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Abstract: Many real-world global optimization problems are too complex for comprehensive analysis and are viewed 

as “black-box” (BB) optimization problems. Modern BB optimization has to deal with growing 

dimensionality. Large-scale global optimization (LSGO) is known as a hard problem for many optimization 

techniques. Nevertheless, many efficient approaches have been proposed for solving LSGO problems. At the 

same time, LSGO does not take into account such features of real-world optimization problems as constraints. 

The majority of state-of-the-art techniques for LSGO are based on problem decomposition and use 

evolutionary algorithms as the core optimizer. In this study, we have investigated the performance of a novel 

decomposition-based approach for constrained LSGO (cLSGO), which combines cooperative coevolution of 

SHADE algorithms with the ε-constraint handling technique for differential evolution. We have introduced 

some benchmark problems for cLSGO, based on scalable separable and non-separable problems from IEEE 

CEC 2017 benchmark for constrained real parameter optimization. We have tested SHADE with the penalty 

approach, regular ε-SHADE and ε-SHADE with problem decomposition. The results of numerical 

experiments are presented and discussed. 

1 INTRODUCTION 

Many global optimization problems are too complex 

for comprehensive analysis. For some problems, we 

cannot discover any useful features for choosing a 

proper optimization approach and tuning its 

parameters, even the objective function is defined 

analytically. For many real-world optimization 

problems, the objective function is defined 

algorithmically or its value is assigned as a result of 

experiments. Such problems usually are viewed as 

“black-box” (BB) optimization problems. There exist 

many efficient techniques for different classes of 

global BB optimization, and, today, nature-inspired 

stochastic population-based algorithms have become 

very popular in this field. 

Evolutionary algorithms (EAs) have proved their 

efficiency at solving many complex real-world 

optimization problems. However, their performance 

usually decreases when the dimensionality of the 

search space increases. Global BB optimization 

problems with many hundreds or thousands of 
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objective variables are called large-scale global 

optimization (LGSO) problems. There exist many 

efficient LSGO techniques (Mahdavi et al., 2015), 

and the majority of them are based on the problem 

decomposition concept using cooperative 

coevolution (CC). At the same time, LSGO does not 

take into account many features of real-world 

optimization problems. In this study, we will expand 

the concept of LSGO with constraint handling. 

At the present time, constrained LSGO (cLSGO) 

is not studied. In this paper, we will introduce new 

test problems for cLSGO, which are based on scalable 

separable and non-separable problems from IEEE 

CEC 2017 benchmark for constrained real parameter 

optimization. We will investigate the performance of 

solving cLSGO problems using one of the best self-

adaptive differential evolution (DE) algorithm, 

namely Success-History Based Parameter Adaptation 

for Differential Evolution (SHADE). We will 

combine SHADE with the ε-constraint handling 

technique for DE. We will compare the performance 

of the standard SHADE and SHADE with 

decomposition-based CC. Our hypothesis is that such 
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a combination of the constraint handling and LSGO 

approaches can deal with cLSGO problems and can 

improve the performance of the standard constraint 

handling techniques. 

The rest of the paper is organized as follows. 

Section 2 describes related work. Section 3 describes 

the proposed approach and experimental setups. In 

Section 4, the experimental results are presented and 

discussed. In the conclusion, the results and further 

research are discussed. 

2 RELATED WORK 

There exist a great variety of different LSGO 

techniques that can be combined in two main groups: 

non-decomposition methods and cooperative 

coevolution algorithms. The best results and the 

majority of approaches are presented by the second 

group. The CC methods decompose LSGO problems 

into low dimensional sub-problems by grouping the 

problem subcomponents. CC consists of three general 

steps: problem decomposition, subcomponent 

optimization and subcomponent coadaptation 

(merging solutions of all subcomponents to construct 

the complete solution) (Mahdavi et al., 2015; Potter 

and De Jong, 2000; Yang et al., 2008). 

DE is an evolutionary algorithm proposed for 

solving complex continuous optimization problems 

(Storn and Price, 2002). DE is also used for solving 

LSGO problems (Yang et al., 2007). Many modern 

DE-based approaches use different schemes for self-

adaptation of parameters. In (Tanabe and Fukuna, 

2013), authors have proposed a new self-adaptive DE 

with success-history titled as SHADE. SHADE is 

able to tune scale-factor F and crossover rate CR 

parameters using information from previous 

generations. SHADE also uses an external archive for 

saving improved solutions, which are used for 

maintaining diversity in the population. SHADE has 

demonstrated high performance for many hard BB 

optimization problems. 

There exist many well-studied techniques for 

handling constraints (Coello, 2002). In (Takahama et 

al., 2006), a new DE-based approach for constrained 

optimization has been proposed. The approach 

applies the ε-level comparison that compares search 

points based on the constraint violation. ε-DE 

outperforms many standard penalty-based and other 

techniques for constrained optimization. 

 

 

3 PROPOSED APPROACH AND 

EXPERIMENTAL SETUPS 

3.1 Test Functions for cLSGO 

In this paper, the following constrained optimization 

problem is discussed: 

𝑓(𝑋) → min
𝑋∈𝑆

 (1) 

where 𝑓(𝑋)  is an objective function, 𝑋 =
(𝑥1, 𝑥2, … , 𝑥𝑛) is a candidate solution to the problem, 

𝑆 is the feasible search space defined by the following 

inequality and equality constraints: 

𝑔𝑖(𝑋) ≤ 0, 𝑖 = 1, … , 𝑝 (2) 

ℎ𝑗(𝑋) = 0, 𝑗 = 𝑝 + 1, … , 𝑚 (3) 

Because of the problem of rounding in computer 

calculations, a solution is regarded as feasible if all 

inequality constraints are satisfied and |ℎ𝑗(𝑋)| − 𝜖 ≤

0. We do not use any assumption on properties of the 

objective function and constraints, thus they are 

viewed as BB models. 

There exist popular benchmarks for LSGO and 

for constrained real parameter optimization, proposed 

within special sessions and competitions of the IEEE 

CEC conference. The combination of constrained and 

large-scale global optimization problems proposed in 

the paper is not studied, and a benchmark for cLSGO 

is not proposed yet. 

The IEEE CEC 2013 LSGO benchmark contains 

1000-dimensional single-objective non-constrained 

problems (Li et al., 2013). Introducing constraints for 

these problems needs performing analysis of feasible 

and infeasible domains of the search space. 

Unfortunately, CEC LSGO problems are defined 

algorithmically, thus we cannot perform 

comprehensive mathematical analysis. Experimental 

analysis is also almost impossible because fitness 

evaluations need huge computational efforts. 

In this study, we will design new test problems for 

cLSGO based on the benchmark, proposed for the 

IEEE CEC Competition on Constrained Real 

Parameter Optimization in 2017 (Wu et al., 2016). 

The benchmark contains 28 constrained optimization 

problems. Although the problems have been 

developed as scalable, 14 problems use 

transformation matrixes, which are defined only for 

10, 30, 50 and 100 dimensions. All problems that 

don’t use a transformation matrix, are included in our 

set of cLSGO problems with 1000 dimensions. Some 

details on the problems are presented in Table 1. 
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Table 1: Test functions for cLSGO. 

cLSGO 

problem 

Original constrained 

problem 
Objective type 

The number and a type of constraints 

Equality Inequality 

cLSGO01 С01 Non-separable 0 1, Separable 

cLSGO02 С02 Non-separable 0 1, Non-separable 

cLSGO03 С04 Separable 0 2, Separable 

cLSGO04 С06 Separable 6, Separable 0 

cLSGO05 С08 Separable 2, Non-separable 0 

cLSGO06 С12 Separable 0 2, Separable 

cLSGO07 С13 Non-separable 0 3, Separable 

cLSGO08 С14 Non-separable 1, Separable 1, Separable 

cLSGO09 С15 Separable 1 1 

cLSGO10 С16 Separable 1, Non-separable 1, Separable 

cLSGO11 С17 Non-separable 1, Non-separable 1, Separable 

cLSGO12 С18 Separable 1 2, Non-separable 

cLSGO13 С19 Separable 0 2, Non-separable 

cLSGO14 С20 Non-separable 0 2 

 
The performance evaluation criteria are the same 

as in the rules of the Competition on Constrained Real 

Parameter Optimization. 

Maximum function evaluations in a run are set to 

3E+06 as in the rules of the IEEE CEC 2010 and 2013 

LSGO benchmarks. The dimensionality is equal to 

1000 as in the IEEE CEC LSGO Competitions.  

The tolerance threshold 𝜖  for all equality 

constraints is equal to 0.0001. 

For each test problem, the following performance 

criteria are evaluated over 25 independent runs: 

1. best, median, worst solutions, mean value and 

standard deviation; 

2. the mean violations at the median solution 

(denoted as �̅�); 

3. the mean constraint violation value of all the 

solutions of 25 run (denoted as 𝑣𝑖𝑜̅̅ ̅̅ ); 

4. the feasibility rate of the solutions obtained in 25 

runs (denoted as 𝑆𝑅). 

The mean violations for a solution 𝑋 is calculated 

using (4). 

𝑣 =
∑ 𝐺𝑖(𝑋) + ∑ 𝐻𝑗(𝑋)𝑚

𝑗=𝑝+1
𝑝
𝑖=1

𝑚
 (4) 

where 

𝐺𝑖(𝑋) = {
𝑔𝑖(𝑋), 𝑖𝑓 𝑔𝑖(𝑋) > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5) 

ℎ𝑗(𝑋) = {
|ℎ𝑗(𝑋)|, 𝑖𝑓 |ℎ𝑗(𝑋)| − 𝜖 > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (6) 

All estimations of the performance are based on 

the idea that feasible solutions are preferable than 

infeasible solutions. For sorting obtained solutions 

we will use the following scheme: 

1. Sort feasible solutions in front of infeasible 

solutions; 

2. Sort feasible solutions according to their objective 

function values; 

3. Sort infeasible solutions according to their mean 

value of the violations of all constraints. 

3.2 Decomposition-based Approach for 
cLSGO 

In this study, we will develop and investigate the 

following approach for solving cLSGO problems.  

We will apply the problem decomposition 

concept using CC. The problem decomposition is 

applied for dealing with the high dimensionality of 

LSGO. The number of subcomponents (groups of 

objective variables) is the controlled parameter of the 

proposed algorithm. 

Each subcomponent in CC will be optimized 

using SHADE algorithm. SHADE is a self-adaptive 

approach, thus its only controlled parameter is the 

population size. We will apply the ԑ constrained DE 

technique for constraint handling. The technique 

modifies the selection stage in DE in the following 

way: 

(𝑓(𝑋1), 𝑣(𝑋1)) <𝜀 (𝑓(𝑋2), 𝑣(𝑋2)) ⟺

⟺ {

𝑓(𝑋1) < 𝑓(𝑋2), 𝑖𝑓 𝑣(𝑋1), 𝑣(𝑋2) ≤ 𝜀 

𝑓(𝑋1) < 𝑓(𝑋2), 𝑖𝑓 𝑣(𝑋1) = 𝑣(𝑋2)
𝑣(𝑋1) < 𝑣(𝑋2), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (7) 

The parameter 𝜀 in this study is defined using the 

following scheme. On each iteration after fitness and 

constraint violations evaluations, we sort all 𝑣  in 

ascending order, and apply the formula (8). 
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𝜀 = {
Ε, 𝑖𝑓 𝑖𝑡𝑒𝑟 ≤ 0.8 ∙ 𝑀𝑎𝑥𝐹𝐸𝑉

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

Ε = ((1 −
𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝐹𝐸𝑉
)

3

∙ 𝑣(𝑋[𝜃∙𝑝𝑜𝑝𝑠𝑖𝑧𝑒])) 

(8) 

 

where 𝑖𝑡𝑒𝑟  is a counter of fitness evaluations, 

𝑀𝑎𝑥𝐹𝐸𝑉  is the maximum number of fitness 

evaluations, 𝑣(𝑋[𝜃∙𝑝𝑜𝑝_𝑠𝑖𝑧𝑒]) is a violation value for 

solution 𝑋  with index [𝜃 ∙ 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒]  after sorting, 

𝑝𝑜𝑝_𝑠𝑖𝑧𝑒 is the population size, and 𝜃 is equal to 0.8. 

Thus, 𝜀 is decreased at the final iterations and the 

search process is being concentrated in the feasible 

domain of the search space. 

We will perform all experiments with population 

size equal to 50. This number is chosen in order to 

supply each adaption period in CC with enough 

fitness evaluations. The number of subcomponents in 

experiments is equal to 2, 4, 8, 10 and 20 (denoted as 

ԑ-CC-SHADE( 𝑘 ), where 𝑘  is the number of 

subcomponents). Also we will evaluate the 

performance for SHADE without problem 

decomposition (denoted as ԑ-SHADE). 

4 EXPERIMENTAL RESULTS 

AND DISCUSSION 

We have performed experiments for all algorithms 

using the proposed cLSGO benchmark. First, we have 

compared algorithms by the 𝑆𝑅  measure. The 

experimental results have shown that feasibility rate 

varies for  test  functions.  The  hardest  problems for 

investigated algorithms are 4, 5, 7 and 11-13. We 

have averaged all 𝑆𝑅  values over all problems, the 

average and median results are presented in Figure 1. 

The best results are obtained by ԑ-CC-SHADE with 

problem decomposition and the number of 

subcomponents equal to 4, 8 and 10. Thus, the 

decomposition-based algorithms outperform the 

standard approach. 

We have analysed convergence graphs for the 

average fitness and violation in the runs. As we have 

found in the figures, the proposed approach is able to 

improve constraint violations and fitness value 

simultaneously almost for all functions. An example 

of the dynamic for cLSGO07 is presented in Figures 

2 and 3. For some problems (for instance, cLSGO04) 

searching for feasible solutions is more difficult, and 

the fitness value changes slower than constraint 

violations do. 

Next, we have ranked all algorithms by the 

median best-found objective value and its 

corresponding mean violations (�̅�). We have applied 

the ranking scheme discussed in the previous section. 

Distributions of ranks and the average ranks are 

presented in Figures 4 and 5. 

As we can see in figures, ԑ-CC-SHADE 

algorithms with the number of subcomponents equal 

to 4, 8 and 10 outperform other algorithms and 

demonstrate more stable results in the runs. 

We have also estimated is there a statistically 

significant difference in the results. We have applied 

the Wilcoxon-Mann-Whitney test with the 

significance level equal to 0.05. Tables 2 and 3 

present the results of performing the test. 

 

Figure 1: Algorithms comparison by feasibility rate SR. 
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Figure 2: Average fitness convergence for cLSGO07. 

 

Figure 3: Mean violations convergence for cLSGO07. 

 

Figure 4: Distributions of ranks. 
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Figure 5: Algorithms comparison by ranks. 

Table 2: The number of test problems, for which the performance of an algorithm in a row is significantly better than the 

performance of an algorithm in a column. 

 ԑ-SHADE ԑ-CC-SHADE(2) ԑ-CC-SHADE(4) ԑ-CC-SHADE(8) ԑ-CC-SHADE(10) ԑ-CC-SHADE(20) 

ԑ-SHADE - 3 3 3 3 5 

ԑ-CC-SHADE(2) 10 - 4 5 4 6 

ԑ-CC-SHADE(4) 10 9 - 4 4 7 

ԑ-CC-SHADE(8) 10 8 8 - 2 8 

ԑ-CC-SHADE(10) 9 8 7 4 - 7 

ԑ-CC-SHADE(20) 8 6 3 3 3 - 

Table 3: The number of test problems, for which there is no statistically significant difference in the algorithms performance. 

 ԑ-SHADE ԑ-CC-SHADE(2) ԑ-CC-SHADE(4) ԑ-CC-SHADE(8) ԑ-CC-SHADE(10) ԑ-CC-SHADE(20) 

ԑ-SHADE - - - - - - 

ԑ-CC-SHADE(2) 1 - - - - - 

ԑ-CC-SHADE(4) 1 1 - - - - 

ԑ-CC-SHADE(8) 1 1 2 - - - 

ԑ-CC-SHADE(10) 2 2 3 8 - - 

ԑ-CC-SHADE(20) 1 2 4 3 4 - 

Table 4: The experimental results for ԑ-CC-SHADE(8). 

Function 1 2 3 4 5 6 7 

Best 4.88E+04 8.28E+07 4.98E+03 1.82E+05 1.01E+02 2.82E+00 2.48E+07 

Median 8.20E+04 1.91E+08 5.43E+03 1.63E+05 1.52E+02 3.22E+00 7.03E+07 

�̅� 0.00E+00 0.00E+00 0.00E+00 9.75E-02 1.39E+05 0.00E+00 2.28E+03 

Mean 8.41E+04 2.26E+08 5.39E+03 1.78E+05 1.32E+02 3.95E+00 5.49E+07 

Worst 0.00E+00 0.00E+00 0.00E+00 9.75E-02 1.39E+05 0.00E+00 2.28E+03 

std 8.41E+04 2.26E+08 5.39E+03 1.78E+05 1.32E+02 3.95E+00 5.49E+07 

SR, % 100 96 100 0 0 100 0 

𝑣𝑖𝑜̅̅ ̅̅  0.00E+00 3.08E-06 0.00E+00 9.77E-02 7.32E+05 0.00E+00 2.28E+03 

Function 8 9 10 11 12 13 14 

Best 2.68E-01 3.06E+01 6.87E+03 2.00E+00 5.58E+02 3.88E+02 2.26E+02 

Median 2.72E-01 4.95E+01 7.09E+03 2.00E+00 1.18E+03 5.65E+02 2.29E+02 

�̅� 0.00E+00 0.00E+00 0.00E+00 5.01E+02 2.57E+02 4.91E+05 0.00E+00 

Mean 2.73E-01 4.85E+01 7.08E+03 2.00E+00 1.37E+03 5.80E+02 2.29E+02 

Worst 2.81E-01 3.38E+01 7.35E+03 2.00E+00 3.77E+03 1.04E+03 2.33E+02 

std 3.33E-03 1.14E+01 1.23E+02 1.25E-04 5.92E+02 1.29E+02 2.02E+00 

SR, % 100 92 100 0 0 0 100 

𝑣𝑖𝑜̅̅ ̅̅  0.00E+00 3.40E-06 0.00E+00 5.01E+02 2.63E+02 4.91E+05 0.00E+00 
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Table 5: The experimental results for ԑ-CC-SHADE(10). 

Function 1 2 3 4 5 6 7 

Best 3.81E+04 6.04E+07 4.43E+03 1.78E+05 1.03E+02 2.81E+00 1.69E+07 

Median 6.02E+04 1.34E+08 4.70E+03 1.78E+05 1.37E+02 3.32E+00 2.19E+07 

�̅� 0.00E+00 0.00E+00 0.00E+00 1.02E-01 2.67E+05 0.00E+00 1.75E+03 

Mean 6.58E+04 1.40E+08 4.71E+03 1.78E+05 1.51E+02 6.65E+00 3.71E+07 

Worst 1.19E+05 1.26E+08 5.04E+03 1.79E+05 1.81E+02 2.26E+01 8.86E+07 

std 1.89E+04 6.90E+07 1.51E+02 9.18E+03 2.85E+01 6.99E+00 1.88E+07 

SR, % 100 92 100 0 0 100 0 

𝑣𝑖𝑜̅̅ ̅̅  0.00E+00 4.05E-06 0.00E+00 1.11E-01 2.36E+06 0.00E+00 1.75E+03 

Function 8 9 10 11 12 13 14 

Best 2.72E-01 3.06E+01 6.79E+03 2.00E+00 5.59E+02 4.20E+02 2.25E+02 

Median 2.77E-01 4.01E+01 7.11E+03 2.00E+00 9.60E+02 6.24E+02 2.31E+02 

�̅� 0.00E+00 0.00E+00 0.00E+00 5.01E+02 1.88E+02 4.91E+05 0.00E+00 

Mean 2.77E-01 3.98E+01 7.09E+03 2.00E+00 1.10E+03 6.92E+02 2.30E+02 

Worst 2.80E-01 3.06E+01 7.39E+03 2.00E+00 4.38E+03 1.53E+03 2.35E+02 

std 1.91E-03 6.21E+00 1.26E+02 3.17E-05 7.42E+02 2.47E+02 2.86E+00 

SR, % 100 88 100 0 0 0 100 

𝑣𝑖𝑜̅̅ ̅̅  0.00E+00 9.92E-06 0.00E+00 5.01E+02 1.91E+02 4.91E+05 0.00E+00 

�̅� 0.00E+00 0.00E+00 0.00E+00 5.01E+02 1.88E+02 4.91E+05 0.00E+00 

Mean 2.77E-01 3.98E+01 7.09E+03 2.00E+00 1.10E+03 6.92E+02 2.30E+02 

Worst 2.80E-01 3.06E+01 7.39E+03 2.00E+00 4.38E+03 1.53E+03 2.35E+02 

std 1.91E-03 6.21E+00 1.26E+02 3.17E-05 7.42E+02 2.47E+02 2.86E+00 

SR, % 100 88 100 0 0 0 100 

𝑣𝑖𝑜̅̅ ̅̅  0.00E+00 9.92E-06 0.00E+00 5.01E+02 1.91E+02 4.91E+05 0.00E+00 

 

In comparisons of ԑ-SHADE with all other CC 

algorithms, all differences in the results are 

significant except one function. Thus we can 

conclude that the problem decomposition using CC 

improves the performance of DE when solving 

cLSGO problems. 

ԑ-CC-SHADE(2) and ԑ-CC-SHADE(20) have 

demonstrated the worst results. They have the equal 

number of wins, and there are only two functions with 

not significant differences in the performance. 

The best performance has been demonstrated by 

ԑ-CC-SHADE(8) and ԑ-CC-SHADE(10). We cannot 

conclude which one is better because there are 8 

functions from 14 for which differences in the 

performance are not significant. Full experimental 

results for these algorithms are presented in Tables 4 

and 5. 

Finally, we have compared ԑ-CC-SHADE with 

the best settings and SHADE using the dynamic 

penalty function approach (Coello, 2002). The 

penalty function is the well-studied and widely used 

approach by many researchers and applied specialists, 

thus we can use it as a baseline approach for cLSGO. 

In our experiments, SHADE with the penalty function 

has demonstrated the worst performance. The 

feasibility rate 𝑆𝑅  was equal to zero for all test 

problems, except 3rd (𝑆𝑅=32) and 14th (𝑆𝑅=8). For 

these two problems, all decomposition-based 

algorithms have demonstrated 𝑆𝑅=100. 

5 CONCLUSIONS 

In this paper, we have presented the experimental 

results of investigating a new class of complex global 

BB optimization problems that combines high 

dimensionality and constraint handling. We have 

developed new test functions based on the popular 

benchmark for constrained optimization. We have 

proposed a novel decomposition-based approach, 

which uses SHADE algorithm with CC and the ε level 

comparison of constraint violations. 

The experimental results have shown that the 

proposed approach is able to efficiently solve cLSGO 

problems, and CC with problem decomposition 

improves the performance of applying search 

algorithms with constraint handling. 

In further work, we will investigate more 

advanced CC approaches with adaptive grouping. 
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