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Abstract: To reduce the computational cost of particle swarm optimization (PSO) methods, research has begun on the 

use of Graphics Processing Units (GPUs) to achieve faster processing speeds. However, since PSO methods 

search based on a global best value, they are hampered by the frequent need for communication with global 

memory. Even using a standard PSO that uses a local best value does not solve this problem. In this paper, 

we propose a virtual global best method that speeds up computations by defining a time-delayed global best 

as a virtual global best in order to reduce the frequency of communication with low-speed global memory. 

We also propose a method that combines decomposition-based multi-objective PSO (MOPSO/D) with a 

virtual global best method to speed up multi-objective particle swarm optimization by running it in parallel 

while maintaining search accuracy, and we demonstrate the effectiveness of this approach by using a number 

of unimodal/multimodal single objective benchmark test functions and three classical benchmark test 

functions with two objectives. 

1 INTRODUCTION 

Particle swarm optimization (PSO) is an optimization 

algorithm that models the behavior of flocks of birds 

and schools of fish (Kennedy, 1995), and which is one 

of the population based non-deterministic 

optimization algorithms. There is a personal best and 

global best and both affect the direction in which 

particles are moving. PSO has attracted attention as a 

useful optimization tool due to its simple algorithm 

and other attributes. However, a problem with this 

algorithm is that when the number of particles is 

increased in order to deal with a more complex 

objective function, the computational cost also 

increases, resulting in longer search times. There have 

already been studies aimed at preventing this issue of 

increased search times by using GPUs to distribute 

the computational load (Zhou, 2009; Souza, 2011; 

Hussain, 2016). A study that uses parallel 

acceleration of PSO on a GPU based on a master-

slave model to solve multi-objective problems has 

also been reported (Cao, 2017; Hussain, 2018). 

However, since these previous studies use global 

memory to store particle swarm data, they are unable 

to achieve adequate speed increases even when 

running many cores in parallel. Alternatively, if 

attempts are made to speed up processing based on a 

master-slave model, the efficiency of processing 

speed improvements is liable to deteriorate as the 

number of cores increases. To address these issues, 

this paper proposes a method that can improve 

computation speeds by defining a time-delayed 

global best as a virtual global best for each streaming 

multiprocessor (SM) in order to reduce the frequency 

of communication with low-speed global memory. 

Next, compared with single-objective optimization 

where it is important to converge on just one optimal 

solution, in multi-objective optimization it is 

necessary to increase the speed of computation while 

maintaining diversity in the search process as well as 

convergence on the Pareto front. However, there is 

often a trade-off between convergence on the Pareto 

front and maintenance of diversity, and this problem 

cannot be solved simply by operating the proposed 

method in parallel. Therefore, we propose running a 

multi-objective particle swarm optimization method 

in parallel by combining a virtual global best method 

and decomposition-based multi-objective PSO 

(MOPSO/D) (Peng, 2008), which is capable of global 

searching, and we use benchmark problems to 

demonstrate the effectiveness of this approach. 
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2 OVERVIEW OF PARTICLE 

SWARM OPTIMIZATION 

2.1 Original PSO 

In original PSO, each particle has a position vector 

and a velocity vector that are used to calculate the 

evaluation values and the positions to which these 

particles move. After using the position vectors to 

calculate the evaluation value at the current position 

of each particle, the velocity vectors and position 

vectors are updated according to the following 

formula: 

𝑣(𝑡 + 1) = 𝑣(𝑡) + 𝑐1 ∗ 𝑟𝑎𝑛𝑑1

∗ (𝑃𝑏𝑒𝑠𝑡𝑥 − 𝑥(𝑡)) 

                   +𝑐2 ∗ 𝑟𝑎𝑛𝑑2 ∗ (𝐺𝑏𝑒𝑠𝑡𝑥 − 𝑥(𝑡)) 

(1) 

𝑥(𝑡 + 1) = 𝑥(𝑡) + 𝑣(𝑡 + 1) (2) 

where v(t) and v(t+1) are the velocity vectors in 

generations t and t+1 respectively, and x(t) and x(t+1) 

are the corresponding position vectors. Pbestx 

represents the personal best which is the best solution 

found by each particle up to generation t. Gbestx is the 

global best, which is the current best position found 

by the whole group. The coefficients c1 and c2 are 

positive constants, and rand1 and rand2 are random 

variables in the range from 0 to 1. After each particle 

has been moved, the calculation of evaluation values 

and the updating of vectors are repeated until the end 

condition is satisfied in order to find an 

approximation to the optimal solution. 

2.2 Standard PSO 

Standard particle swarm optimization (SPSO) 

(Bratton, 2007) is an algorithm that extends the 

original PSO algorithm described above. Based on 

the topology of the particle group defined by the 

designer, the best position from among each particle 

and its neighbors is used as a local best instead of 

using a global best. 

In SPSO, changing the topology changes the 

search motion of the entire particle group. A 

simplified diagram of the ring topology that is 

generally used as the topology for SPSO is shown in 

Fig. 1. In a ring topology, a particle shares 

information with its neighbors on both sides. This is 

because convergence on the optimal solution is 

impaired if the particles are split into completely 

independent groups. In this case, with a reduced 

amount of shared information, the convergence is 

slightly worse compared with the original PSO, but 

the global search performance is maintained for a 

longer time. SPSO is therefore able to search for 

better solutions to problems that converge to a local 

solution in PSO. 

 

Figure 1: Ring topology example. 

Furthermore, particle groups in PSO may fail to 

converge due to an excessive increase in velocity. 

Therefore, in order to guarantee that the particle 

group converges as the search proceeds, SPSO uses 

the following calculation formula taking the inertia 

weight χ into consideration. Here, Lbestx represents the 

local best. 

𝑣(𝑡 + 1) = 𝜒 ∗ 𝑣(𝑡)  + 𝜒 ∗ c1 ∗ 𝑟𝑎𝑛𝑑1

∗ (𝑃𝑏𝑒𝑠𝑡𝑥 − 𝑥(𝑡)) + 𝜒 ∗ 𝑐2

∗ 𝑟𝑎𝑛𝑑2 ∗ (𝐿𝑏𝑒𝑠𝑡𝑥 − 𝑥(𝑡)) 

(3) 

χ =
2

|2 − 𝜑 − √𝜑2 − 4𝜑|
   𝜑 = 𝑐1 + 𝑐2 (4) 

When a search is performed using the above 

formula, the movement of the entire particle group 

changes according to the value of φ. When φ is less 

than 4, the particle groups repeatedly converge and 

diverge. When it is greater than 4, the particle groups 

are guaranteed to converge. Therefore, a combination 

of c1 = c2 = 2.05 is generally used in SPSO. 

3 RUNNING PSO IN PARALLEL 

3.1 Parallel PSO in Earlier Research 

In a GPU-based parallel implementation of PSO, the 

computational load is distributed by allocating each 

particle to a CUDA core. The GPU can be used to 

parallelize parts that exist independently for each 

particle, such as calculating its evaluation value and 

updating its vectors. However, the global best 

calculation requires the collection of information on 

the whole particle group, which reduces the degree of 

parallelism. In previous studies by Zhou et al. (Zhou, 

2009) and Hussain et al. (Hussain, 2016), SPSO was 

run in parallel by using a ring topology. Hussain et al. 
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also sought to achieve greater speed by using coreless 

access, which is an access technique for efficient 

communication with global memory. 

In the methods proposed in these previous studies, 

there remains a problem in that the frequency of 

communication with global memory increases. In 

parallel SPSO, neighboring particles may exist in 

another SM. When using a topology where there is no 

sharing between particles in different SMs, it is not 

possible to perform searches using a global best, the 

overall convergence of the particle group is impaired, 

and it is not possible to search efficiently. Therefore, 

when SPSO is run in parallel, it must use global 

memory to share information between SMs. For these 

reasons, the previous studies basically used global 

memory to store data. This results in frequent 

communication with global memory while 

performing search calculations. When implementing 

parallel processing on a GPU, this communication 

with low-speed memory becomes a bottleneck, 

making it hard to improve the effective execution 

speed no matter how great the degree of parallelism. 

3.2 Parallelization using Virtual Global 
Best 

Figure 2 shows an outline of our proposed 

parallelization using virtual global best. The virtual 

global best method reduces the frequency of 

communication with global memory. First, the 

population (particle swarm) in PSO is separated into 

several new swarms. These new swarms are 

associated with each SM, with information such as 

the particle coordinates being stored in registers or 

shared memory. In order to minimize the number of 

data transfers between SMs, each particle searches 

using a virtual global best instead of the current global 

best. The initial value of the virtual global best is 

allocated to each SM as the global best of the particle 

swarm in the initial state before separation. The local 

best of each SM is compared with the virtual global 

best, and when the local best is better than the virtual 

global best, the virtual global best is updated and is 

simultaneously compared with the global best stored 

in global memory. When necessary, the global best 

and virtual global best are updated. In this way, it is 

no longer necessary to communicate with global 

memory when particle information is required. This 

can reduce the memory communication bottleneck, 

making parallel processing more effective. When the 

global best is updated in global memory, the timing 

of this event is delayed in each sub-swarm to prevent 

loss of data.  

 

The virtual global best search algorithm 
(Algorithm 1) is as follows: 

1 let N = the number of particles in the sub swarm 

2 let s = the index of sub swarm 

3 let B = the number of sub swarms 

4 let T = the number of migration interval 

5 store global best in global memory 

6 store virtual global best in shared memory 

7 if the index of thread is N+1 then 

8   for j = 1 to iterations do 

9     if (j%(B*T)) is (s*T) then 

10        update global best and virtual global best 

11     end if 

12   end for 

13 end if 

14 else 

15   for j = 1 to iterations do 

16     update velocity and position 

17     calculate fitness, personal best, and virtual global 

best 

18   end for 

19 end else 

 

Figure 2: Outline of virtual global best method. 

4 PARALLEL MOPSO USING 

VIRTUAL GLOBAL BEST 

4.1 Multi-objective Optimization 

Multi-objective optimization is a method that 

simultaneously optimizes multiple objective 

functions in a trade-off relationship. Figure 3 shows a 

conceptual illustration of the optimization of two 

objectives. In multi-objective optimization, one of the 

currently known solutions that has a good evaluation 

value for any particular objective function is called a 

non-inferior solution and is regarded as an optimal 

solution. As shown in Fig. 3, there are usually 
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multiple non-inferior solutions. The set of non-

inferior solutions is called the Pareto optimal 

solution. The surface formed by the Pareto optimal 

solution is called the Pareto front, and the purpose of 

a search algorithm such as evolutionary computation 

is to conduct searches so that the Pareto front takes a 

form that better satisfies the criteria of the objective 

function. Basically, PSO is a population based non-

deterministic optimization algorithms as a single 

objective optimizer. On the other hand, research on 

PSO strategy for solving multi-objective problems 

(Multi-Objective PSO, MOPSO) has already began 

(Moore, 1999; Hussain, 2018). 

 

Figure 3: Conceptual illustration of the optimization of two 

objectives. 

4.2 Proposal of Parallel MOPSO/D 
using Virtual Global Best 

In MOPSO, the global best cannot be updated in the 

same way as in single-objective PSO because the 

optimal solution of the whole particle swarm is not 

uniquely determined. Thus, when the virtual global 

best algorithm is simply implemented as parallel 

MOPSO, we can consider a method that uses an 

archive. The archive stores the coordinates of 

multiple candidate best solutions out of the personal 

best solutions of each particle. A particle updates its 

velocity by using the coordinates of one candidate 

selected from the archive as the virtual global best.  

In MOPSO using an archive, when selecting a 

solution stored in the archive or a global best, it is 

possible to improve diversity by considering 

parameters such as the particle congestion factor. 

However, if this solution requires complex 

computations, it will increase the computational load 

and adversely affect the execution time. Furthermore, 

to prevent the loss of information stored in memory, 

the addition of information to the archive must be 

performed sequentially for each particle, making it 

difficult to conceal the added computational load in 

parallel processing. Accordingly, the above trade-off 

relationship cannot be resolved in the virtual global 

best method using an archive. Therefore, in the 

proposed method, we use a combination of 

MOPSO/D, which is capable of performing global 

searches, and a virtual global best approach that 

effectively operates at high speed in parallel by 

avoiding communication with low-speed memory. 

This not only ensures the diversity of solutions, but 

can also reduce the execution time. 

4.2.1 MOPSO/D 

In MOPSO/D, a partition function is uniformly 

distributed in evaluation value space based on the 

objective function, and the particles optimize this 

partition function. In this way, by having each particle 

optimize a single objective function, the overall 

particle swarm find uniform and diverse solutions in 

evaluation value space by optimizing a single 

objective function. The Tchebycheff function 

(Zhang, 2007) is used as a partition function. This 

function is calculated as follows,  

 
(5) 

where j represents the number of objective 

functions, λ is a weighting vector corresponding to 

each partition function, and the search direction 

changes according to its value. z* is a reference point, 

and the coordinates of this point are determined by 

the values of the whole particle swarm. An overview 

of MOPSO/D is shown in Fig. 4. When the reference 

point is set as the minimum value of the particle 

swarm in a minimization problem as shown in Fig. 4, 

the optimal solution can be obtained by determining 

the minimum value of the partition function. 

 

Figure 4: Outline of MOPSO/D. 

The difference between this method and ordinary 

PSO lies in the way in which the global best solution 

is updated. Since MOPSO/D uses a different function 

for the evaluation of each particle, it is not possible to 

compare each of these calculated evaluation values 

directly. Therefore, each particle calculates an 

evaluation value by inputting the coordinates of its 

neighboring particles into its own partition function. 
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When the evaluation value is better than the current 

global best, the coordinates of the referenced particle 

are set as the new global best coordinates. In 

MOPSO/D, adjustment of parameters is required in 

order to influence the solution accuracy and execution 

speed of neighboring particles that are referenced 

when updating the global best and the number of 

partition functions. 

4.2.2 Proposed Parallelization of MOPSO/D 
using Virtual Global Best 

Figure 5 shows an outline of the distributed 

MOPSO/D with virtual global best method. In the 

proposed method, the particle swarm is partitioned 

between each SM as in the virtual global best method. 

This makes it possible to perform the calculations to 

update coordinates and personal best solutions 

without using global memory. Furthermore, the 

number of partition functions is assumed to be equal 

to the number of particles in an SM, and the 

distribution of partition functions is assumed to be the 

same for any sub-swarm. Therefore, in SM there is a 

one-to-one correspondence between particles and 

partition functions, and in the overall particle swarm, 

a single partition function is searched by the number 

of particles allocated to an SM. By sharing the global 

best with particles searching for the same partition 

function, it is thought that this will improve the 

convergence so that an optimal solution can be found 

in fewer generations. Furthermore, by storing each 

particle's virtual global best solution in a register, the 

frequency of communication with global memory can 

be reduced. By delaying the global best update time 

for each sub-swarm, we can expect to maintain the 

global search performance in each partition function. 

 

Figure 5: Outline of the distributed MOPSO/D with virtual 

global best method. 

The basic algorithm is the same as in the virtual 

global best method, but with two main changes. The 

first is that a different method is used to update the 

virtual global best. In MOPSO/D, the coordinates of 

neighboring particles are required when updating the 

global best. Essentially, storing the coordinates in 

shared memory allows the operations related to these 

particles to be completed inside the SM. However, 

due to shared memory capacity limits, it is not 

possible to store the coordinates of sub-swarms. 

Therefore, in the proposed method, the particle 

coordinates are stored in global memory for the 

purpose of sharing information, and are retrieved 

when updating the virtual global best. In this way, 

communication with the global memory takes place 

at each generation, which is liable to adversely affect 

the execution speed. 

The second change is that there is no thread 

responsible for updating the global best solution 

(thread N+1 in Algorithm 1). In MOPSO/D, the 

global best is stored individually by each particle, so 

when one thread communicates with global memory, 

the amount of communication is large, and the 

execution time becomes longer. Therefore, the global 

best is updated by the thread that updates each 

particle. 

5 EVALUATIONS 

5.1 Evaluation Method 

Table 1 shows the environment used in the 

experiment. In this study, we performed three types 

of comparative experiments. First, we solved the five 

benchmark problems of previous studies shown in the 

appendix in the same environment (Zhou, 2009; 

Hussain, 2016), and we compared the execution times 

and solution accuracy by solving five benchmark 

problems with three global best methods. The results 

shown here are the average values from 20 runs of 

this experiment with 7,936 particles, a 100-

dimensional sphere function, and other functions with 

50 dimensions, and 2,000 generations. 

Table 1: Experimental environment. 

CPU Intel core i7-6700 3.40 GHz 

RAM 16.00 GB 

GPU NVIDIA GeForce GTX 960 

OS Windows 10 Home 

Second, by comparing the execution speeds and 

solution distributions of MOPSO/D using a virtual 

global best method when implemented on a CPU and 

when implemented in parallel on a GPU, we verified 

that it maintains the same level of accuracy while 

reducing the execution time. The benchmark 

problems with two objectives used in this experiment 

were ZDT1, ZDT2 and ZDT3 (Zitzler, 2000) shown 

below. The experiments related to execution speed 
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were conducted with 4,096 particles, 30 dimensions 

and 250 generations, and the experiments related to 

distribution were conducted with the number of 

dimensions changed to 200. 

 

[ZDT1 function] 

min f1(x) = x1 

min f2(x) = g･h 

where, 𝑔 = 1 + 9.0 ∑ (𝑥𝑖 𝑛 − 1⁄ )𝑛
𝑖=2 , 

 ℎ = 1 − √𝑓1 𝑔⁄  ,  

xi ∈ [0, 1] 

 

[ZDT2 function] 

min f1(x) = x1 

min f2(x) = g･h 

where, 𝑔 = 1 + 9.0 ∑ (𝑥𝑖 𝑛 − 1⁄ )𝑛
𝑖=2 , 

 ℎ = 1 − (𝑓1 𝑔⁄ )2 ,  

xi ∈ [0, 1] 

 

[ZDT3 function] 

min f1(x) = x1 

min f2(x) = g･h 

where, 𝑔 = 1 + 9.0 ∑ (𝑥𝑖 𝑛 − 1⁄ )𝑛
𝑖=2 , 

 ℎ = 1 − √𝑓1 𝑔⁄ − (𝑓1 𝑔⁄ )𝑠𝑖𝑛(10𝜋 ∙ 𝑓1) , 

xi ∈ [0, 1] 

 

Third, we imposed a time limit on the CPU 

execution, and compared the resulting distribution 

with the results obtained by running on a GPU. In the 

limited time experiment, the GPU execution was set 

to either the time taken to reach the set number of 

generations, or the time taken for all the particles to 

reach the Pareto front of the benchmark problem. The 

number of particles was 4,096, and the number of 

generations was 250. We used the same benchmark 

problem as in the second experiment, with the number 

of dimensions set to 30. 

5.2 Experimental Comparison of 
Virtual Global Best Method with 
Previous Studies 

As shown in Table 2, the virtual global best method 

yields much more accurate solutions for the Sphere 

function and Griewank function than the parallel PSO 

method used in previous studies. This is thought to be 

because the virtual global best method achieves the 

same high level of convergence as the original PSO 

method. The Sphere function is a unimodal function 

without any local solutions, while the Griewank 

function is similar to a unimodal function in that it 

features a large global gradient. Since a highly 

convergent search algorithm is effective for searching 

unimodal functions, the proposed method was able to 

find better solutions. It also found very similar 

solutions for other multimodal functions. This is 

thought to be because the division of the particle 

swarm into sub-swarms allows greater global search 

performance to be maintained than with ordinary 

PSO. Also, according to Table 3, the virtual global 

best method is about four times faster than the 

conventional parallel PSO, except for the Sphere 

function. This is due to the effect of using virtual 

global memory to reduce the frequency of 

communication with global memory.  

Table 2: Comparison of the accuracy of previous studies 

and the proposed method. 

Function 
Zhou, 

2009 

Hussain, 

2016 

Proposed 

method 

Sphere 1.06e-01 1.32e-01 4.51e-29 

Rosenbrock 2.11e+01 2.11e+01 2.22e+01 

Rastrigin 1.45e+02 1.38e+02 8.42e+01 

Griewank 8.32e-10 1.29e-09 1.40e-45 

Ackley 9.44e-05 1.17e-04 3.81e-06 

Table 3: Comparison of the execution time of previous 

studies and the proposed method. 

Function 
Zhou, 

2009 [ms] 

Hussain, 

2016 [ms] 

Proposed 

method [ms] 

Sphere 9463.55 2767.95 1148.17 

Rosenbrock 2758.78 1495.40 314.77 

Rastrigin 2898.74 1579.15 409.13 

Griewank 2927.17 1599.27 445.46 

Ackley 2891.06 1596.29 414.08 

5.3 Experimental Comparison with 
Parallel MOPSO/D 

Tables 4 through 6 show the average execution times 

for 20 trials of each benchmark problem when the 

number of generations is 250 and dimension size is 

30. According to these tables, we achieved a speed 

improvement factor of at least 14 for every function. 

It shows an average higher performance improvement 

rate than related work (Hussain, 2018). When 

implemented on a CPU, the execution speed varies 

with the function parameters, whereas on a GPU there 

is almost no variation. This is because the evaluation 

values have to be calculated sequentially on a CPU, 

which has a direct effect on the function's 

computation time. On the other hand, since the GPU 

performs the function calculations in parallel, the 

variation of computation time with the difficulty of 

the function can be concealed.  
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In addition, when implemented on a GPU, the 

acceleration effects of parallel processing do not vary 

greatly with the number of cores. This can be attributed 

to various factors, including the proposed algorithm's 

higher proportion of computations involving 

neighboring particles, the use of global memory when 

updating the virtual global best solutions, and the fact 

that the global best is not updated in parallel. 

Furthermore, the execution time increases in 

proportion to the number of particles. This is thought 

to be due to the large number of registers used by a 

single thread. The number of threads that are run in 

parallel by the GPU is scheduled according to how 

much each thread occupies memory resources such as 

shared memory and registers. Therefore, when a single 

thread requires more memory, fewer threads can be 

processed at a time, and the overall execution becomes 

sequential. Since parallel MOPSO/D stores virtual 

global best coordinates in addition to the particle 

coordinates and personal best coordinates, each thread 

requires a large number of registers. As the number of 

particles increases, the number of threads that are 

executed sequentially also increases by a 

corresponding amount, so it is thought that the 

execution time increases in proportion to the number 

of particles. 

Table 4: Speed improvement factors for ZDT1. 

Num. of 

particles 
CPU GPU 

Speed improvement 

factor 

1024   144.9 9.8 14.71 

2048   288.1 16.7 17.27 

4096   650.0 32.5 17.38 

8192 1133.2 68.7 16.50 

Table 5: Speed improvement factors for ZDT2. 

Num. of 

particles 
CPU GPU 

Speed improvement 

factor 

1024   159.3   9.6 16.51 

2048   263.0 16.8 15.67 

4096   504.6 31.7 15.94 

8192 1001.7 67.4 14.86 

Table 6: Speed improvement factors for ZDT3. 

Num. of 

particles 
CPU GPU 

Speed improvement 

factor 

1024   167.0 10.3 16.23 

2048   331.9 17.4 19.09 

4096   650.0 33.2 19.58 

8192 1283.6 70.7 18.15 

Figures 6 through 8 compare the Pareto fronts of 

the solution distributions obtained when optimizing 

each problem on a CPU and on a GPU. The accuracy 

is almost the same for any function, but in the solution 

distributions of problems ZDT1 and ZDT3, there are 

slight differences in uniformity and solution 

accuracy. This seems to be due to minute calculation 

discrepancies between the CPU and the GPU that are 

amplified when the search process is repeatedly 

iterated. 

 

Figure 6: Comparison of ZDT1 solutions on a distribution 

chart. 

 

Figure 7: Comparison of ZDT2 solutions on a distribution 

chart. 

 

Figure 8: Comparison of ZDT3 solutions on a distribution 

chart. 

5.4 Comparison with the Case Where 
Time Limits Are Imposed 

Figures 9 through 11 compare the distributions of 

solutions obtained by the CPU and GPU 

implementations when subject to time constraints. 

Although the GPU implementation converges on the 

Pareto front of the benchmark problems, the CPU 

version found few Pareto solutions and yielded 

similar solution distributions for any function. This is 

because the CPU version can only process about 10 

generations in the time it takes for the GPU version to 

process 250 generations, so it was not possible to 

perform sufficient searching to be able to ascertain 
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the shape of the Pareto front. These results suggest 

that parallelization by the proposed method is 

effective even for real-time applications.  

We experimented by assigning the same 

execution parameter settings to different algorithms 

this time. In the future, we think that the comparison 

in the case of performing parameter adjustment for 

each algorithm is also necessary. It is also necessary 

to compare the execution time and the search 

accuracy when the number of dimensions is changed. 

 

Figure 9: Comparison of ZDT1 solutions on a distribution 

chart. 

 

Figure 10: Comparison of ZDT2 solutions on a distribution 

chart. 

 

Figure 11: Comparison of ZDT3 solutions on a distribution 

chart. 

 

 

 

 

6 CONCLUSION 

In this study, we have shown that the proposed virtual 

global method can reduce processing time by up to 

90% and perform searches at least with the same level 

of accuracy as the parallel processing methods of 

previous studies. 

We have also proposed a parallel MOPSO 

algorithm that runs quickly while maintaining the 

diversity of solutions by performing parallel 

distributed processing based on a virtual global best 

method for MOPSO/D where multiple particles 

search a single partition function when performing 

multi-objective optimization using virtual global best 

solutions. We performed experiments to compare the 

performance of the proposed method when 

implemented on a CPU and on a GPU, and showed 

that the proposed method can adapt to changes in the 

Pareto front and can improve the processing speed by 

a factor of at least 14 without loss of precision when 

run in parallel. 
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APPENDIX 

The five benchmark functions for single-objective 

optimization (Wikipedia: Test functions for 

optimization, 2019) for compare with previous 

studies (Zhou, 2009; Hussain, 2016). 

[Sphere function] 

 

𝑓(𝑥) = ∑ 𝑥𝑖
2

𝑛

𝑖=1
 

 
 

 

[Rosenbrock function] 

 

𝑓(𝑥) = ∑ [100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (1 − 𝑥𝑖)2]

𝑛−1

𝑖=1
 

 
[Rastrigin function] 

 

𝑓(𝑥) = 𝐴𝑛 + ∑ [𝑥𝑖
2 − 𝐴𝑐𝑜𝑠(2𝜋𝑥𝑖)]𝑛

𝑖=1 , 𝐴 = 10 

 

 
[Griewank function] 

𝑓(𝑥1, 𝑥2) = 1 +
1

4000
𝑥1

2 +
1

4000
𝑥2

2 

−𝑐𝑜𝑠(𝑥1)𝑐𝑜𝑠 (
1

2
𝑥2√2) 

 

 
[Ackley function] 

 

𝑓(𝑥, 𝑦) = −20𝑒𝑥𝑝 [−0.2√0.5(𝑥2 + 𝑦2)] 

− exp[0.5(𝑐𝑜𝑠2𝜋𝑥 + 𝑐𝑜𝑠2𝜋𝑦)] + 𝑒 + 20 
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