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Abstract: Software modularity by pinpointing and subsequent resolution of the remaining coupling problems is often 
assumed to be a general approach to optimize any software system design. However, software coupling 
types with differing specific characteristics, seemingly pose serious impediments to any generic coupling 
resolution approach. Despite the diversity of types, this work proposes a generic approach to solve any 
coupling type in three steps: a- obtain the Dependency graph for the coupled modules; b- convert the 
dependency graph into a Bipartite Graph; c- generate the Laplacian Matrix from the Bipartite Graph. 
Coupling problems to be resolved are then located, using Laplacian eigenvectors, in particular the Fiedler 
eigenvector. The generic approach is justified, explained in detail, and illustrated by a few case studies. 

1 INTRODUCTION 

On the way to formulate a generic, linear algebraic 
theory of software composition, it was natural to 
start from basic notions of object-oriented design, 
such as classes and their methods. The columns and 
rows of matrices, representing hierarchical levels of 
software systems, stand for generalizations of 
classes and their methods (Exman, 2013), as shown 
in sub-section 1.1 on the Laplacian matrix (Exman 
and Sakhnini, 2016, 2018).   

But, one would expect a more comprehensive 
theory of software systems composition to treat, 
besides classes and methods, additional concepts 
considered coupling causes. 

The existence of different coupling types –
concisely reviewed in Sub-section 1.2 – responsible 
for a variety of obstacles to software system design, 
led researchers to assume that a generic solution to 
software coupling would be difficult to achieve. 

The generic resolution of coupling problems is 
the goal of this paper, as stated in sub-section 1.3. 
Indeed, it is attainable by the combination of a 
dependency graph displaying couplings of any type, 
with the computational techniques offered by the 
Laplacian matrix, itself generated from graphs, 
obtaining the desired generic coupling resolution 
approach.  

1.1 Laplacian Matrix Concepts 

Software systems are assumed to be hierarchical, 
with the lowest level composed of classes and their 
methods. Going upwards, with increasing 
abstraction, classes are clustered into modules, in 
turn further clustered into bigger modules, sub-
systems and finally the whole software system. 

There are a few ways to formally represent an 
abstraction level. This paper focuses on two kinds of 
display: a bipartite graph and a Laplacian Matrix. 

A bipartite graph (Weisstein, 2019a) contains 
two sets of entities; each entity, shown as a graph 
vertex, is linked by edges only to entities in the other 
set. Typical entities are a set of structors denoted by 
Sk, a generalization of classes for any level, and a set 
of functionals denoted by Fj, a generalization of 
class methods. Edges link classes to the methods 
they provide. An abstract bipartite graph in Fig. 1, 
shows modules, their structors and functionals. 

A Laplacian Matrix L (Weisstein, 2019b) is 
generated from a graph according to equation (1): 

L D A   (1)

where D is the Degree Matrix showing the degree 
Deg(vi) of vertex vi in its diagonal element Dii. A is 
the Adjacency Matrix, with Aij = 1 for each i, j 
vertex pair in the graph, and Aij = 0 otherwise. 
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Figure 1: Schematic bipartite graph of a software system – 
it shows 6 structors (S1 to S6), 6 functionals (F1 to F6) 
and 4 modules (M1 to M4), separated by the underlying 
(blue) rectangles. (Color online). 

The Laplacian Matrix (Fig. 2) is generated from 
the bipartite graph (Fig.1). Properties of interest are: 

 The Laplacian matrix is symmetric; 

 The number of modules in a Laplacian – i.e. the 
graph connected components – is the number of 
zero-valued Laplacian eigenvalues.  

 The Fiedler vector (Fiedler, 1973) (de Abreu, 
2007) fits the 1st positive Laplacian eigenvalue; 
its vector element signs (positive/negative) 
enable splitting a module into smaller modules.  

Note that modules may contain smaller “modules”. 
To avoid confusion we may denote smaller ones by 
vertices, reserving the modules term for larger ones. 
 

 

Figure 2: Schematic Laplacian Matrix generated from the 
bipartite graph in Fig. 1 – It has a diagonal Degree matrix 
(green background) and an Adjacency matrix (blue 
background) with minus signs by eq. (1). All matrix 
elements outside modules are zero-valued. (color online). 

1.2 Software Coupling Types 

Any list of coupling types is forcefully partial, due 
to diverse views of different authors, techniques and 
classification criteria – e.g. (Coupling-Wiki, 2019). 
The coupling types listed in this sub-section is a 
sample of the diversity, rather than a comprehensive 

list. It includes, among others: 

 Common Coupling – several modules access the 
same global data; 

 Content Coupling – one module uses the code of 
other module; see below the similar CBO; 

 Control Coupling – one module controls the 
flow of another, by passing a what-to-do-flag; 

 Coupling Between Objects (CBO) – methods of 
one class call methods or access variables of 
another class; 

 Data Coupling – modules share data through 
parameters; 

 External Coupling – two modules share an 
externally imposed data format; 

 Stamp Coupling – modules share a composite 
data structure and use only parts of it; 

1.3 Goal of this Paper 

This paper goal is to propose a generic approach to 
coupling resolution, independent of specific 
coupling types. It assumes the following premises: 

 Dependency Graph – any coupling type can be 
represented by a dependency graph; 

 Bipartite Graph – any dependency graph can be 
converted into a generic bipartite graph; 

 Laplacian Analysis – one can analyse a bipartite 
graph by its Laplacian matrix; 

 Coupling Resolution – combines data from the 
dependency and its bipartite graph. 

1.4 Paper Organization 

The remaining of this paper is organized as follows. 
Section 2 mentions related work. Section 3 presents 
the approach by means of an introductory running 
example. Section 4 states preliminary theoretical 
considerations and the generic procedure to coupling 
resolution. Section 5 analyses case-studies. Section 6 
is a discussion concluding the paper. 

2 RELATED WORK 

2.1 Coupling Type Classifications 

An elementary coupling type classification is found 
in (Coupling-Wiki, 2019). The literature up to now 
informally defined coupling. For instance, in the 
GoF Design Patterns book (Gamma et al., 1995) 
glossary: “coupling is the degree to which software 
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components depend on each other”. It justifies our 
use of the linear algebra notion of “linear 
dependence” to formalize coupling. 

Still, most works on this topic are empirical. An 
example is (Beck and Diehl, 2011) stating that 
software systems are modularized to make their 
complexity manageable; but, as guiding principles 
were not known, they look at different kinds of 
coupling in their study. Another example of an 
empirical study is by (Bavota et al., 2013). 

2.2 Graph Techniques 

The Program Dependence Graph (PDG) is reviewed 
by (Ferrante et al., 1987). PDG is an intermediate 
program representation exposing both data and 
control dependencies of operations in a program. In 
principle, this could be a starting point to a generic 
resolution of dependencies. 

A precise Bipartite Graph definition is found in 
(Weisstein, 2019a). Bipartite Graphs have appeared in 
many contexts. Obtaining bipartite graphs from other 
graphs is relevant to this work. (Huffner, 2009) finds 
the minimum vertex set to be deleted to get a bipartite 
graph. From another viewpoint, (Guillaume and 
Latapy, 2004) claim that any complex networks can 
be viewed as bipartite structures. 

2.3 Laplacian Matrix Techniques 

Laplacian Matrix spectral techniques have been used 
in various fields, including software engineering. A 
survey on Laplacian graphs is (Merris, 1994). 

A spectral clustering tutorial in (von Luxburg, 
2007), stresses the Laplacian. Another review on 
spectral clustering for software engineering, 
especially the Laplacian, is found in (Shtern and 
Tzerpos, 2012). 

Ng et al., (2001) deal with spectral clustering, 
analysing an algorithm, explicitly referring to the 
Laplacian. Shokoufandeh et al., (2005) extract a 
Module Dependency Graph (MDG) from software 
source code for clustering into MDG partitions. 
Their Modularization Quality criterion is 
reformulated as a Laplacian eigenvalue problem. 

3 A RUNNING EXAMPLE 

A small Chatroom software system exemplifies our 
generic approach, illustrating "coupling between 
objects". The chatroom concept is from the web and 
was implemented by this paper's authors in C#. 

3.1 Dependency Graphs 

Initially one describes a system of any coupling type 
by a dependency graph. We consider two cases: 

 Mutual Module Dependency – in this case (e.g. 
content, control, CBO  and data coupling) an 
arrow points from the dependent vertex to the 
independent vertex; 

 Two or More Modules Dependent on a 3rd Party 
Entity – here (e.g. common, external and stamp 
coupling) arrows point from dependent modules 
to the 3rd party entity. 

In either case one obtains a dependency graph – a 
directed graph with arrows showing dependencies 
between graph vertices. All coupling types are 
reduced to the same generic kind of dependency 
graph. Fig. 3 shows the Chatroom dependency. 

 

Figure 3: Chatroom Dependency Graph – Arrows point 
from each dependent vertex to independent vertices: e.g. the 
“History” vertex is dependent on “File-Saver”. 

3.2 Bipartite Graphs 

In order to obtain a unique bipartite graph, from a 
dependency graph, one does the following actions: 
 Duplicate Each Dependency Graph Vertex into a 

Vertex Pair – keep each original vertex and 
another copy, prefixing with a "d" (dependent) the 
original vertex name; 

 Obtain Two Sets of Vertices of the Same Size – 
one independent, another dependent; 

 Copy Each Dependency Graph Arrow to the 
Bipartite Graph – each arrow points from a 
dependent vertex to an independent one. 

Fig. 4 illustrates the Chatroom bipartite graph 
corresponding to the dependency graph in Fig. 3. 
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Figure 4: Chatroom Bipartite Graph – Arrows point from a 
"D" dependent vertex to an "N" non-dependent vertex. 
The bipartite graph itself already separates vertices into 
two "modules" (blue background). Isolated vertices (N1-
BasicUser and D5-dFileSaver) are not connected at all to 
other vertices. (color online). 

3.3 Laplacian Matrix, Its Eigenvalues 
and Eigenvectors 

A software system Laplacian Matrix is generated 
from its Bipartite Graph as follows: 

 Choose All Vertices with at Least one 
Connection Arrow - to the other bipartite graph 
vertex set; ignore isolated vertices; 

 Count Connection Arrows Per Vertex – to 
obtain the Degree matrix; 

 List Neighbours of Each Vertex – to obtain the 
Adjacency matrix; 

 Generate the Laplacian – inserting Degree and 
Adjacency matrix values in eq. (1).  

The Chatroom Laplacian Matrix in Fig. 5 was 
generated from the Bipartite Graph in Fig. 4. 

 

Figure 5: Chatroom Laplacian Matrix – Matrix generated 
from the Bipartite Graph in Fig. 4. All matrix elements 
outside modules are zero-valued. (color online). 

 

Figure 6: Chatroom Laplacian Eigenvectors – Two 
eigenvectors fit the two zero-valued eigenvalues. Each 
eigenvector shows one of the connected components; for 
instance, the 2nd eigenvector vertices are (D4, N5). 

The number of zero-valued eigenvalues of this 
matrix gives the number of its connected 
components. Calculation obtains 2 such eigenvalues. 
The respective eigenvectors are seen in Fig 6. 

The Fig. 6 eigenvectors show the connected 
components – the Chatroom modules – neatly 
corresponding to the Fig. 4 modules. A more 
detailed case study analysis is done in section 5. 

4 THEORETICAL 
CONSIDERATIONS AND 
GENERIC PROCEDURE 

4.1 Modules Bipartition 

The first generic procedure step to deal with module 
coupling obtains a dependency graph. This is a 
necessary information collection step, telling which 
modules are dependent on other ones. 

This work central innovative idea is the 
transition from a dependency to a bipartite graph. 

Bipartition contributes to modules decoupling, 
which is somewhat surprising since no new specific 
software system information is added in the 
transition from the dependency to its bipartite graph. 

The next lemma states bipartition uniqueness. 

 

Proof: 
The proof is by construction.  
Forward Direction – Duplicate all the dependency 
graph vertices, into a list of vertex pairs. Prefix the 
name of the 1st element of each vertex pair by the 
letter "d" (for dependent). One obtains two vertex 
sets – a dependent and a non-dependent set – of 
equal size. Scan top-down and left-to-right, copying 
each dependency graph arrow to a single arrow 
linking a dependent to a non-dependent vertex. The 
result is the unique bipartite graph. 
Backward Direction – Take only the bipartite graph 
set of non-dependent vertices. Copy this set to a 
fresh vertex set in a blank area. 
Scan left-to-right, the bipartite graph arrows; copy 
each bipartite graph arrow to the respective elements 

Lemma 1: Unique directed Bipartite Graph 
from Coupling Dependency Graph 
The bipartite graph, linking a set of vertices 
standing for dependent modules to another set of 
vertices standing for non-dependent modules, 
generated from a given Coupling Dependency 
Graph, is unique. 
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of the fresh vertex set. The result restores the initial 
forward direction dependency graph. 

Now we state some convenient definitions about 
possible components of the bipartite graph. These 
definitions are better understood, when illustrated by 
the vertices of Fig. 4. 

 

 

4.2 Laplacian Matrix for Modules 
Decoupling  

Having a directed bipartite graph fitting the modules 
dependency graph of a software system, one 
generates the bipartite graph Laplacian matrix and 
calculates the system modules number and sizes. 

 

 
 
 
 

 

Proof:  
The straightforward proof is again by construction. 
From the directed bipartite graph: 

a. Generate the Adjacency Matrix; 

b. Generate the Degree Matrix D;  

c. Generate the Laplacian by equation (1) of 
section 1.1, viz. L D A  . 

This construction is illustrated e.g. in Fig. 5. 
It is straightforward to obtain the number of the 

software system modules and their sizes from the 
Laplacian Matrix. This is given by the next theorem. 

 
 

Proof: 
Decoupling modules are connected components of 
the directed bipartite graph generated in turn from 
the respective dependency graph. The Laplacian is 
obtained from this bipartite graph. This theorem 
directly follows from the Laplacian matrices spectral 
theorem, see e.g. (von Luxburg, 2007) page 4, 
proposition 2. The number of a graph connected 
components is the number of its Laplacian zero-
valued eigenvalues. Component sizes are obtained 
from the respective eigenvectors. 
 

Some specific cases of decoupling modules 
recognized by the relevant Laplacian Matrix are 
mentioned in Lemma 3. 

 

 
 

Proof: 
These decoupled modules are recognized as 
connected components 

4.3 Generic Coupling Resolution 
Procedure 

Our generic coupling resolution procedure consists 
in a series of steps, which were presented and 
illustrated in previous sections. 

The main steps consisting of:  

 generation of the bipartite graph from the 
dependency graph;  

Definitions 1: Bipartite Graph Components
Convergence Point – this is a non-dependent 
vertex to which at least two arrows point; 
Divergence Point – this is a dependent vertex 
from which at least two arrows point to two non-
dependent vertices; 
Simple arrow – this is a single arrow linking one 
dependent vertex to one non-dependent vertex; 
Isolated dependent vertex - it is a named "d" 
vertex that actually has no arrow linking to a 
non-dependent vertex; 
Isolated non-dependent vertex - it is a vertex that 
actually has no arrow from a dependent vertex;

Theorem 1: Software System decoupling 
Modules’ Number and Sizes from the 
Laplacian Matrix  
The number and sizes of the decoupling modules 
of a software system at a given abstraction level 
is obtained from the Laplacian Matrix of the 
directed bipartite graph generated from its 
dependency graph as follows: 
The module number is the number of zero-
valued Laplacian eigenvalues; 
The module sizes are given by the respective 
indicator eigenvectors of the zero-valued 
Laplacian eigenvalues.

Lemma 3: Specific decoupling module cases 
from the Laplacian Matrix – Specific cases 
recognized as individual decoupling modules 
are: 

a) Simple arrows; 
b) Single convergence/divergence point 

modules; 
c) Composite modules with overlapping 

convergence/divergence points; 

Lemma 2: Unique Laplacian Matrix from the 
Directed Bipartite Graph – a unique Laplacian 
is generated from the directed Bipartite Graph of 
a given software system, while ignoring isolated 
vertices. 
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 generation of the Laplacian Matrix from the 
bipartite graph;  

are formal, very precise and represent the novel 
contribution of this work.  

On the other hand:  

 the generation of the dependency graph; 
 the information combination from both 

dependency and bipartite graphs for coupling 
resolution; 

 the final coupling resolution by modification of 
the software system; 

are informal, and demand reasonable judgment 
based on the software engineer experience. 

Here we finally provide the whole procedure in a 
pseudo-code format, in the next box. 

 

The necessity of combining information of the 
dependency and the bipartite graphs is illustrated as 
follows. Suppose there are two mutually crossing 
"simple arrows", viz. from vertex DA to B and from 
vertex DB to A. This is the bipartite information, i.e. 
apparently two independent modules. But, by the 
information given by the dependency graph this is 
an obvious problematic cycle that must be resolved. 

5 CASE STUDY ANALYSIS 

We analyse two case studies. The first is our running 
example, the Chatroom. The second is an improved 
Chatroom with an added Mediator design pattern. 

 

Figure 7: Chatroom Laplacian Fiedler Eigenvectors – 
These eigenvectors enable further splitting of the big 
composite module. The Fiedler vector 1 has minus signs 
marking vertices (D1, N2, N3). The Fiedler vector 2 marks 
vertices (D1, D2, N3). (color online). 

5.1 The Chatroom Software System 

The modules obtained for Chatroom running 
example, by the Laplacian Matrix eigenvectors (in 
Fig. 6), correspond to a "simple arrow" – containing 
the vertices (D4, N5) – and a "composite module" 
with overlapping convergence/divergence points – 
containing all the remaining vertices, except the 
isolated ones. These comply with Lemma 3. 

Additional calculation of Fiedler eigenvectors for 
the Chatroom system, obtains the results in Fig. 7. 

Note that further splitting by Fiedler vectors 
obtains a single divergence point module (D1, N2, 
N3) and a single convergence point module (D1, D2, 
N3); it again complies with Lemma 3, i.e. modules 
are recognized by their relatively dense connections. 

5.2 Improved Chatroom with a 
Mediator Pattern 

An obvious decoupling of the Chatroom "composite 
module", in Fig. 4, uses a Mediator Pattern. The 
natural Mediator candidate is the Chatroom "vertex" 
itself, the medium to exchange User messages.  

This simple system has a single Mediator; by the 
GoF book (Gamma et al., 1995) a concrete mediator 
is enough (no abstract class needed). From the 
arrows linked to the User, just one starting from the 
ChatMediator is left in Fig. 8. It has a clearer design. 

 

Figure 8: ChatMediator Dependency graph – simplified 
dependencies decouple the big "composite" module of the 
original Chatroom (in Fig. 3). (Color online). 

Generic Coupling Resolution Procedure
 

Obtain the coupling dependency graph of the software 
system; 
Translate the coupling dependency graph into a 
bipartite dependency graph; 
Obtain the Laplacian Matrix from the bipartite graph; 
Calculate the eigenvalues and eigenvectors of the 
Laplacian Matrix; 
Obtain the decoupling modules of the bipartite graph 
from the previous eigenvalues and eigenvectors; 
If judged necessary: split the decoupling modules 
using the Fiedler eigenvector of the Laplacian matrix; 
Locate module couplings to be resolved, based on 
joint information from the dependency and bipartite 
graphs; 
Modify the software system design after deciding 
about the coupling resolution procedure, e.g. adding a 
suitable design pattern. 
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Figure 9: ChatMediator Bipartite Graph – with the same 
conventions as in Fig. 4. Vertex D3 is disconnected from 
the composite left-hand-side module (in Fig. 4), resulting 
into “two single-divergence points”. (Color online). 

Fitting the ChatMediator Dependency graph in 
Fig. 8, is the Bipartite graph shown in Fig. 9. 
Calculating the Laplacian Matrix eigenvectors (Fig. 
10) obtains modules (marked in Fig. 9). The Fiedler 
vector further splits Modules-1 by disconnecting the 
N3 User vertex. This is consistent with the D3 dUser 
disconnected vertex. Again, it is seen that least 
connected vertices are candidates for further 
disconnection, leaving modules that are recognized 
by their relatively dense connections. 

 

Figure 10: ChatMediator Eigenvectors – Modules-1 fits 
the left-hand-side module in Fig. 9. Modules-2 fits the 
right-hand-side module in Fig. 9. The Fiedler vector 
enables further splitting of Modules-1, by disconnecting 
vertex N3, leaving two smaller modules: (D1, N2) and 
(D2, N4), according to the Fiedler vector elements’ sign. 

6 DISCUSSION 

6.1 The Bipartition Idea 

Bipartition is the central innovative idea of this 
work, as already stated in Sub-section 4.1.    

Bipartition is obtained by taking an "arrow" of 
the dependency graph and bisecting it into a source 
and a destination – i.e. the dependent and the non-
dependent entities. This apparently trivial act 
increases our understanding, enabling easier 
decoupling. 

Bipartition can be compared to an intriguing idea 
in quantum computation – see e.g. (Kong et al., 
2018) and (Makaruk, 2017) – in which instead of 

moving a particle from one state to another, one uses 
an annihilation operator in the source state and a 
creation operator in the destination state. In other 
words, one decomposes a "transfer" between states 
into two parts, the disappearance from the source 
state and reappearance in the destination state. 

6.2 Linear Dependence in Linear 
Algebra 

Why is the Laplacian Matrix so smart to recognize 
correctly the modules that should be decoupled? The 
answer relies in the concept of linear dependence in 
linear algebra, as a satisfactory representation of 
"dependence" in software systems. 

6.3 Further Case Studies 

As part of this research work, we have tested the 
generic approach to any coupling types, in particular 
the use of Bipartition, on additional small and 
medium size case studies, on systems found in the 
internet, and developed by software engineers, other 
than the authors of this paper,  

As an example of such a case study, we have 
applied the approach to “Stateless”, an open source 
project (Stateless, 2019), containing a .Net library to 
create state machines in C#. The results obtained 
with the additional case studies are similar to those 
in this paper. These additional results, which due to 
space limitations cannot be included here, are 
planned to appear in an extended version of this 
work. 

6.4 Future Work 

This paper presented novel ideas. Work should be 
done to exploit these ideas using an extensive and 
representative sample of larger software systems, to 
test their applicability and scalability. 

6.5 Main Contributions 

The two main contributions of this work are: 1- to 
approach all types of coupling in a uniform manner; 
2- to introduce bipartition as a generic way to apply 
linear algebra to decouple modules in a variety of 
situations. 

REFERENCES 

Bavota, G., Dit, B., Oliveto, R., Di Penta, M., 
Poshyvanyk, D. and De Lucia, A., 2013. “An 

ICSOFT 2019 - 14th International Conference on Software Technologies

304



 

Empirical Study on the Developers’ Perception of 
Software Coupling”, Proc. ICSE’2013 Int. Conf. on 
Softw. Eng., San Francisco, IEEE Press, pp. 692-701. 

Beck, F. and Diehl, S., 2011. “On the Congruence of 
Modularity and Code Coupling”, in Proc. 19th Sigsoft 
Symposium ESEC/FSE’11, Szeged, Hungary, pp. 354-
364. DOI: 10.1145/2025113.2025162 

Cai, Y. and Sullivan, K.J., 2006. “Modularity Analysis of 
Logical Design Models”, in Proc. 21st IEEE/ACM Int. 
Conf. Automated Software Eng. ASE’06, pp. 91-102, 
Tokyo, Japan. 

Coupling_(computer_programming)-Wikipedia, 2019. 
https://en.wikipedia.org/wiki/Coupling 

de Abreu, N.M.M., 2007. “Old and new results on 
algebraic connectivity of graphs”, Linear Algebra and 
its Applications, 423, pp. 53-73. DOI: 
https://doi.org/10.1016/j.laa.2006.08.017 

Exman, I., 2012. “Linear Software Models”, Extended 
Abstract, in I. Jacobson, M. Goedicke and P. Johnson 
(eds.), SEMAT Workshop on GTSE, pp. 23-24, KTH, 
Stockholm, Sweden. Video: http://www.youtube.com/ 
watch?v=EJfzArH8-ls 

Exman, I., 2013. “Linear Software Models are Theoretical 
Standards of Modularity”, in J. Cordeiro, S. 
Hammoudi, and M. van Sinderen (eds.): ICSOFT 
2012, Revised selected papers, CCIS, Vol.  411, pp. 
203–217, Springer-Verlag, Berlin, Germany. DOI: 
10.1007/978-3-642-45404-2_14 

Exman, I., 2014. “Linear Software Models: Standard 
Modularity Highlights Residual Coupling”, Int. 
Journal on Software Engineering and Knowledge 
Engineering, vol. 24, pp. 183-210, March 2014. DOI: 
10.1142/S0218194014500089 

Exman, I., 2015. “Linear Software Models: Decoupled 
Modules from Modularity Eigenvectors”, Int. Journal 
on Software Engineering and Knowledge Engineering, 
vol. 25, pp. 1395-1426, October 2015. DOI: 
10.1142/S0218194015500308 

Exman, I. and Sakhnini, R., 2016. “Linear Software 
Models: Modularity Analysis by the Laplacian 
Matrix”, in Proc. 11th ICSOFT Int. Joint Conference 
on Software Technologies, Lisbon, Portugal, Vol. 2: 
ICSOFT-PT, pages 100-108. DOI: 
10.5220/0005985601000108. 

Exman, I. and Sakhnini, R., 2018. “Linear Software 
Models: Bipartite Isomorphism between Laplacian 
Eigenvectors and Modularity Matrix Eigenvectors”, 
Int. Journal of Software Engineering and Knowledge 
Engineering, Vol. 28, No. 7, pp. 897-935. DOI: 
10.1142/S0218194018400107 

Ferrante, J., Ottenstein, K.J. and Warren, J.D., 1987. “The 
Program Dependence Graph and Its Use in 
Optimization”, ACM Trans. Prog. Lang and Systems, 
Vol. 8, pp. 319-349. 

Fiedler, M., 1973. “Algebraic Connectivity of Graphs”, 
Czech. Math. J., Vol. 23, (2) 298-305 (1973). 

Gamma, E., Helm, R., Johnson, R.  and Vlissides, J., 1995. 
Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, Boston, MA. 

Guillaume, J-L. and Latapy, M., 2004. “Bipartite Structure 
of all complex networks”. Inf. Proc. Let. Vol. 90, pp. 
215-221/ 

Huffner, F., 2009. “Algorithm Engineering for Optimal 
Graph Bipartization”, J. Graph Algorithms and 
Applications, vol. 13, pp. 77-98. 

Kong, X., Wei, S., Wen, J. and Long, G-L, 2018. 
“Experimental Simulation of Bosonic Creation and 
Annihilation Operators in a Quantum Processor”, 
arXiv:1809.03352. 

Makaruk, H.E., 2017. “Quantum computing and second 
quantization”, Journal of Knot Theory and its 
Ramifications, Vol. 26, 1741006. DOI: 
https://doi.org/10.1142/S0218216517410061 

Merris, R., 1994. "Laplacian matrices of graphs: a survey", 
Linear Algebra and its Applications, Vols. 197-198, 
January-February, pp. 143-176. DOI: 10.1016/0024-
3795(94)90486-3. 

Ng, A.Y., Jordan, M.I., and Weiss, Y., 2001. “On spectral 
clustering: analysis and an algorithm”, in: Proc. 2001 
Neural Information Processing Systems, pp.849–856. 

Shokoufandeh, A., Mancoridis, S., Denton, T. and 
Maycock, M., 2005. “Spectral and meta-heuristic 
algorithms for software clustering,” Journal of 
Systems and Software, vol. 77, no. 3, pp. 213–223. 

Shtern, M. and Tzerpos, V., 2012. “Clustering 
Methodologies for Software Engineering”, in 
Advances in Software Engineering, vol. 2012, Article 
ID 792024 (2012). DOI: 10.1155/2012/792024 

Stateless – a .Net library to create state machines, 2019, 
https://github.com/dotnet-state-machine/stateless 

von Luxburg, U., 2007. “A Tutorial on Spectral 
Clustering”, Statistics and Computing, 17 (4), pp. 395-
416. DOI: 10.1007/s11222-007-9033-z 

Weisstein, E.W., 2019a. “Bipartite Graph”, Wolfram. 
http://mathworld.wolfram.com/BipartiteGraph.html 

Weisstein, E.W., 2019b. “Laplacian Matrix”, Wolfram 
http://mathworld.wolfram.com/LaplacianMatrix.html. 

Software Modularity Coupling Resolution by the Laplacian of a Bipartite Dependency Graph

305


