
Software Modularity Coupling Resolution by the Laplacian of a
Bipartite Dependency Graph

Iaakov Exman and Netanel Ohayon
Software Engineering Dept., The Jerusalem College of Engineering – JCE-Azrieli, Jerusalem, Israel

Keywords: Modularity, Dependency Graph, Bipartite Dependency Graph, Laplacian Matrix, Eigenvectors, Coupling
Types, Coupling Resolution, Bipartition Idea.

Abstract: Software modularity by pinpointing and subsequent resolution of the remaining coupling problems is often
assumed to be a general approach to optimize any software system design. However, software coupling
types with differing specific characteristics, seemingly pose serious impediments to any generic coupling
resolution approach. Despite the diversity of types, this work proposes a generic approach to solve any
coupling type in three steps: a- obtain the Dependency graph for the coupled modules; b- convert the
dependency graph into a Bipartite Graph; c- generate the Laplacian Matrix from the Bipartite Graph.
Coupling problems to be resolved are then located, using Laplacian eigenvectors, in particular the Fiedler
eigenvector. The generic approach is justified, explained in detail, and illustrated by a few case studies.

1 INTRODUCTION

On the way to formulate a generic, linear algebraic
theory of software composition, it was natural to
start from basic notions of object-oriented design,
such as classes and their methods. The columns and
rows of matrices, representing hierarchical levels of
software systems, stand for generalizations of
classes and their methods (Exman, 2013), as shown
in sub-section 1.1 on the Laplacian matrix (Exman
and Sakhnini, 2016, 2018).

But, one would expect a more comprehensive
theory of software systems composition to treat,
besides classes and methods, additional concepts
considered coupling causes.

The existence of different coupling types –
concisely reviewed in Sub-section 1.2 – responsible
for a variety of obstacles to software system design,
led researchers to assume that a generic solution to
software coupling would be difficult to achieve.

The generic resolution of coupling problems is
the goal of this paper, as stated in sub-section 1.3.
Indeed, it is attainable by the combination of a
dependency graph displaying couplings of any type,
with the computational techniques offered by the
Laplacian matrix, itself generated from graphs,
obtaining the desired generic coupling resolution
approach.

1.1 Laplacian Matrix Concepts

Software systems are assumed to be hierarchical,
with the lowest level composed of classes and their
methods. Going upwards, with increasing
abstraction, classes are clustered into modules, in
turn further clustered into bigger modules, sub-
systems and finally the whole software system.

There are a few ways to formally represent an
abstraction level. This paper focuses on two kinds of
display: a bipartite graph and a Laplacian Matrix.

A bipartite graph (Weisstein, 2019a) contains
two sets of entities; each entity, shown as a graph
vertex, is linked by edges only to entities in the other
set. Typical entities are a set of structors denoted by
Sk, a generalization of classes for any level, and a set
of functionals denoted by Fj, a generalization of
class methods. Edges link classes to the methods
they provide. An abstract bipartite graph in Fig. 1,
shows modules, their structors and functionals.

A Laplacian Matrix L (Weisstein, 2019b) is
generated from a graph according to equation (1):

L D A (1)

where D is the Degree Matrix showing the degree
Deg(vi) of vertex vi in its diagonal element Dii. A is
the Adjacency Matrix, with Aij = 1 for each i, j
vertex pair in the graph, and Aij = 0 otherwise.

298
Exman, I. and Ohayon, N.
Software Modularity Coupling Resolution by the Laplacian of a Bipartite Dependency Graph.
DOI: 10.5220/0007955802980305
In Proceedings of the 14th International Conference on Software Technologies (ICSOFT 2019), pages 298-305
ISBN: 978-989-758-379-7
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Figure 1: Schematic bipartite graph of a software system –
it shows 6 structors (S1 to S6), 6 functionals (F1 to F6)
and 4 modules (M1 to M4), separated by the underlying
(blue) rectangles. (Color online).

The Laplacian Matrix (Fig. 2) is generated from
the bipartite graph (Fig.1). Properties of interest are:

 The Laplacian matrix is symmetric;

 The number of modules in a Laplacian – i.e. the
graph connected components – is the number of
zero-valued Laplacian eigenvalues.

 The Fiedler vector (Fiedler, 1973) (de Abreu,
2007) fits the 1st positive Laplacian eigenvalue;
its vector element signs (positive/negative)
enable splitting a module into smaller modules.

Note that modules may contain smaller “modules”.
To avoid confusion we may denote smaller ones by
vertices, reserving the modules term for larger ones.

Figure 2: Schematic Laplacian Matrix generated from the
bipartite graph in Fig. 1 – It has a diagonal Degree matrix
(green background) and an Adjacency matrix (blue
background) with minus signs by eq. (1). All matrix
elements outside modules are zero-valued. (color online).

1.2 Software Coupling Types

Any list of coupling types is forcefully partial, due
to diverse views of different authors, techniques and
classification criteria – e.g. (Coupling-Wiki, 2019).
The coupling types listed in this sub-section is a
sample of the diversity, rather than a comprehensive

list. It includes, among others:

 Common Coupling – several modules access the
same global data;

 Content Coupling – one module uses the code of
other module; see below the similar CBO;

 Control Coupling – one module controls the
flow of another, by passing a what-to-do-flag;

 Coupling Between Objects (CBO) – methods of
one class call methods or access variables of
another class;

 Data Coupling – modules share data through
parameters;

 External Coupling – two modules share an
externally imposed data format;

 Stamp Coupling – modules share a composite
data structure and use only parts of it;

1.3 Goal of this Paper

This paper goal is to propose a generic approach to
coupling resolution, independent of specific
coupling types. It assumes the following premises:

 Dependency Graph – any coupling type can be
represented by a dependency graph;

 Bipartite Graph – any dependency graph can be
converted into a generic bipartite graph;

 Laplacian Analysis – one can analyse a bipartite
graph by its Laplacian matrix;

 Coupling Resolution – combines data from the
dependency and its bipartite graph.

1.4 Paper Organization

The remaining of this paper is organized as follows.
Section 2 mentions related work. Section 3 presents
the approach by means of an introductory running
example. Section 4 states preliminary theoretical
considerations and the generic procedure to coupling
resolution. Section 5 analyses case-studies. Section 6
is a discussion concluding the paper.

2 RELATED WORK

2.1 Coupling Type Classifications

An elementary coupling type classification is found
in (Coupling-Wiki, 2019). The literature up to now
informally defined coupling. For instance, in the
GoF Design Patterns book (Gamma et al., 1995)
glossary: “coupling is the degree to which software

Software Modularity Coupling Resolution by the Laplacian of a Bipartite Dependency Graph

299

components depend on each other”. It justifies our
use of the linear algebra notion of “linear
dependence” to formalize coupling.

Still, most works on this topic are empirical. An
example is (Beck and Diehl, 2011) stating that
software systems are modularized to make their
complexity manageable; but, as guiding principles
were not known, they look at different kinds of
coupling in their study. Another example of an
empirical study is by (Bavota et al., 2013).

2.2 Graph Techniques

The Program Dependence Graph (PDG) is reviewed
by (Ferrante et al., 1987). PDG is an intermediate
program representation exposing both data and
control dependencies of operations in a program. In
principle, this could be a starting point to a generic
resolution of dependencies.

A precise Bipartite Graph definition is found in
(Weisstein, 2019a). Bipartite Graphs have appeared in
many contexts. Obtaining bipartite graphs from other
graphs is relevant to this work. (Huffner, 2009) finds
the minimum vertex set to be deleted to get a bipartite
graph. From another viewpoint, (Guillaume and
Latapy, 2004) claim that any complex networks can
be viewed as bipartite structures.

2.3 Laplacian Matrix Techniques

Laplacian Matrix spectral techniques have been used
in various fields, including software engineering. A
survey on Laplacian graphs is (Merris, 1994).

A spectral clustering tutorial in (von Luxburg,
2007), stresses the Laplacian. Another review on
spectral clustering for software engineering,
especially the Laplacian, is found in (Shtern and
Tzerpos, 2012).

Ng et al., (2001) deal with spectral clustering,
analysing an algorithm, explicitly referring to the
Laplacian. Shokoufandeh et al., (2005) extract a
Module Dependency Graph (MDG) from software
source code for clustering into MDG partitions.
Their Modularization Quality criterion is
reformulated as a Laplacian eigenvalue problem.

3 A RUNNING EXAMPLE

A small Chatroom software system exemplifies our
generic approach, illustrating "coupling between
objects". The chatroom concept is from the web and
was implemented by this paper's authors in C#.

3.1 Dependency Graphs

Initially one describes a system of any coupling type
by a dependency graph. We consider two cases:

 Mutual Module Dependency – in this case (e.g.
content, control, CBO and data coupling) an
arrow points from the dependent vertex to the
independent vertex;

 Two or More Modules Dependent on a 3rd Party
Entity – here (e.g. common, external and stamp
coupling) arrows point from dependent modules
to the 3rd party entity.

In either case one obtains a dependency graph – a
directed graph with arrows showing dependencies
between graph vertices. All coupling types are
reduced to the same generic kind of dependency
graph. Fig. 3 shows the Chatroom dependency.

Figure 3: Chatroom Dependency Graph – Arrows point
from each dependent vertex to independent vertices: e.g. the
“History” vertex is dependent on “File-Saver”.

3.2 Bipartite Graphs

In order to obtain a unique bipartite graph, from a
dependency graph, one does the following actions:
 Duplicate Each Dependency Graph Vertex into a

Vertex Pair – keep each original vertex and
another copy, prefixing with a "d" (dependent) the
original vertex name;

 Obtain Two Sets of Vertices of the Same Size –
one independent, another dependent;

 Copy Each Dependency Graph Arrow to the
Bipartite Graph – each arrow points from a
dependent vertex to an independent one.

Fig. 4 illustrates the Chatroom bipartite graph
corresponding to the dependency graph in Fig. 3.

ICSOFT 2019 - 14th International Conference on Software Technologies

300

Figure 4: Chatroom Bipartite Graph – Arrows point from a
"D" dependent vertex to an "N" non-dependent vertex.
The bipartite graph itself already separates vertices into
two "modules" (blue background). Isolated vertices (N1-
BasicUser and D5-dFileSaver) are not connected at all to
other vertices. (color online).

3.3 Laplacian Matrix, Its Eigenvalues
and Eigenvectors

A software system Laplacian Matrix is generated
from its Bipartite Graph as follows:

 Choose All Vertices with at Least one
Connection Arrow - to the other bipartite graph
vertex set; ignore isolated vertices;

 Count Connection Arrows Per Vertex – to
obtain the Degree matrix;

 List Neighbours of Each Vertex – to obtain the
Adjacency matrix;

 Generate the Laplacian – inserting Degree and
Adjacency matrix values in eq. (1).

The Chatroom Laplacian Matrix in Fig. 5 was
generated from the Bipartite Graph in Fig. 4.

Figure 5: Chatroom Laplacian Matrix – Matrix generated
from the Bipartite Graph in Fig. 4. All matrix elements
outside modules are zero-valued. (color online).

Figure 6: Chatroom Laplacian Eigenvectors – Two
eigenvectors fit the two zero-valued eigenvalues. Each
eigenvector shows one of the connected components; for
instance, the 2nd eigenvector vertices are (D4, N5).

The number of zero-valued eigenvalues of this
matrix gives the number of its connected
components. Calculation obtains 2 such eigenvalues.
The respective eigenvectors are seen in Fig 6.

The Fig. 6 eigenvectors show the connected
components – the Chatroom modules – neatly
corresponding to the Fig. 4 modules. A more
detailed case study analysis is done in section 5.

4 THEORETICAL
CONSIDERATIONS AND
GENERIC PROCEDURE

4.1 Modules Bipartition

The first generic procedure step to deal with module
coupling obtains a dependency graph. This is a
necessary information collection step, telling which
modules are dependent on other ones.

This work central innovative idea is the
transition from a dependency to a bipartite graph.

Bipartition contributes to modules decoupling,
which is somewhat surprising since no new specific
software system information is added in the
transition from the dependency to its bipartite graph.

The next lemma states bipartition uniqueness.

Proof:
The proof is by construction.
Forward Direction – Duplicate all the dependency
graph vertices, into a list of vertex pairs. Prefix the
name of the 1st element of each vertex pair by the
letter "d" (for dependent). One obtains two vertex
sets – a dependent and a non-dependent set – of
equal size. Scan top-down and left-to-right, copying
each dependency graph arrow to a single arrow
linking a dependent to a non-dependent vertex. The
result is the unique bipartite graph.
Backward Direction – Take only the bipartite graph
set of non-dependent vertices. Copy this set to a
fresh vertex set in a blank area.
Scan left-to-right, the bipartite graph arrows; copy
each bipartite graph arrow to the respective elements

Lemma 1: Unique directed Bipartite Graph
from Coupling Dependency Graph
The bipartite graph, linking a set of vertices
standing for dependent modules to another set of
vertices standing for non-dependent modules,
generated from a given Coupling Dependency
Graph, is unique.

Software Modularity Coupling Resolution by the Laplacian of a Bipartite Dependency Graph

301

of the fresh vertex set. The result restores the initial
forward direction dependency graph.

Now we state some convenient definitions about
possible components of the bipartite graph. These
definitions are better understood, when illustrated by
the vertices of Fig. 4.

4.2 Laplacian Matrix for Modules
Decoupling

Having a directed bipartite graph fitting the modules
dependency graph of a software system, one
generates the bipartite graph Laplacian matrix and
calculates the system modules number and sizes.

Proof:
The straightforward proof is again by construction.
From the directed bipartite graph:

a. Generate the Adjacency Matrix;

b. Generate the Degree Matrix D;

c. Generate the Laplacian by equation (1) of
section 1.1, viz. L D A .

This construction is illustrated e.g. in Fig. 5.
It is straightforward to obtain the number of the

software system modules and their sizes from the
Laplacian Matrix. This is given by the next theorem.

Proof:
Decoupling modules are connected components of
the directed bipartite graph generated in turn from
the respective dependency graph. The Laplacian is
obtained from this bipartite graph. This theorem
directly follows from the Laplacian matrices spectral
theorem, see e.g. (von Luxburg, 2007) page 4,
proposition 2. The number of a graph connected
components is the number of its Laplacian zero-
valued eigenvalues. Component sizes are obtained
from the respective eigenvectors.

Some specific cases of decoupling modules
recognized by the relevant Laplacian Matrix are
mentioned in Lemma 3.

Proof:
These decoupled modules are recognized as
connected components

4.3 Generic Coupling Resolution
Procedure

Our generic coupling resolution procedure consists
in a series of steps, which were presented and
illustrated in previous sections.

The main steps consisting of:

 generation of the bipartite graph from the
dependency graph;

Definitions 1: Bipartite Graph Components
Convergence Point – this is a non-dependent
vertex to which at least two arrows point;
Divergence Point – this is a dependent vertex
from which at least two arrows point to two non-
dependent vertices;
Simple arrow – this is a single arrow linking one
dependent vertex to one non-dependent vertex;
Isolated dependent vertex - it is a named "d"
vertex that actually has no arrow linking to a
non-dependent vertex;
Isolated non-dependent vertex - it is a vertex that
actually has no arrow from a dependent vertex;

Theorem 1: Software System decoupling
Modules’ Number and Sizes from the
Laplacian Matrix
The number and sizes of the decoupling modules
of a software system at a given abstraction level
is obtained from the Laplacian Matrix of the
directed bipartite graph generated from its
dependency graph as follows:
The module number is the number of zero-
valued Laplacian eigenvalues;
The module sizes are given by the respective
indicator eigenvectors of the zero-valued
Laplacian eigenvalues.

Lemma 3: Specific decoupling module cases
from the Laplacian Matrix – Specific cases
recognized as individual decoupling modules
are:

a) Simple arrows;
b) Single convergence/divergence point

modules;
c) Composite modules with overlapping

convergence/divergence points;

Lemma 2: Unique Laplacian Matrix from the
Directed Bipartite Graph – a unique Laplacian
is generated from the directed Bipartite Graph of
a given software system, while ignoring isolated
vertices.

ICSOFT 2019 - 14th International Conference on Software Technologies

302

 generation of the Laplacian Matrix from the
bipartite graph;

are formal, very precise and represent the novel
contribution of this work.

On the other hand:

 the generation of the dependency graph;
 the information combination from both

dependency and bipartite graphs for coupling
resolution;

 the final coupling resolution by modification of
the software system;

are informal, and demand reasonable judgment
based on the software engineer experience.

Here we finally provide the whole procedure in a
pseudo-code format, in the next box.

The necessity of combining information of the
dependency and the bipartite graphs is illustrated as
follows. Suppose there are two mutually crossing
"simple arrows", viz. from vertex DA to B and from
vertex DB to A. This is the bipartite information, i.e.
apparently two independent modules. But, by the
information given by the dependency graph this is
an obvious problematic cycle that must be resolved.

5 CASE STUDY ANALYSIS

We analyse two case studies. The first is our running
example, the Chatroom. The second is an improved
Chatroom with an added Mediator design pattern.

Figure 7: Chatroom Laplacian Fiedler Eigenvectors –
These eigenvectors enable further splitting of the big
composite module. The Fiedler vector 1 has minus signs
marking vertices (D1, N2, N3). The Fiedler vector 2 marks
vertices (D1, D2, N3). (color online).

5.1 The Chatroom Software System

The modules obtained for Chatroom running
example, by the Laplacian Matrix eigenvectors (in
Fig. 6), correspond to a "simple arrow" – containing
the vertices (D4, N5) – and a "composite module"
with overlapping convergence/divergence points –
containing all the remaining vertices, except the
isolated ones. These comply with Lemma 3.

Additional calculation of Fiedler eigenvectors for
the Chatroom system, obtains the results in Fig. 7.

Note that further splitting by Fiedler vectors
obtains a single divergence point module (D1, N2,
N3) and a single convergence point module (D1, D2,
N3); it again complies with Lemma 3, i.e. modules
are recognized by their relatively dense connections.

5.2 Improved Chatroom with a
Mediator Pattern

An obvious decoupling of the Chatroom "composite
module", in Fig. 4, uses a Mediator Pattern. The
natural Mediator candidate is the Chatroom "vertex"
itself, the medium to exchange User messages.

This simple system has a single Mediator; by the
GoF book (Gamma et al., 1995) a concrete mediator
is enough (no abstract class needed). From the
arrows linked to the User, just one starting from the
ChatMediator is left in Fig. 8. It has a clearer design.

Figure 8: ChatMediator Dependency graph – simplified
dependencies decouple the big "composite" module of the
original Chatroom (in Fig. 3). (Color online).

Generic Coupling Resolution Procedure

Obtain the coupling dependency graph of the software
system;
Translate the coupling dependency graph into a
bipartite dependency graph;
Obtain the Laplacian Matrix from the bipartite graph;
Calculate the eigenvalues and eigenvectors of the
Laplacian Matrix;
Obtain the decoupling modules of the bipartite graph
from the previous eigenvalues and eigenvectors;
If judged necessary: split the decoupling modules
using the Fiedler eigenvector of the Laplacian matrix;
Locate module couplings to be resolved, based on
joint information from the dependency and bipartite
graphs;
Modify the software system design after deciding
about the coupling resolution procedure, e.g. adding a
suitable design pattern.

Software Modularity Coupling Resolution by the Laplacian of a Bipartite Dependency Graph

303

Figure 9: ChatMediator Bipartite Graph – with the same
conventions as in Fig. 4. Vertex D3 is disconnected from
the composite left-hand-side module (in Fig. 4), resulting
into “two single-divergence points”. (Color online).

Fitting the ChatMediator Dependency graph in
Fig. 8, is the Bipartite graph shown in Fig. 9.
Calculating the Laplacian Matrix eigenvectors (Fig.
10) obtains modules (marked in Fig. 9). The Fiedler
vector further splits Modules-1 by disconnecting the
N3 User vertex. This is consistent with the D3 dUser
disconnected vertex. Again, it is seen that least
connected vertices are candidates for further
disconnection, leaving modules that are recognized
by their relatively dense connections.

Figure 10: ChatMediator Eigenvectors – Modules-1 fits
the left-hand-side module in Fig. 9. Modules-2 fits the
right-hand-side module in Fig. 9. The Fiedler vector
enables further splitting of Modules-1, by disconnecting
vertex N3, leaving two smaller modules: (D1, N2) and
(D2, N4), according to the Fiedler vector elements’ sign.

6 DISCUSSION

6.1 The Bipartition Idea

Bipartition is the central innovative idea of this
work, as already stated in Sub-section 4.1.

Bipartition is obtained by taking an "arrow" of
the dependency graph and bisecting it into a source
and a destination – i.e. the dependent and the non-
dependent entities. This apparently trivial act
increases our understanding, enabling easier
decoupling.

Bipartition can be compared to an intriguing idea
in quantum computation – see e.g. (Kong et al.,
2018) and (Makaruk, 2017) – in which instead of

moving a particle from one state to another, one uses
an annihilation operator in the source state and a
creation operator in the destination state. In other
words, one decomposes a "transfer" between states
into two parts, the disappearance from the source
state and reappearance in the destination state.

6.2 Linear Dependence in Linear
Algebra

Why is the Laplacian Matrix so smart to recognize
correctly the modules that should be decoupled? The
answer relies in the concept of linear dependence in
linear algebra, as a satisfactory representation of
"dependence" in software systems.

6.3 Further Case Studies

As part of this research work, we have tested the
generic approach to any coupling types, in particular
the use of Bipartition, on additional small and
medium size case studies, on systems found in the
internet, and developed by software engineers, other
than the authors of this paper,

As an example of such a case study, we have
applied the approach to “Stateless”, an open source
project (Stateless, 2019), containing a .Net library to
create state machines in C#. The results obtained
with the additional case studies are similar to those
in this paper. These additional results, which due to
space limitations cannot be included here, are
planned to appear in an extended version of this
work.

6.4 Future Work

This paper presented novel ideas. Work should be
done to exploit these ideas using an extensive and
representative sample of larger software systems, to
test their applicability and scalability.

6.5 Main Contributions

The two main contributions of this work are: 1- to
approach all types of coupling in a uniform manner;
2- to introduce bipartition as a generic way to apply
linear algebra to decouple modules in a variety of
situations.

REFERENCES

Bavota, G., Dit, B., Oliveto, R., Di Penta, M.,
Poshyvanyk, D. and De Lucia, A., 2013. “An

ICSOFT 2019 - 14th International Conference on Software Technologies

304

Empirical Study on the Developers’ Perception of
Software Coupling”, Proc. ICSE’2013 Int. Conf. on
Softw. Eng., San Francisco, IEEE Press, pp. 692-701.

Beck, F. and Diehl, S., 2011. “On the Congruence of
Modularity and Code Coupling”, in Proc. 19th Sigsoft
Symposium ESEC/FSE’11, Szeged, Hungary, pp. 354-
364. DOI: 10.1145/2025113.2025162

Cai, Y. and Sullivan, K.J., 2006. “Modularity Analysis of
Logical Design Models”, in Proc. 21st IEEE/ACM Int.
Conf. Automated Software Eng. ASE’06, pp. 91-102,
Tokyo, Japan.

Coupling_(computer_programming)-Wikipedia, 2019.
https://en.wikipedia.org/wiki/Coupling

de Abreu, N.M.M., 2007. “Old and new results on
algebraic connectivity of graphs”, Linear Algebra and
its Applications, 423, pp. 53-73. DOI:
https://doi.org/10.1016/j.laa.2006.08.017

Exman, I., 2012. “Linear Software Models”, Extended
Abstract, in I. Jacobson, M. Goedicke and P. Johnson
(eds.), SEMAT Workshop on GTSE, pp. 23-24, KTH,
Stockholm, Sweden. Video: http://www.youtube.com/
watch?v=EJfzArH8-ls

Exman, I., 2013. “Linear Software Models are Theoretical
Standards of Modularity”, in J. Cordeiro, S.
Hammoudi, and M. van Sinderen (eds.): ICSOFT
2012, Revised selected papers, CCIS, Vol. 411, pp.
203–217, Springer-Verlag, Berlin, Germany. DOI:
10.1007/978-3-642-45404-2_14

Exman, I., 2014. “Linear Software Models: Standard
Modularity Highlights Residual Coupling”, Int.
Journal on Software Engineering and Knowledge
Engineering, vol. 24, pp. 183-210, March 2014. DOI:
10.1142/S0218194014500089

Exman, I., 2015. “Linear Software Models: Decoupled
Modules from Modularity Eigenvectors”, Int. Journal
on Software Engineering and Knowledge Engineering,
vol. 25, pp. 1395-1426, October 2015. DOI:
10.1142/S0218194015500308

Exman, I. and Sakhnini, R., 2016. “Linear Software
Models: Modularity Analysis by the Laplacian
Matrix”, in Proc. 11th ICSOFT Int. Joint Conference
on Software Technologies, Lisbon, Portugal, Vol. 2:
ICSOFT-PT, pages 100-108. DOI:
10.5220/0005985601000108.

Exman, I. and Sakhnini, R., 2018. “Linear Software
Models: Bipartite Isomorphism between Laplacian
Eigenvectors and Modularity Matrix Eigenvectors”,
Int. Journal of Software Engineering and Knowledge
Engineering, Vol. 28, No. 7, pp. 897-935. DOI:
10.1142/S0218194018400107

Ferrante, J., Ottenstein, K.J. and Warren, J.D., 1987. “The
Program Dependence Graph and Its Use in
Optimization”, ACM Trans. Prog. Lang and Systems,
Vol. 8, pp. 319-349.

Fiedler, M., 1973. “Algebraic Connectivity of Graphs”,
Czech. Math. J., Vol. 23, (2) 298-305 (1973).

Gamma, E., Helm, R., Johnson, R. and Vlissides, J., 1995.
Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, Boston, MA.

Guillaume, J-L. and Latapy, M., 2004. “Bipartite Structure
of all complex networks”. Inf. Proc. Let. Vol. 90, pp.
215-221/

Huffner, F., 2009. “Algorithm Engineering for Optimal
Graph Bipartization”, J. Graph Algorithms and
Applications, vol. 13, pp. 77-98.

Kong, X., Wei, S., Wen, J. and Long, G-L, 2018.
“Experimental Simulation of Bosonic Creation and
Annihilation Operators in a Quantum Processor”,
arXiv:1809.03352.

Makaruk, H.E., 2017. “Quantum computing and second
quantization”, Journal of Knot Theory and its
Ramifications, Vol. 26, 1741006. DOI:
https://doi.org/10.1142/S0218216517410061

Merris, R., 1994. "Laplacian matrices of graphs: a survey",
Linear Algebra and its Applications, Vols. 197-198,
January-February, pp. 143-176. DOI: 10.1016/0024-
3795(94)90486-3.

Ng, A.Y., Jordan, M.I., and Weiss, Y., 2001. “On spectral
clustering: analysis and an algorithm”, in: Proc. 2001
Neural Information Processing Systems, pp.849–856.

Shokoufandeh, A., Mancoridis, S., Denton, T. and
Maycock, M., 2005. “Spectral and meta-heuristic
algorithms for software clustering,” Journal of
Systems and Software, vol. 77, no. 3, pp. 213–223.

Shtern, M. and Tzerpos, V., 2012. “Clustering
Methodologies for Software Engineering”, in
Advances in Software Engineering, vol. 2012, Article
ID 792024 (2012). DOI: 10.1155/2012/792024

Stateless – a .Net library to create state machines, 2019,
https://github.com/dotnet-state-machine/stateless

von Luxburg, U., 2007. “A Tutorial on Spectral
Clustering”, Statistics and Computing, 17 (4), pp. 395-
416. DOI: 10.1007/s11222-007-9033-z

Weisstein, E.W., 2019a. “Bipartite Graph”, Wolfram.
http://mathworld.wolfram.com/BipartiteGraph.html

Weisstein, E.W., 2019b. “Laplacian Matrix”, Wolfram
http://mathworld.wolfram.com/LaplacianMatrix.html.

Software Modularity Coupling Resolution by the Laplacian of a Bipartite Dependency Graph

305

