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Abstract: Mobile applications are often granted access to various data available on the mobile device. Android appli-
cations provide the notion of permissions to let the developers define the data their applications require to
function properly. However, through accessing these data, applications may gain direct or indirect access to
sensitive user data. In this paper, we address the detection of privacy vulnerabilities in mobile applications
in Android via an analysis that is based mainly on the use of Android permissions. Different aspects of the
application are analyzed in order to draw conclusions offering an aggregated view of permission analysis in
the form of a penalty score, a feature that is missing in previous approaches that analyze permission use in
Android. Our work is supported by a web application prototype of App Privacy Analyzer that allows users
to upload an application and view the respective analysis results comparing them with other applications up-
loaded in previous uses of the system. This approach can be useful for security and privacy analysts and
developers that wish to examine the privacy vulnerability level of their Android applications, but also for end
users with technical expertise. We have used the tool for the analysis of 800 Android applications and are
discussing the results the observed permission use.

1 INTRODUCTION

The Android OS uses the notion of permissions in or-
der to let developers define the data their application
requires to function properly. Android permissions
have been investigated in many previous works in or-
der to recommend appropriate applications that con-
sider user’s security requirements (Zhu et al., 2014)
or analyze code use in terms of permissions (Wang
et al., 2015a).

Although a plethora of previous works along with
official documents on using permissions exist, per-
mission misuse is still often observed in Android ap-
plications. Tools that assist developers, and security
and privacy analysts in evaluating the level of privacy
protection in the Android applications they are devel-
oping or using is a required step towards understand-
ing the implications of privacy protection in mobile
applications and can assist in preventing relevant mis-
use. The introduction of the EU General Data Pro-
tection Regulation (GDPR) has rendered the need of
introducing more elaborate analysis techniques even
more important, as end users need to be well informed
on the collection of their personal data (Tăbuşcă et al.,
2018).

a https://orcid.org/0000-0003-3742-7123

Having as motivation the above, in this work, we
introduce a process for the analysis of privacy vulner-
abilities in Android applications with a focus on per-
missions. The process is based on the analysis of the
Application Package Kit (APK) file of the application.
Although similar tools are available (e.g. Exodus Pri-
vacy1), we integrate different mechanisms in one ap-
proach that also assigns an aggregated penalty score
in each application, allowing a comparative view in
respect to other relevant applications that are avail-
able in the system. Based on this approach, we have
analyzed 800 Android applications. This way we are
drawing some conclusions on the current permission
use in Android applications that are discussed in this
work. The resulting tool, App Privacy Analyzer, is
available as a prototype web application and also of-
fers statistics on privacy vulnerabilities considering
the applications that have been analyzed so far.

The contribution of this work is threefold:

1. We introduce an aggregated score calculation for
privacy vulnerabilities based on a combination of
different approaches of code analysis.

2. We offer an online web application that is open
for use, providing access to its source code.

1https://reports.exodus-privacy.eu.org/trackers/
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3. We perform an analysis on existing applications
to see where they stand in respect to this scoring
maintaining a repository with these data.

We argue that our approach offers a useful mecha-
nism for security and privacy analysts and developers
to assess the vulnerability level of their applications,
whereas it can also be used by end users that have
some technical knowledge in order to understand the
privacy level of applications they are using or intend
to use.

The rest of the paper is structured as follows. Sec-
tion 2 provides background information by describ-
ing the use of Android permissions. The introduced
approach is presented in detail in section 3. Section
4 gives some implementation details, and Section 5
introduces the results of the application analysis per-
formed by App Privacy Analyzer discussing the main
conclusions drawn. Threats to validity are briefly dis-
cussed in Section 6. Section 7 is dedicated to the pre-
sentation of previous works in the area and finally,
Section 8 concludes the paper outlining directions of
future work.

2 ANDROID PERMISSIONS

Android has moved from ask-on-install (AOI) model
to ask-on-first-use (AOFU) model regarding permis-
sions providing more freedom to users. Applications
of Android version 5.1.1 or lower ask the user, if she
accepts all permissions associated with an application
in order to be able to use it. Otherwise, the installa-
tion of the application cannot proceed. More recent
versions (since Android version 6.0) inform the user
about the need to access a specific resource after ap-
plication installation and upon execution. If the user
accepts, the preference is saved for subsequent uses
by the same application. Otherwise, the application
will ask the same question the next time the resource
needs to be accessed. If the user however, selects the
Never ask again option, the question will not appear
again, but the user will not be able to use the appli-
cation functionality related with the permission. An-
droid uses the following permission categories:

• Normal: refers to permissions requesting access
to resources that do not affect the system or other
applications. Since Android 6.0, access to normal
permissions is provided by default. The user of
the application is not asked about them, but she
can view them before installing the application.

• Signature: these permissions are provided to the
application on its installation, only if the certifi-
cate of the application requesting the permission

matches the certificate of the application that de-
fines this permission.

• SignatureOrSystem: similar to signature permis-
sions, but used by vendors that distribute devices
with applications embedded in the Android oper-
ating system.

• Dangerous: these permissions are considered un-
safe, since the resources they access may affect
user privacy or device data, and may even affect
other installed applications. GPS and camera ac-
cess belong to this category.

• Custom: these permissions are defined by the ap-
plication developer and refer to application re-
sources and not system resources.

Custom permissions are not used further in
our work. Since a large number of permissions
exist, Android places each permission within a
group inside the main permission category (e.g.
WRITE CALENDAR and READ CALENDAR are
placed in the CALENDAR group). Requests for dan-
gerous permissions are based on the permission cat-
egory. For instance, if the application asks permis-
sion for READ CALENDAR and it then requires also
WRITE CALENDAR, permission will be granted
without asking the user again, since the two belong
to the same group. This is not the case however, for
the other permission categories.

Android permissions have disadvantages that have
been studied in the past. For instance, some permis-
sion categories are too vague to allow users to make
meaningful decisions (Felt et al., 2011b), and many
applications declare permissions they are not actually
using in their code (Felt et al., 2011a). Moreover,
permissions along with sandboxing are not adequate
measures to prevent attacks in Android applications.
Privilege escalation attacks are possible due to tran-
sitive permission usage that permits non-privileged
applications to invoke higher-privileged applications
that do not have sufficient protection mechanisms in
their interfaces (Davi et al., 2010). A previous work
has identified whether applications are over privi-
leged or follow the least privilege principle based on
a combination of runtime information and static anal-
ysis (Geneiatakis et al., 2015). Permission usage re-
lates though to the application functionality and these
aspects, i.e. sensitive information transmission and
application functions, should be viewed together, as
addressed in the DroidJust tool (Chen and Zhu, 2015).
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Figure 1: Steps of Android App Privacy Analyzer.

3 APPLICATION ANALYSIS
PROCESS

3.1 Preprocessing Phase

The steps of the analysis performed by App Privacy
Analyzer in order to infer the privacy vulnerability
level of Android applications are depicted in Figure 1.
Initially, the APK is decompiled and the Android-
Manifest.xml file is detected. The following attributes
are extracted with some being privacy-relevant and
other being generic and used only for information pur-
poses:

• label: the application name.

• package: corresponds to an application unique
identifier, referred to as Google Play ID. It usu-
ally corresponds to the project’s directory struc-
ture (e.g. com.example.android.app.diary).

• versionName and versionCode: version of the ap-
plication (name and number respectively).

• minSdkVersion and targetSdkVersion: version of
the lowest possible API and the targeted API re-
spectively.

• allowBackup: determines whether application
data can be backed up and restored (true/false
value). Although this functionality can be use-
ful, it also brings some security implications for
application data.

• debuggable: indicates whether the application can
be debugged during execution on user’s device
(true/false value). It is also considered a vulner-
ability, as it can expose data, and should be exam-
ined during penetration testing.

During the manifest analysis, the hash of the ap-
plication based on SHA-256 (that is still considered
secure) is also calculated (Gilbert and Handschuh,
2003). This is required in order to be able to uniquely
identify applications, even when application repack-
aging has been performed, and avoid performing the
analysis on an application that has already been pro-
cessed.

In the next step (Permission detection and permis-
sion groups) we focus on permissions the application
uses. Declared permissions can be extracted from
AndroidManifest.xml, whereas used permissions are
detected based on source code analysis. App Pri-
vacy Analyzer matches the declared permissions of
the manifest file with whether they are actually used
in the application source code. The following permis-
sion groups are formed as a result:

• Declared: permissions that are declared in An-
droidManifest.xml;

• Declared and used: permissions that are declared
in the manifest and are actually used in the appli-
cation;

• Not declared but used: permissions identified in
the source code but not in the manifest;

• Declared but not used: permissions that are de-
clared in the manifest file but are not present in
the source code.

In the subsequent step of Library analysis, App
Privacy Analyzer extracts from the source code third
party libraries used by the application. Based on this,
we also find the permissions that are declared in the
third party libraries used by the application, in or-
der to detect permissions used via these libraries in-
directly, as they are also important for the user. The
following data are collected for each detected library:
library name, match ratio, package name, library per-
missions list, popularity, library type (e.g. ads) and
library website.

Used permissions (from the declared and used
and the not declared but used groups) are matched
with the method they are used in, pointing to the call
that is related with a permission (Permissions API
calls step). This is performed via static code analy-
sis. We then detect the specific places at the source
code, where this permission call is made, in order to
be able to indicate this information to the user (path
to source code file and method name).

3.2 Calculation Phase

After the preprocessing phase, we calculate the vul-
nerability level of Android applications using a com-
bination of techniques. Initially, a machine learn-
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Table 1: Comparison of classification algorithms for mal-
ware detection.

Algorithm Accuracy (%)

Naive Bayes 90.201
Bagging 91.709
k-Nearest Neighbor (kNN) 93.216
Stochastic Gradient Descent (SGD) 92.965
Locally Weighted Learning (LWL) 91.709

ing approach to malware detection that relies on per-
missions is adopted (Lopez and Cadavid, 2016). A
dataset2 of 398 Android applications was used to train
a classifier that characterizes an application as mal-
ware or non-malware. We used 10-fold cross vali-
dation to compare different classification algorithms
and k-Nearest Neighbor was adopted, as it demon-
strated the best accuracy, although it is only slightly
better than Stochastic Gradient Descent (Table 1). We
are using this technique only partially in order to de-
termine whether an application can be regarded as
malware, as we observed that permission-based only
analysis is not sufficient to characterize an application
as malware.

Tracker use in the application is also examined via
tracker libraries (Tracker detection step). Identified
libraries are matched against the tracker list provided
by Exodus Privacy. Tracker detection is indicated to
the user but it is not further considered in the calcula-
tion of the vulnerability level. We finally perform an
external additional malware analysis via VirusTotal3.

Based on the analysis of the previous steps, we
provide a consolidated view of privacy vulnerabili-
ties of the application. We calculate an aggregated
score, that allows the comparison of applications. We
use the following process for the score calculation. A
penalty score is assigned to the application for each
characteristic that is considered relevant to a privacy
vulnerability. The scoring used for this purpose is
shown in Table 2 and has been created from empir-
ical observations and by experimenting with different
scoring, but can be adapted in the future. For permis-
sions, the penalty score indicated is applied for each
permission independently (e.g. if an application has
three declared and used dangerous permissions, the
respective penalty score is 30). We also add a low
penalty score to applications that declare permissions
they do not use. Applications are penalized more,
when they are using permissions they do not declare
with a different penalty score for each permission
category (Dangerous, Signature/SignatureOrSystem,
Normal).

2https://www.kaggle.com/xwolf12/
datasetandroidpermissions

3https://www.virustotal.com

We explain below the rationale of choosing each
property that should be penalized:

• Dangerous, Signature/SystemOrSignature Per-
mission Declared but not Used: Although some
applications may keep these permissions as de-
clared for future needs, this leads to misinforming
the user and should be avoided. The penalty score
applied is very low.

• Dangerous, Signature/SystemOrSignature Per-
mission Declared and Used: many applications
require permissions of these categories for their
functionality. However, their use should be kept
to the minimum level, and for this reason the ap-
plications are penalized.

• Dangerous, Signature/SystemOrSignature, Nor-
mal Permission not Declared but Used: in the case
of dangerous permissions, this is a severe vulner-
ability case, as the user is unaware of the use of
the permission. A high penalty score is assigned.

• APK is Debuggable: debuggable Android appli-
cations pose a severe risk, as it allows sensitive
device data to be extracted. As this may even
contain data for banking transactions, the penalty
score applied is high.

• APK Allows Backup: application backup data can
be easily modified4, and for this reason a penalty
score is applied. However, the score is lower than
in the case of debuggable property, as it is less
critical.

• APK Classified as Dangerous: it is based on the
machine learning analysis. A high penalty score is
provided, as the classification is based on the ex-
istence of permissions in applications. However,
less emphasis is put in this analysis in compari-
son to VirusTotal, as we encountered many false
positives (e.g. Facebook, Messenger, Instagram
applications were characterized as malware).

• APK Regarded Malware by VirusTotal: VirusTo-
tal is currently considered the most popular web-
site for multi-antivirus scanning, aggregating an-
tivirus products and online scan engines. The
penalty score is high due to the significance of
characterizing an application as malware in this
tool and is assigned, when at least 30% of the
VirusTotal engines detect the application as mal-
ware. However, if an application is characterized
as malware by VirusTotal, but does not contain a
large number of permissions (e.g. dangerous per-
missions), it is not indicated as a high risk appli-
cation (based on the scores described later in the
section).

4https://securitygrind.com/exploiting-android-backup/
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The maximum penalty score is 100. Although the
total of some applications may surpass this score (e.g.
when there are seven not declared but used dangerous
permissions), this was used as an upper limit so that
the application is not penalized more.

Based on the total penalty score of an application,
we place each application in one of the following risk
levels. The penalty score is not adequate to charac-
terize an application as risky, but we argue that it pro-
vides a measure for security and privacy analysts to
understand where their applications stand and decide
whether additional examination is required, whereas
it can assist end users providing them comparative in-
formation on an application they are using or are con-
sidering to use:

• no risk (score between 0 and 24) corresponding
to applications that have at most two dangerous
permissions or a larger number of permissions of
other categories;

• low risk corresponding to a low number of per-
missions (score 25-49);

• average risk (score 50-79) including applications
that are usually characterized as malware and use
an average number of permissions;

• high risk for applications that require further in-
vestigation (score 80-100).

4 IMPLEMENTATION

The App Privacy Analyzer tool has been implemented
as a web application using the Spring5 and Vaadin6

frameworks, employing Java and web technologies,
whereas Python has been used for application anal-
ysis purposes, since many of the existing tools we
have relied on are implemented in Python. In order
to extract information from AndroidManifest.xml file,
we have used the AndroGuard7 reverse engineering
tool. For the quantitative permission analysis from
the source code we rely on PermissionChecker that
forms part of RiskInDroid (Risk Index for Android)
tool and may be used for research purposes (Merlo
and Georgiu, 2017). RiskInDroid uses machine learn-
ing techniques to calculate a numeric risk value for
Android applications between 0 and 100. For finding
third party libraries used in the applications, including
tracker libraries, we use LibRadar8 (Ma et al., 2016).
For the permission-related methods, we are employ-
ing Pscout (Permission Scout) that performs static

5https://spring.io/
6https://vaadin.com/
7https://github.com/androguard/androguard
8https://github.com/pkumza/LibRadar

analysis in order to extract a permission specifica-
tion using light-weight call-graph analysis to Android
API (Au et al., 2012). Pscout lists the permissions that
every Android API call requires and provides these
permissions used in a CSV (Comma-Separated Val-
ues) file. In our work, it is used to detect permission
method calls, in order to identify where a permission
call is performed. We have employed the permission
datasets provided by Pscout for Android APIs 9, 10,
14-19 and 21-22, in order to cover method changes
between these versions, but the appropriate version is
used for each analyzed application.

Application analysis results are stored in a ded-
icated database, so that existing APKs can be di-
rectly retrieved without analyzing the same applica-
tion again. Applications are uniquely identified us-
ing the hash created in the preprocessing phase. A
prototype implementation of App Privacy Analyzer is
available and its source code is available in the respec-
tive repository on GitHub9. For the machine learn-
ing algorithms, we used the corresponding implemen-
tations in WEKA (Waikato Environment for Knowl-
edge Analysis) (Hall et al., 2009).

Portions of the screenshots of the online appli-
cation are shown in Figure 2 and Figure 3 with the
main data of an example application and its aggre-
gated score, and the detected permissions in used li-
braries and permission calls, respectively. Data col-
lected from the application for information purposes,
e.g. label, minSdkVersion are also shown to the user.
Regarding VirusTotal, the users can visit the respec-
tive analysis in the link provided (visible in Figure 2),
whereas in the example provided there is the indica-
tion that 43 engines were detected by VirusTotal in
this application.

5 RESULTS AND DISCUSSION

There is no ground truth for Android permission use
in applications and for this reason it is not feasible
to compare the results of our approach to a baseline,
in terms of penalty scores used. As aforementioned,
we have experimented with different values for the
penalty scores before establishing the current form.
Regarding the independent steps, we are using exter-
nal tools to guide our analysis and we are relying on
their accuracy. However, we do provide a compar-
ative view of applications analyzed by App Privacy
Analyzer, and we compare our results with VirusTo-
tal. We collected a number of Android applications

9https://github.com/CS-UCY-SEIT-lab/
AndroidAppPrivacyAnalyzer
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Figure 2: Basic data of analyzed application.

Table 2: Penalty scores for application properties.

Property Score

Dangerous permission declared but not used 3
Signature/SystemOrSignature declared but not used 1.5
Dangerous permission declared and used 10
Signature/SystemOrSignature permission declared and used 5
Dangerous permission not declared but used 15
Signature/SystemOrSignature permission not declared but used 3.75
Normal permission not declared but used 7.5
APK is debuggable 8
APK allows backup 3
APK classified as dangerous 15
APK regarded malware by VirusTotal 20

Figure 3: Permissions calls locations in analyzed application.

from the F-Droid10 catalogue of Android applications
and from APKPure11 with a total of 800 Android
applications, since both F-Droid and APKPure pro-
vide access to the APK file. These applications dif-

10https://f-droid.org
11https://apkpure.com/

fer from the dataset of malware12 applications that
we have used in the malware detection step. The ap-
plications belong to different categories, range from
minSdk version 1 to 24 and targetSdk 1 to 28 with
most belonging to minSdk version 16 (19.1%) and

12https://github.com/ashishb/android-malware
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targetSdk version 25 (19.9%). The dataset is avail-
able on GitHub9.

Table 3 shows the 10 dangerous permissions most
usually employed in the analyzed Android applica-
tions. The last column shows the positions of the per-
mission in the list of the 40 most risky permissions
according to (Wang et al., 2014). The three numbers
correspond accordingly to the position of the permis-
sion in the list of most risky permissions considering
three different machine learning techniques for cal-
culation: Correlation Coefficient (CorrCoef), ranking
with mutual information and t-test. Permissions with
no numbering do not appear in the lists. This may
be attributed to the fact that Android permission cat-
egories have been changed, since this previous publi-
cation. Table 4 shows the top 10 found permissions
regardless of the category. The most usual dangerous
permission, i.e. WRITE EXTERNAL STORAGE, is
in the tenth position. Normal permissions that were
considered dangerous in previous Android versions
appear in the list, e.g. INTERNET.

Regarding applications that use permissions they
do not declare, this was observed in 9.6% of cases.
Most permissions are declared but not used (36.67%)
and 18.3% are declared and used, which is a rela-
tively low percentage. A large number of permissions
comes from libraries used (35.44%) indicating that
caution is needed when using third party libraries, as
it may not be feasible to control the permissions they
are using. Among the applications, allowBackup is
set in 84.75%, posing a threat for most applications,
but only 1.5% are indicated as debuggable indicating
that this is a vulnerability identified by most develop-
ers. The average penalty score is 44.69 with 39.625%
applications belonging to the no risk range, 19.875%
to the low risk and 3.75% to the average risk range.

Our tool characterized 187 of applications as vul-
nerable. This corresponds to 23.375% of applications
being assigned to the high risk level. Among them,
14.5% reach a penalty score of 95 and above. We
manually analyzed some of the applications charac-
terized as risky. As many applications have a large
number of functionalities, the number of permissions
they use increases. For example, many applications
request storage access, camera access (mostly for QR
scan purposes) and location access. We are not con-
sidering the number of functionalities the application
offers in our analysis, as we rely on the APK files,
but future research work could perform further source
code analysis or combine the information for the ap-
plication description in Google Play to draw conclu-
sions about the complexity of functionality offered
by the application and its connection with permission
use. Via manual analysis we also detected applica-

tions that requested permissions, such as access to
make calls or send SMS, with no relevant functional-
ity to explain these requests and therefore, their char-
acterization as vulnerable is justified. Their results
can be considered close to the results of the AVC Un-
Droid13 tool, where 31.6% of applications that have
been submitted for analysis are characterized as mali-
cious.

The applications that are characterized as most
vulnerable (aggregated penalty score above 95) are
usually linked with the following dangerous permis-
sions:

• ACCESS COARSE LOCATION

• ACCESS FINE LOCATION

• WRITE EXTERNAL STORAGE

• READ PHONE STATE

• and READ EXTERNAL STORAGE

Different trackers have also been found in these
applications, e.g. Google Analytics, Google Ads,
Amazon Advertisement. Note that the trackers list we
are using consists of 152 trackers. The analysis re-
sults provide a good indication for vulnerabilities, but
further examination is required in order to draw more
concrete conclusions for each application.

We also investigated whether the number of dan-
gerous permissions found in an application is related
to whether the application uses permissions that it
does not declare. We ran a two independent sam-
ples t-test. The difference was statistically significant.
We observed that applications with at least one not
declared but used permission (regardless of the per-
mission group, i.e. declared, declared but not used,
not declared but used, permission coming from a li-
brary) have a larger number of dangerous permissions
(t =−6.708, p = 0.000). The descriptive statistics are
displayed in Table 5. This result justifies the use of
these parameters in the penalty score calculation.

Finally, we compared our results with VirusTotal.
We compared the penalty score with the number of
engines of VirusTotal that identified the application as
malware. We found that 47.1% of applications identi-
fied as malware by at least one VirusTotal engine were
placed in the high risk category (in 121 applications
at least 1 engine detected the application as malware).
There were many cases with a high penalty score that
were not identified by VirusTotal: 72.5% of applica-
tions in the high risk category were not detected by
any VirusTotal engine. This difference is expected, as
the aim of VirusTotal is malware detection. May ap-
plications are privacy risky, but do not contain viruses.

13http://undroid.av-comparatives.info
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Table 3: Frequency of top dangerous permissions.

Permission Frequency Position in (Wang et al., 2014)

WRITE EXTERNAL STORAGE 63 19, 13, 19
ACCESS COARSE LOCATION 36.75 -
READ PHONE STATE 36.125 7, 4, 3
ACCESS FINE LOCATION 32.875 39, 38, 39
READ EXTERNAL STORAGE 31.5 8, 5, 5
CAMERA 17.75 31, 22, 31
GET ACCOUNTS 16.875 -
READ CONTACTS 11.875 17, 17, 17
RECORD AUDIO 9.625 -
RECEIVE SMS 9.125 2, 2, 10

Table 4: Frequency of top permissions.

Permission Frequency (%)

INTERNET 88.5
DUMP 81.375
INTERACT ACROSS USERS FULL 81
INTERACT ACROSS USERS 81
WAKE LOCK 78.5
VIBRATE 68.875
BACKUP 65.875
ACCESS NETWORK STATE 63.625
MANAGE APP TOKENS 63.375
WRITE EXTERNAL STORAGE 63

Table 5: Group statistics for t-test comparing not declared
but used with dangerous permissions.

Permission N Mean number Std.
of dangerous deviation
permissions

≥1 not declared but 522 6.77 5.903
used
none not declared but 277 3.53 7.479
used

6 THREATS TO VALIDITY

In relevance to external validity, referring to the ex-
tent we can generalize our findings, we present re-
sults based on the analyzed applications that form a
relatively small dataset, but we do not expect large
deviations for a larger number of applications (Yin,
2013). A further limitation is that we are considering
the current handling of permissions by Android. If
this changes in the future, our approach will have to
be adapted.

Regarding internal validity, we rely in some steps
of our approach on existing source code analysis tools
and assume that the results they provide are accurate.
For instance, we use LibRadar to detect tracker li-
braries, but if they are not adequately detected, our
approach is also affected.

Construct validity, referring to whether a test mea-
sures the intended construct, may be affected by the

values chosen for the penalty scores for the aggre-
gated score calculation. In order to minimize this ef-
fect, we have adapted the penalty scores based on ob-
servations from our initial experiments and empirical
analysis in previous works. We do not expect to be
affected by conclusions validity, as the analysis per-
formed employs simple statistics.

7 RELATED WORK

Many previous works have focused on malware of
Android applications, but are not further analyzed as
they have a different target, although some of them
make use of permissions (Lindorfer et al., 2015; Yang
et al., 2015; Idrees et al., 2017). Regarding permis-
sion analysis, one work examines the risks associated
with Android permissions, both on the level of indi-
vidual permissions and on the level of a group of col-
laborative permissions (Wang et al., 2014). This way
permissions are ranked with respect to their risk with
READ SMS and RECEIVE SMS obtaining the high-
est risk scores.

Suggestions as to how a permission system should
be designed are made in (Rosen et al., 2013). Dis-
advantages found are that permissions are not fine-
grained enough, that there should be a differentiation
between actions performed by users and actions per-
formed in the background, and that the differences be-
tween Android application code and third-party code
should be examined. The authors also create a knowl-
edge base of privacy-relevant API calls and use it to
produce application behavior profiles. Although it
would have been useful to utilize this knowledge base
also in the framework of our work, it seems that it is
no longer available. Improvements on how permis-
sions are handled in terms of user interactions have
been investigated in a usability approach (Micinski
et al., 2017). The authors have measured how user in-
teractions and sensitive resource use are related in ex-
isting applications and have then performed an online
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survey to see how users view interactions with mobile
applications in terms of connecting user actions in an
application with access to sensitive resources

In order to assist permission management from
the user’s perspective, in (Wijesekera et al., 2017)
the authors propose an approach that uses context to
adapt user decisions for access to resources. Initially,
the authors use a field study to analyze the contex-
tual aspects of user privacy decisions to regulate ac-
cess to sensitive resources. At a later stage, privacy
decisions are made by the proposed system without
user’s intervention. Another approach finds the bal-
ance between using ads in mobile applications and
free use (Leontiadis et al., 2012). On the one hand,
the user is interested in maintaining her privacy and,
on the other hand, developers would like to maxi-
mize their advertisement revenue through user pro-
filing. The authors propose a market-aware privacy
protection framework based on a feedback loop that
adjusts privacy protection level on mobile phones in
response to advertisement generated revenue.

Another group of previous works focus either on
tracking information flow or providing permission
controls at finer levels of granularity. In (Zimmeck
et al., 2017), the authors introduce a system that
checks data practices of Android applications against
privacy requirements using their privacy policies and
the legislation. They have found that in a large num-
ber of applications there are potential inconsistencies
between what the applications states to do and what
the code of the application does.

Works that are closer to our approach perform
static analysis that can be performed on mobile ap-
plications for various purposes, as described in a pre-
vious survey (Li et al., 2017). Information flows
that may violate privacy relying on the applica-
tion’s Dalvik bytecode are examined in the theoreti-
cal approach of a security type system in (Mann and
Starostin, 2012). The type system uses a privacy pol-
icy that defines method and field signatures as in-
put. Methods in the application are then examined
to see whether they respect the specified signatures.
Dynamic analysis is used in (Wang et al., 2015a) in
conjunction with static analysis to determine the pre-
cise set of permissions that an application needs to
run correctly in relevance to the declared permissions.
In this approach, permission usage information is ini-
tially extracted from API invocations, and then a dy-
namic testing technique monitors the runtime behav-
ior of the application.

Other approaches focus on inferring the permis-
sions an API needs. The ApMiner approach is able
to learn from the usage of APIs and permissions in
other applications published in a marketplace (Karim

et al., 2016). Using this information, it can help the
development of new applications by recommending
the permissions to be added in the application taking
into account the APIs it uses. This work is further
enhanced in (Bao et al., 2016), where the authors in-
troduce an approach based on collaborative filtering.
This approach is based on the assumption that appli-
cations that share similar features, based on the APIs
they use, share also similar permissions.

Going one step further, the work in (Wang et al.,
2015b) employs text mining techniques to infer the
purpose of permission use. It is based on decom-
piled code to extract application-specific (e.g. calls
to APIs, use of Intent, Content Provider) and text-
based (e.g. words extracted from package names,
class names and other sources) features, and has
been used in the case of contacts and location per-
missions, i.e. READ CONTACT LIST and AC-
CESS FINE LOCATION.

VetDroid is based on dynamic analysis for
identifying sensitive behaviors of Android applica-
tions (Zhang et al., 2014). It observes how appli-
cations use permissions to access system resources
and how this information is then used in the appli-
cation. It has been used to facilitate malware analy-
sis. RiskMon shares some similarities with our ap-
proach, since it assigns a risk score to each applica-
tion (Jing et al., 2015). This is performed on every
access attempt on sensitive information and at the end
a cumulative score is calculated for each application.
Based on this, it performs automated permission re-
vocation if needed. An extension of the Android OS
is provided as a proof-of-concept implementation of
RiskMon.

Some online tools offer users the possibility to
analyze Android applications. Exodus Privacy1 de-
tects ads, tracking, analytics, whereas it also reports
suspicious network traffic. Imported trackers are de-
tected based on a tracker list. Concerning permis-
sions, Exodus analyzes AndroidManifest.xml and re-
ports indicated permissions. DNS, UDP, HTTP and
HTTPS traffic is supported as detected with dynamic
application analysis using a simulated Android de-
vice. AVC UnDroid13 analyzes the APK of uploaded
applications and uses different tools: Buster Sandbox
Analyzer14 (evaluates malware suspicions based on
process behavior), ssdeep15 (computes context trig-
gered piecewise hashes or fuzzy hashes and detects
potentially risky applications) (Kornblum, 2006), AP-
KTool16 (for performing reverse engineering on the
APK) and security engines. There is an image indica-

14http://bsa.isoftware.nl
15https://ssdeep-project.github.io/ssdeep
16https://ibotpeaches.github.io/Apktool
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Table 6: Online privacy analysis tools comparison.

Property Exodus Privacy AVC UnDroid App Privacy Analyzer

tracker support 3 7 3
traffic analysis support 3 7 7
declared permissions detection 3 3 3
used permissions detection 7 3 3
permission level indication 3 3 3
permission call location 7 7 3
indication
actions/intents indication 7 3 via VirusTotal
malware detection 7 partial 3
adware SDK detection 7 3 7
statistics most frequent trackers submissions per country most frequent permissions

clean vs. malicious APKs most frequent dangerous permissions
analyzed APKs number analyzed APKs number

analyzed APKs release dates declared vs. used permissions
ad-supported APKs uses per permission
malware families declared vs. used per permission

adware SDKs average penalty score
tools used tracker list Buster Sandbox Analyzer, ssdeep, AndroGuard, PermissionChecker,

APKTool, security engines LibRadar, Pscout, VirusTotal
input Google Play URL APK file APK file

tion of how dangerous an application is, but it is not
indicated how this is calculated. Malware detection
information does not appear in the analysis report.

In regard to previous works, we employ different
mechanisms in order to offer a consolidated view of
the application. We introduce an aggregated vulner-
ability score based on the independent examinations
providing a summary of the analysis report. To the
best of our knowledge, this is the first work that intro-
duces this construct that allows users to compare the
application with other analyzed applications. Table 6
summarizes the comparison of our approach with Ex-
odus Privacy and AVC UnDroid that are the closest
existing approaches. In comparison to these tools,
we provide more statistics concerning permission use,
but do not offer adware information, since it is not di-
rectly related to privacy, unless adware is classified
as spyware. The Exodus tool detects trackers based
on the detection of code signatures in the application
(that refer to tracker packages) and their matching to
predefined tracker lists. Instead, we use LibRadar to
detect tracker libraries, but utilize also the tracker list
of Exodus. We cover the main capabilities offered by
AVC UnDroid, but use AndroGuard instead of AP-
KTool for reverse engineering purposes. Permission
call location indication is also a feature that is miss-
ing from existing approaches, but it is useful for easily
identifying the permission call inside the application
source code, especially for large applications.

8 CONCLUSIONS

In this paper, we have presented our approach on an-
alyzing Android applications for privacy vulnerabili-
ties. The approach employs different steps, wherein

an aggregated score based on application characteris-
tics as detected in these steps is calculated for each
application. We described the results of using the tool
on 800 Android applications. The approach can be a
useful tool for privacy and security analysts and de-
velopers in identifying issues that need further exami-
nation and for users that can get an overview of issues
in applications they are using or intend to use.

As future work, we intend to study how the use
of common libraries affects permission analysis for
a given application, as a previous work has identi-
fied that this may lead to inaccurate results, if analysis
mechanisms do not consider library code that can be
considered noise for the application (Li et al., 2016).
We will examine the consideration of more charac-
teristics in the calculation of the aggregated penalty
score, considering also the compliance of the An-
droid application with EU GDPR. We also intend to
put the user in the loop of privacy handling providing
more user-friendly ways for presenting to the users in-
formation on the privacy level of applications focus-
ing on users with limited or non technical expertise,
and users of younger ages. Finally, we intend to add
more steps in our analysis. Dynamic code analysis
tools can be utilized for this purpose, such as the Mo-
bile Security Framework (MobSF17), Dynamic Exe-
cutable Code Analysis Framework (DECAF) (Hen-
derson et al., 2014) and DroidBox18.

17https://github.com/MobSF/Mobile-Security-
Framework-MobSF

18https://github.com/pjlantz/droidbox
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