

Each requirement describes some functionality of
a service (function) from a driver for a hardware unit.
The latter is represented by an embedded avionic sys-
tem component. All the requirements are grouped
into services. The analysis process included the com-
parison of an original test case, previously created
manually by a software tester, with the corresponding
requirement. The analysis goal was to fully under-
stand how different parts of the original test case had
been constructed. After that, a number of discussions
with the industry software testers participating in the
project were arranged to clear any inconsistencies or
remaining doubts.

As a result, a set of inference rules were formu-
lated in plain English. The test cases provided by the
industrial partner are structured as follows: prereq-
uisite conditions, test inputs, test procedure, and ex-
pected test results. For each of the test case parts, a
group of inference rules were formulated. The exam-

ple below shows an inference rule for the test proce-
dure part of the requirement SRSRS4YY-431:
IF the requirement is for a service and

a UART controller is to be deactivated
THEN add the call to the requirement’s

service, calls to a transmission service
and reception service as well as
a recovery call to the first service.

The condition (if-part) of a heuristic rule is for-
mulated using the ontology instances (individuals)
representing the requirement and connected hardware
parts, input/output parameters for the service and the
like. The instructions for generating a test case part
are expressed in the action part (then-part) of the rule.

The acquired inference rules are implemented in
the Prolog programming language with the help of
Prolog rules (a Prolog rule is analogous to a statement
in other programming languages). After the OWL-
to-Prolog translation, the ontology can be loaded as
part of the Prolog program, and the ontology entities
can be directly accessed by the Prolog code. The in-
ference engine that is built-in into Prolog is used to
execute the coded rules to generate test cases.

An example of the inference rule written in Prolog
that implements the previous heuristic rule is given
below:
% construct TC procedure
1 tc_procedure(Requirement, [Service,

WriteService, ReadService,
recovery(Service)]) :-

%check condition for calls #2-4
2 action(Requirement, deactivateUART),

%get service individual for calls #1,4
3 service(Requirement, Service),

%get individuals of the required services
4 type(WriteService, transmission_service),
5 type(ReadService, reception_service).
%check the required action

6 action(Requirement, Action) :-
objectPropertyAssertion(requiresAction,

Requirement, Action).
%retrieve the service of a requirement

7 service(Requirement, Service) :-
objectPropertyAssertion(

requirementForService,
Requirement, Service).

%check the type of an instance
8 type(Individual, Class) :-

classAssertion(Class, Individual).

Line 1 in the example is the head of the rule con-
sisting of the name, input argument and output argu-
ment, which is the constructed procedure as a Pro-
log list. The list is constructed from the retrieved on-
tology entities and special term functors. Line 2 en-
codes the condition of the heuristic. Lines 3-5 are the
queries to retrieve the relevant entities from the ontol-
ogy. The predicates 6-8 are helper ones that perform
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the actual retrieval of the required entities from the
Requirements Ontology.

Each test case is generated sequentially, from the
prerequisites part to the results part. The generated
parts are collected into one structure (Prolog term).

4.4 Population of the Test Case
Ontology

During the generation phase, all created test cases are
stored in the Prolog working memory as a list. When
the test case list is complete, the next phase of ontol-
ogy population starts. The test cases in the list are
processed consecutively. For each test case, an in-
stance is created with object properties relating it to
the addressed requirement and test case parts. After
that, instances with object properties are created for
the four test case parts: prerequisites, test inputs, test
procedure and expected test results. If the parts con-
tain several elements, OWL lists are used for repre-
sentation.

The main Prolog predicate, performing the on-
tology population, is shown in Fig 5. It utilizes
two predicates from the ontology population layer:
ontology comment and ontology assertion. The
former is used to insert auxiliary comments in the on-
tology. The latter asserts OWL axioms representing
test case elements in the test case ontology. The four
predicates that start with “populate w ” create OWL
statements for the test case parts by processing lists
associated with each part. Each of these predicates
is passed the name prefix and initial number to con-
struct instances of an OWL list representing this test
case part.

Finally, the newly asserted axioms are serialized
in the ontology source file by the ontology serializa-
tion layer. It takes care of translating the OWL asser-
tions from the Prolog syntax into the OWL functional-
style syntax with the help of a definite clause gram-
mar.

4.5 Test Scripts Generation

In order to carry out testing, test cases need to be
transformed into executable procedures. Such pro-
cedures are usually programs written in a language
like Python or C. However, our project partner, Saab
Avionics, follows a strict quality assurance process.
According to their process, all test cases have to be
thoroughly inspected as plain text by the quality as-
surance team before they are signed of for actual exe-
cution. For this reason, test cases were translated into
plain text in English in the OSTAG project. The trans-
lation into plain text is implemented by the process

of verbalization of the test case ontology. The ver-
balization starts with the test case instance and then
iterates through the OWL lists representing the four
test case parts. In a similar way, the test cases from
the test case ontology can be transformed into actual
executable procedures in a programming language.

In the OSTAG project, the 37 test cases were
translated into plain text descriptions according to
the software test description specification provided by
Saab Avionics. An example of a test case description
is given in Table 1. In some occasions during these
translations, minor discrepancies were detected by the
experts and consequently corrected in the correspond-
ing document.

5 EVALUATION

In the following section is outlined how a populated
ontology was evaluated. The evaluation of the testing
strategies that lie behind the generation of the previ-
ously described inference rules is also described, as is
the evaluation of the test cases that were generated by
applying the inference rules on the test case ontology.

In the OSTAG project, 32 requirements (out of
38) and 37 corresponding test cases (out of 58) were
examined. The reason for not evaluating the totality
of the requirements was that the remaining 6 require-
ments were written with a different syntax. As a con-
sequence, the presented semi-automatic test case gen-
eration would need to be modified. Furthermore, the
main goal of the project was to present a proof-of-
concept only. This included the semi-automatic gen-
eration of the same test cases as the ones that had been
manually generated by test design experts. Hence, no
additional, unforeseen test cases were generated. Fur-
thermore, the completeness of the test cases was lim-
ited to this one-to-one validation between the semi-
automatically and the manually generated test cases,
only.

5.1 Ontology Evaluation

The correctness of the populated requirements ontol-
ogy was evaluated where the correctness is defined as
the degree to which the information asserted in the on-
tology conforms to the information that need be rep-
resented in the ontology (Tan et al., 2017). It is the
most crucial feature when the ontology is to provide
the knowledge base to generate test cases. Ideally,
the correctness verification is an activity realized by
a domain expert who not only grasps the details of
the represented information itself but also has suffi-
cient knowledge of ontologies to be able to perform
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populate_w_tc(Ontology, tc(description(TC, Requirement, Service),
PrerequisitesList, InputsList, ProcedureList, ResultsList)) :-

ontology_comment(Ontology, TC, Requirement, Service),
% Test case with data and object properties
ontology_assertion(Ontology, declaration(namedIndividual(TC))),
ontology_assertion(Ontology, classAssertion(test_case(TC))),
ontology_assertion(Ontology, dataPropertyAssertion(hasTestCaseID(TC))),
ontology_assertion(Ontology,

objectPropertyAssertion(hasAddressedRequirement(TC, saab(Requirement)))),
% Prerequisites
ontology_comment(Ontology, TC, ’Prerequisites’),
populate_w_prereq(Ontology, TC, PrerequisitesList),
% Test Inputs
ontology_comment(Ontology, TC, ’Test Inputs’),
format(string(InputsListElem), ’˜w_inputs’, TC),
ontology_assertion(Ontology, objectPropertyAssertion(hasTestInputs(TC, InputsListElem))),
populate_w_inputs(Ontology, InputsList, InputsListElem, 1),
% Test Procedure
ontology_comment(Ontology, TC, ’Test Procedure’),
format(string(ProcListElem), ’˜w_procedure’, TC),
ontology_assertion(Ontology, objectPropertyAssertion(hasTestProcedure(TC,ProcListElem))),
populate_w_procedure(Ontology, ProcedureList, ProcListElem, 1),
% Expected Test Results
ontology_comment(Ontology, TC, ’Expected Test Results’),
format(string(ResultsListElem), ’˜w_results’, TC),
ontology_assertion(Ontology, objectPropertyAssertion(hasTestResults(TC,ResultsListElem))),
populate_w_results(Ontology, ResultsList, ResultsListElem, 1), !.

Figure 5: The main Prolog predicate to populate the test case ontology.

the evaluation. In most situations this kind of human
evaluator, with knowledge of ontologies, is not avail-
able. During the evaluation, an ontology verbalization
tool was provided to the domain experts. The tool first
verbalizes the ontology into a natural language text.
Thereafter, the text can be read and understood by the
domain experts, who have no knowledge of ontolo-
gies, and be compared with the information contained
in the source information that was used to construct
the ontology. The correctness of the ontology was
verified by five domain experts from Saab Avionics,
i.e. that the information asserted in the ontology was
equivalent to the information written in the require-
ments documents.

5.2 Testing Strategy Evaluation

One part in the evaluation of the generated test cases
consisted in the evaluation of the test case generation
(TCG) strategies that a test designer apply during the
creation of a test case based on explicit information
found in, e.g., an SRS document or the competence
acquired by a test designer in the software testing do-
main.

A strategy usually concerns only one element in
one test case part, like an input or expected result, but
can apply to several requirements. Each TCG strategy
gives instructions on how a certain element of a TC

can be constructed from the given requirement defini-
tion, other specifications, general testing recommen-
dations and the designers competence in the testing
domain.

The evaluation of the strategies consisted in the
test designers comparing the text of already existing
test cases with the texts found in the SRS, other rele-
vant documents and their own knowledge on how to
best write a test case. The evaluation of the strategies
was thus performed by indirectly validating the qual-
ity of the inference rules through the quality of the test
cases generated by the same inference rules.

An example of a strategy that is related to the ex-
pected test results and valid for seven different re-
quirements (that resulted in seven different test cases)
is:
When a device is disabled or uninitialised,
a service call results in not-init.

The result after applying the strategy above can
be observed in the right column in Table 1 under Ex-
pected Test Results, point 2 and 3.

Another strategy example, that is also applicable
to several requirements/test cases, is:
A recovery service call is necessary as the
last call for error handling requirement.

The result after applying the strategy above can
be observed in the right column in Table 1 under Test
Procedure, point 4.
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Table 1: Test case from the STD (left column) and the corresponding generated test case by applying inference rules to the
ontology (right column).

. . .

Test Inputs
1. According to table below.
2. <uartId> := <uartId> from the

rs4yy init call
3. <uartId> := <uartId> from the

rs4yy init call
4. <parity> := rs4yy noneParity

. . .

Test Inputs:
1. <parity> := min value - 1, <parity> := max value + 1,

<parity> := 681881
2. <uartID> := <uartID> from the initializationService call
3. <uartID> := <uartID> from the initializationService call
4. <parity> := noneParity

Test Procedure
1. Call rs4yy init
2. Call rs4yy write
3. Call rs4yy read
4. Recovery: Call rs4yy init

Test Procedure:
1. Call initializationService
2. Call writeService
3. Call readService
4. Recovery: Call initializationService

Expected Test Results
1. <result> == rs4yy parityCfgError
2. <result> == rs4yy notInitialised
3. <result> == rs4yy notInitialised,
<length> == 0
4. <result> == rs4yy ok

. . .

Expected Test Results:
1. <result> == parityConfigurationError
2. <result> == rs4yyNotInitialised
3. <result> == rs4yyNotInitialised, <length> == 0
4. <result> == rs4yyOk

. . .

The result of the evaluation of all of the test
strategies demonstrated a clear resemblance between
the existing and the generated test cases, thus indi-
rectly validating the quality of the test case generation
strategies represented by the previously described in-
ference rules.

5.3 Test Case Evaluation

To generate the test cases, a total of 40 inference rules
were used. Together, they generated 37 test cases
for 32 requirements. The corresponding test cases
were reproduced in plain English, approximating the
format described in the STD document (provided by
Saab Avionics). To illustrate the similarity between
the two representations, one specific requirement, the
SRSRS4YY-435, that has a strong resemblance to the
already presented SRSRS4YY-431, is described in this
section. The results from this evaluation can be ob-
served in Table 1 where the text in the left column is
a slightly modified excerpt from the STD document
while the text in the right column is the generated out-
put, after applying some of the inference rules to the
requirements ontology. SRSRS4YY-435 is a require-
ment that is evaluated in one single test case (while
other requirements sometimes need to be tested in
more than one test case), in this occasion test case
STDRS4YY-133. As can be observed in the table, there
is an almost one-to-one correspondence between the
texts in the two columns, something that was posi-
tively commented on by the people at Saab Avion-

ics. Even more so, on some occasions the generated
test case texts indicated a discrepancy to the corre-
sponding test case texts found in the STD document.
These discrepancies were presented to and evaluated
by personnel from Saab Avionics and, on occasions,
the observed discrepancies indicated a minor error in
the STD document. Hence, this evaluation of the cor-
rectness of the generated test cases helped improving
the overall quality of the STD document.

6 CONCLUSIONS

This paper has presented an ontology-based frame-
work for software test automation. The techniques
from the area of knowledge engineering underpin the
proposed framework. Knowledge representation with
formal ontologies is utilized through the whole pro-
cess chain of test automation, from the representa-
tion of software requirements to the representation of
generated test cases. The use of OWL ontologies as
logical models allows for reasoning, which was em-
ployed to generate test cases. To this end, the strate-
gies for test case creation were represented with in-
ference rules that were coded in the Prolog program-
ming language. The Prolog inference engine pow-
ered the application of the rules to the requirements
ontology to derive test cases that were used to pop-
ulate the test case ontology. The preservation of the
OWL axioms in the Prolog program allowed for meta-
reasoning over the predicate statements in the ontol-
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ogy, e.g. SubClassOf or ClassAssertion, and thus for
the alleviation of the constraints of first-order logic.
Test scripts can be created from the test case ontology
in the form of plain text descriptions or executable
scripts. The performed study has shown that via the
application of ontology engineering and logic pro-
gramming, the software testing process can be auto-
mated to a considerable extent.

The proposed framework has been implemented
and evaluated in the OSTAG project. The require-
ments ontology was created to represent the software
requirements specification for hardware controlling
software in the avionics industry. The test case on-
tology was constructed based on the software test de-
scription. The inference rules represented the knowl-
edge acquired from the software testers and provided
test cases. 37 test cases were generated for 32 re-
quirements. During the evaluation, the requirements
ontology, testing strategies and generated test cases
ware verified by domain experts from Saab Avionics.
The evaluations performed on the framework demon-
strated the validity of the overall approach. In par-
ticular, it showed the correctness of the ontology and
the test cases as well as the validity of the test case
generation strategies. In future work the framework
will be evaluated for more testing tasks in different
application areas.

The requirements applied in this paper are writ-
ten in natural language but are still well structured.
That being said, preliminary studies have showed that
different levels of requirements are written in dif-
ferent ways. For example low-level requirements,
like the example presented in this paper, are usu-
ally well-structured while high-level requirements are
not. Thus, the created ontology development pro-
cess is not capable of processing these different types
of requirement in an optimal way. A preliminary
study (Zimmermann, 2017) has indicated that exploit-
ing standard ontological resources for natural lan-
guage processing, such as FrameNet (Baker et al.,
1998; Ruppenhofer et al., 2006), could be a solu-
tion when extracting and annotating the meaning of a
high-level requirement in the best possible way while
a lightweight ontology, or embedding rich meta-data
within requirements documents, could efficiently sup-
port test case generation methods. Yet another ap-
proach could be to limit the complexity and the ex-
pressiveness that can be found in several high-level
requirements by relying on requirement boilerplates
(on a syntactic level) or requirement patterns (on a
semantic level) when writing the requirements (Far-
feleder et al., 2011; Arora et al., 2014; Böschen et al.,
2016).

Although the framework presented in this paper

proved to be effective for test automation, we identi-
fied two bottlenecks of the approach during our work
on the industrial application. The first relates to
manual ontology construction and the second to test
strategies acquisition. Both activities are resource in-
tensive when carried out manually. While general test
strategies need to be acquired once, there are many
domain specific strategies. Thus, our future work will
focus on overcoming these deficiencies. Firstly, as al-
ready mentioned in Section 4.2, the work has been
initiated on ontology learning, to semi-automatically
create requirements ontologies from semi-structured
documents. Secondly, the acquisition of inference
rules for test case generation will be investigated
by learning from examples with the help of induc-
tive logical programming and other machine learn-
ing methods. It might also be of interest to apply the
method on other, diverse applications, to prove its va-
lidity.
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