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Abstract: In this paper we solve Stochastic Periodic Inventory Routing Problem (SPIRP) when the accuracy of 

expected demand is changing among the periods. The variability of demands increases from period to 

period. This variability follows a certain rate of uncertainty. The uncertainty rate shows the change in 

accuracy level of demands during the planning horizon. To deal with the growing uncertainty, we apply a 

safety stock based SPIRP model with different levels of safety stock. To satisfy the service level in the 

whole planning horizon, the level of safety stock needs to be adjusted according to the demand’s variability. 

In addition, the behavior of the solution model in long term planning horizons for retailers with different 

demand accuracy is taken into account. We develop the SPIRP model for one retailer with an average level 

of demand, and standard deviation for each period. The objective is to find an optimum level of safety stock 

to be allocated to the retailer, in order to achieve the expected level of service, and minimize the costs.  We 

propose a model to deal with the uncertainty in demands, and evaluate the performance of the model based 

on the defined indicators and experimentally designed cases.  

1 INTRODUCTION 

Minimizing logistics costs has been a major issue in 

many industries, especially those dealing with 

relatively high level of costs for transportations, 

storage, and stock-outs (Pujawan et al, 2015). In 

such a situation, not only the “best” schedules for 

the replenishment matters, but also the estimated 

costs for storage capacity, holding and stock-out 

costs are crucial. Minimizing these costs while the 

promised level of service is satisfied, is the major 

issue in inventory routing problem. 

Forecasting the expected demands is the initial 

requirement for Inventory Routing Problem (IRP) 

(Sagaert et al, 2018). The accuracy of the expected 

demand affects inventory level and related costs 

during the planning horizon. Normally these 

estimations are done based on the historical data 

gathered from previous periods. So far most of the 

studies about IRP have considered demands as 

stationary stochastic among the periods (Abdul 

Rahim et al, 2014; Bertazzi et al, 2015; Diaz et al, 

2016; Rahim and Irwan, 2015; Yadollahi et al, 

2017), while in real life cases -when the planning is 

done for a long horizon- the accuracy of the 

estimated demand may decrease among the periods 

and make the estimated demand more uncertain. 

That influences the IRP optimization in long term 

planning horizon regarding the minimization of the 

costs and covering the promised service level. A 

product with a random demand pattern would 

always have higher costs as compared to a product 

with sinusoidal or life cycle demand pattern from 

both costs and service level points of view. 

Therefore, a fair trade-off between service level and 

total costs is required (Purohit et al, 2016). 

While distribution planning is considered as 

operational in nature, storage capacity allocation 

tend to be strategic (Manzini and Bindi, 2009) as 

they require large capital investments. Therefore, 

trading-off the two decisions under uncertainty is 

challenging. To this, we also add the non-stationarity 

in the stochastic demands at the retailers. In this 

paper first we consider solution models for 

Stochastic Periodic Inventory Routing Problem 

(SPIRP) with non-stationary demands and then 

reformulate it to take into account different policies 

for allocation of safety stock at the retailers. In the 
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cases with different safety stock levels, it is 

important to know which model suits the best in 

order to allocate optimum level of inventory to 

minimize the costs in the whole planning horizon 

and still satisfy the actual demand. 

2 SAFETY STOCK-BASED SPIRP 

MODEL 

The distribution system studied in this paper consists 

of a single warehouse and a set of geographically 

scattered retailers. The retailers are indexed by 

𝑖 and  𝑗 , ( 𝑖, 𝑗 ∈  {1, 2, . . , 𝑚} ) where 𝑚  is the total 

number of retailers and the warehouse is indexed by 

𝑟 . Let 𝐻 =  {1, 2, . . , 𝑇 }  be the planning horizon 

covering T periods each being indexed by 𝑡,  and 

𝐻+  =  𝐻 ∪  {0}  be the planning horizon that 

includes period 𝑡 = 0. Retailer 𝑗 has a demand rate 

𝑑𝑗𝑡 in time period 𝑡. Let 𝑆 be the set of retailers; and 

𝑆+  =  𝑆 ∪ {𝑟 }. 

Let 𝜏 be the size in time units of each period 𝑡; 

this can for example be the eight working hours per 

day. For the deliveries, a fleet of vehicles 𝑉, 𝑣 ∈
 {1,2, . . , 𝑘}  each with a capacity of 𝜅  is available. 

The supplier and each retailer 𝑗 agree to a service 

level ( 𝑆𝐿𝑗 ) based on a predetermined stock-out 

probability 𝜃𝑗 . This results in 𝑆𝐿𝑗 = 1 − 𝜃𝑗 . Stock-

outs are assumed to be fully backlogged. 

Additional Parameters of the Model are as 

Follows: 

𝜙𝑗𝑡 : the fixed handling cost (in euros) per 

delivery at location 𝑗 ∈ 𝑆+  (retailers and 

warehouse) in period 𝑡 ∈ 𝐻. 

ℎ𝑗𝑡 : the per unit per period holding cost of the 

product at location 𝑗 ∈ 𝑆 (in euros per ton); 

𝜓𝑣:  the fixed operating cost of vehicle 𝑣 ∈  𝑉 

(in euros per vehicle); 

𝛿𝑣: travel cost of vehicle 𝑣 ∈ 𝑉  (in euros per 

km); 

𝜂𝑣: average speed of vehicle 𝑣 ∈ 𝑉 (in km per 

hour); 

∆𝑖𝑗 : duration of a trip from location 𝑖 ∈ 𝑆+  to 

location 𝑗 ∈ 𝑆+ (in hours); 

𝐼𝑗0: the initial inventory level at retailer 𝑗 ∈ 𝑆; 

The Variables of the Model are defined as 

Follows: 

𝑄𝑣𝑖𝑗𝑡 : the quantity of product in vehicle 𝑣 ∈

𝑉 when it travels directly to location 𝑗 ∈ 𝑆+  

from location 𝑖 ∈ 𝑆+ in period 𝑡 ∈ 𝐻. This 

quantity equals zero when the trip (𝑖, 𝑗) is 

not made by vehicle 𝑣 ∈ 𝑉 in period t; 

𝑞𝑗𝑡 : the quantity delivered to location 𝑗 ∈ 𝑆  in 

period 𝑡 ∈ 𝐻; 

𝐼𝑗𝑡: the inventory level at location 𝑗 ∈ 𝑆 by the 

end of period 𝑡 ∈ 𝐻; 

𝑥𝑣𝑖𝑗𝑡: a binary variable set to 1 if location 𝑗 ∈ 𝑆+ 

is visited immediately after location 𝑖 ∈ 𝑆+ 

by vehicle 𝑣 ∈ 𝑉  in period 𝑡 ∈ 𝐻 , and 0 

otherwise; 

𝑦𝑣𝑡: a binary variable set to 1 if vehicle 𝑣 ∈ 𝑉 is 

being used in period 𝑡, and 0 otherwise; 

The optimization problem we face is the 

following; 

Minimize: 

 

𝐶𝑉 =  ∑ ∑ [𝜓𝑣𝑦𝑣𝑡  +  ∑ ∑ (𝛿𝑣

𝑗 ∈ 𝑆+𝑖∈ 𝑆+ 

𝜂𝑣∆𝑖𝑗 +  𝜙𝑗𝑡)𝑥𝑣𝑖𝑗𝑡   ]

𝑣∈𝑉𝑡∈𝐻

+ ∑ ∑ ℎ𝑗𝑡𝐼𝑗𝑡  

𝑗 ∈ 𝑆𝑡 ∈ 𝐻

 (1) 
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Subject to: 

∑ ∑ 𝑥𝑣𝑖𝑗𝑡  ≤ 1, ∀ 𝑗 ∈ 𝑆,

𝑖∈ 𝑆+𝑣 ∈ 𝑉

 𝑡 ∈ 𝐻 (2) 

∑  𝑥𝑣𝑖𝑗𝑡 − ∑ 𝑥𝑣𝑗𝑘𝑡 = 0  ∀  𝑗 ∈ 𝑆+, 𝑡

𝑘∈ 𝑆+𝑖∈ 𝑆+

∈ 𝐻, 𝑣 ∈ 𝑉  
(3) 

∑ ∑ ∆𝑖𝑗𝑥𝑣𝑖𝑗𝑡  ≤

𝑗∈ 𝑆+𝑖∈ 𝑆+

𝜏𝑡   ∀ 𝑡 ∈ 𝐻, 𝑣 ∈ 𝑉 (4) 

∑ ∑ 𝑄𝑣𝑖𝑗𝑡 − ∑ ∑ 𝑄𝑣𝑗𝑘𝑡 = 𝑞𝑗𝑡

𝑘∈ 𝑆+ 𝑣 ∈ 𝑉 𝑖∈ 𝑆+ 𝑣 ∈ 𝑉 

 ∀ 𝑗

∈ 𝑆, 𝑡 ∈ 𝐻 
(5) 

𝑄𝑣𝑖𝑗𝑡  ≤ 𝜅 𝑥𝑣𝑖𝑗𝑡, ∀ 𝑖 ∈  𝑆+, 𝑗 ∈  𝑆+, 𝑡 ∈ 𝐻 , 𝑣

∈ 𝑉 (6) 

𝐼𝑗0 + ∑ 𝑞𝑗𝑙 = ∑ 𝐸(𝑑𝑗𝑙) + 𝑆𝑆𝑗𝑡 + 

𝑡

𝑙=1

𝑡

𝑙=1

𝐼𝑗𝑡 , ∀ 𝑗

∈ 𝑆, 𝑡 ∈ 𝐻+  

(7) 

𝐼𝑗0  ≤  𝐼𝑗𝑇  , ∀ 𝑗 ∈  𝑆, 𝑡 ∈  𝐻 (8) 

𝑥𝑣𝑟𝑗𝑡  ≤  𝑦𝑣𝑡, ∀ 𝑗 ∈ 𝑆+, 𝑡 ∈ 𝐻, 𝑣 ∈ 𝑉 (9) 

𝑥𝑣𝑖𝑗𝑡 , 𝑦𝑣𝑡  ∈ {0,1}, 𝐼𝑗𝑡  ≥ 0, 𝑄𝑣𝑖𝑗𝑡  ≥ 0, 𝑞𝑗𝑡  ≥ 0,

∀ 𝑗 ∈  𝑆+, 𝑡 ∈  𝐻, 𝑣 ∈  𝑉 

The objective function (1) shows the variables to 

minimize the level of costs in this replenishment 

system. It includes five cost components, namely, 

total fixed operating cost of using the vehicle(s), 

total transportation cost, total delivery handling cost, 

total inventory holding cost at the end of each 

period.  

Constraints (2) assure that each retailer is visited 

at most once during each period. Constraints (3) 

guarantee that a vehicle moves to the next 

retailer/depot after serving the current one. 

Constraints (4) prevent that the time required to 

complete each tour does not exceed the duration of 

the period. The quantities to be delivered to each 

retailer are determined by constraints (5). These 

constraints also avoid sub-tour(s) from occurring. 

Constraints (6) are capacity constraints induced by 

the vehicles capacities. Constraints (7) determine the 

delivered number of products from period 1 to 𝑡 

together with the initial inventory to be equal to the 

expected demand’s values from period 1 to 𝑡, safety 

stock, and remaining inventory at the end of period 𝑡 

for each retailer 𝑗 . Constraints (8) insure that the 

level of inventory at the end of last period is equal or 

larger than initial inventory. Finally, constraints (9) 

specify that a vehicle cannot be assigned to serve 

retailers unless the related fixed cost is payed. 

2.1 Safety Stock based SPIRP 

Safety stock is a term used by logisticians to 

describe a level of extra stock that is maintained to 

diminish risk of stock-outs caused by uncertainties 

in supply and demand. It is an additional quantity of 

an item held on top of the cycle inventory to reduce 

the risk that the item will be out of stock. The 

amount of safety stock and its allocation mechanism 

during short/long term planning horizon is 

considered in this section. This approach 

reformulates the SPIRP to a safety stock-based 

equivalent deterministic model, where extra amount 

of stock is kept at retailers to cope with their 

demands' variability. 

This approach can be seen as an application of 

Robust Optimization. Bertsimas et al (2011) 

formulated the optimization model under uncertainty 

to a deterministic equivalent one. The proposed 

approximate deterministic model in this section is a 

robust reformulation of SPIRP and reformulates the 

model to a safety stock-based deterministic 

equivalent. 

As is presented in table 1, safety stock is a 

function of service level parameter (𝑧𝜃𝑗
), number of 

time periods (𝑡), and standard deviation of demand 

(𝜎𝑗𝑡) for each retailer (𝑗). The parameter 𝑧𝜃𝑗
 is the 

service factor determined by retailer’s requested 

service level (𝑆𝐿𝑗%) gained by the level of 𝜃𝑗 as the 

inventory violation rate. It is used as a multiplier 

with the standard deviation and number of time 

periods to calculate a specific quantity (as safety 

stock) to meet the pre-set service level. 
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Table 1: Safety Stock models. 

Safety Stock allocation mechanism 

Model 1 𝑆𝑆𝑗𝑡 =  𝑧𝜃𝑗
 ∑ 𝜎𝑗𝑙

𝑡

𝑙=1

 Model 6 𝑆𝑆𝑗𝑡 =  
𝑧𝜃𝑗

4𝑡
 ∑ 𝜎𝑗𝑙

𝑡

𝑙=1

 

Model 2  𝑆𝑆𝑗𝑡 =  
𝑧𝜃𝑗

√𝑡
  ∑ 𝜎𝑗𝑙

𝑡

𝑙=1

 Model 7 𝑆𝑆𝑗𝑡 =  
𝑧𝜃𝑗

5𝑡
 ∑ 𝜎𝑗𝑙

𝑡

𝑙=1

 

Model 3 𝑆𝑆𝑗𝑡 =  
𝑧𝜃𝑗

𝑡
 ∑ 𝜎𝑗𝑙

𝑡

𝑙=1

 Model 8 𝑆𝑆𝑗𝑡 =  
𝑧𝜃𝑗

10𝑡
 ∑ 𝜎𝑗𝑙

𝑡

𝑙=1

 

Model 4 𝑆𝑆𝑗𝑡 =  
𝑧𝜃𝑗

2𝑡
 ∑ 𝜎𝑗𝑙

𝑡

𝑙=1

 Model 9 𝑆𝑆𝑗𝑡 =  
𝑧𝜃𝑗

𝑡2
 ∑ 𝜎𝑗𝑙

𝑡

𝑙=1

 

Model 5 𝑆𝑆𝑗𝑡 =  
𝑧𝜃𝑗

3𝑡
 ∑ 𝜎𝑗𝑙

𝑡

𝑙=1

 

 

3 CASE STUDY  

We consider a distribution center with one retailer 

and one warehouse. There is one vehicle with the 

capacity of 200 kg. The vehicle works 8 hours per 

day with an average speed of 50 km/h. Fix and 

variable costs of the vehicle are presented in table 3. 

Distance between the retailer and warehouse is about 

25 km and it takes 0.5536 hour. The demand for the 

retailer is considered stochastic and follows Gamma 

distribution and all the stock-outs are fully 

backlogged. Table 2 presents the demands for 1 

period time and standard deviations as well as their 

coefficient of variations. The rest of the parameters 

of this example are provided in table 1. We use 

CPLEX 12.5.1 for solving all models. All the 

computations are performed on a 3.60 GHz Intel® 

Xeon® CPU. 

3.1 Design of Experiments 

The illustrative example consists of one retailer and 

one warehouse to simplify the routing optimization 

and put the emphasize more on the inventory 

management. We take into account different 

instances with different demands and planning 

horizons. The detail of the experimental design is 

presented below: 

Safety Stock Allocation Model. 

There are 9 considered models to allocate safety 

stock to the retailer (table1).  

Planning Horizon. 

50 periods.   

Demand’s Accuracy Level. 

The accuracy level shows the growing uncertainty 

among the periods. In this example we considered 5 

different levels presented in table 2.   

In total there are 45 instances considered in this 

instance. The outcome of the optimization models 

are simulated, compared and analysed in next 

section. 

3.2 Non-stationary Demands 

The stochastic demand we consider is non-

stationary, which means its distribution varies from 

one period to the next. Demand in period 𝑡  is 

represented by means of a non-negative random 

variable (𝑑𝑗𝑡 ) with known cumulative distribution 

function 𝐹𝑡 : Random demand is assumed to be 

independent over the periods. The idea is to figure 

out the most optimum way of allocating safety 

stocks at the retailer with different standard 

deviations among the periods. In table 2 the averages 

and standard deviations of the demand for the 

considered retailer are presented. 𝑥𝑗  is the certainty 

rate multiplied by the standard deviation of the 

demands, showing the influences during the 

planning horizon on the estimated demand. 
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Table 2: Retailer's Demands. 

 Average Uncertainty level (Standard 

deviation) 

Accuracy rate 

(𝒙𝒋) 

Retailer 𝐸(𝑑𝑗𝑡) = 21.98 𝜎𝑗𝑡 = (1 − 𝑥𝑗)𝑡 99%, 98%, 95%, 90%, and 80% 

 

Retailer’s demand follows Gamma distribution 

Γ(𝛼𝑗𝑡 , 𝛽𝑗𝑡) . Since the demands are non-stationary, 

the parameters for Gamma distribution are 

dependent on 𝑡. According to the defined trends (𝑥𝑗) 

for the demand at each retailer, 𝛼𝑗𝑡  and  𝛽𝑗𝑡  take 

different values.  

In this paper first we do the experiment without 

involving the entropy level, just to see how different 

models behave, and then we add the entropy effect 

(𝑥𝑗 ) on safety stock calculation to check with the 

results. Of course the results should be better, but we 

measure whether the indicators are improved.  

Table 3: Parameter values. 

Notation Parameter values 

𝝓𝒋𝒕 Handling costs 25 

𝜼𝒋𝒕 Inventory holding costs per unit 

per period 
0.5 

𝜹𝒗 Travel costs for vehicle in Euro 

per KM 
1 

𝝍𝒗 Fix operating cost of vehicle 30 

𝝂𝒗 Average speed of vehicle 50 

4 RESULTS AND DISCUSSIONS 

The instances of DOE have been optimized and 

simulated for 280 replications. The simulation model 

generates gamma distributed demands according to 

𝛼𝑗𝑡and 𝛽𝑗𝑡. The optimized results show the amount 

of delivered product to the retailer in different 

periods, together with inventory level at each period. 

Also the costs to expect from this model. To verify 

this, we simulated the DOE instances 280 times and 

compared the results with the estimated outcome 

from optimization model.  

The indicators chosen in this paper show an 

interesting move amongst different instances. Figure 

1 displays the average inventory levels at the end of 

the planning horizon for each instance. The 

horizontal axis shows the accuracy rates of our data, 

to see whether the inventory level changes if the 

provided data is not accurate. As it is shown in this 

figure, the level of inventory increases slightly  

when the data accuracy is decreasing.  

In addition, different considered safety stock 

based model have different effects on the inventory 

level. Model 9 (table 1) has the lowest inventory 

while Model 1 has the highest volume. This  
 

 

Figure 1: Inventory level. 
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difference is because of the safety stock reduction 

policy in long term planning horizons. Moreover, the 

difference between different models is the lowest 

when the accuracy is 99%, meaning all models 

behaving similar when the certainty of the demand 

rate is the highest. By having low accuracy, the 

models need to allocate more inventory to the 

retailer and that results in high end inventory level. 

The other important indicator in this study is 

inventory violation. This indicator shows the 

percentage of having the retailer out of stock during 

the whole planning horizon. These percentages are 

shown in figure 2 for all the instances considered in 

this paper. In this cases we pre-defined 10% of 

inventory violation among the planning horizon, and 

according to this, we check whether the actual stock-

out level varies in different instances.  

The horizontal axis in figure 2 displays the 

accuracy rates of different instances, while the 

vertical axis shows the backlog percentage. As it is 

shown in this figure, lack of accuracy in data results 

in minor changes in IV levels. Even-though the 

accuracy level is around 80%, still the models are 

able to cover the demands for more than 82% in the 

worst case (model 9), and 100% in the best cases 

(model 1, 2, and 3). The trend in different accuracy 

rates is the same. Model 1 is always with no stock-

out and model 9 with high stock-out level.  

To have a better understanding of this indicator, 

figure 3 presents the differences between expected 

and actual level of backlog. Positive values 

demonstrate the model satisfaction of the estimated 

guaranteed service level and negative values show 

the failure of the models to cover the estimated level 
 

 

Figure 2: Service Level Accuracy. 

 

Figure 3: Stock-out level. 
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Figure 4: Inventory Accuracy. 

of service. As it is clear, all the instances satisfied 

the expected service except model 9 for the cases 

with 95, 90, and 80 percent accuracy in data and 

model 8 for the case with 80 percent accuracy in 

data. This figure clarifies the ability of the proposed 

models in satisfying the demands in different 

situations. Even-though the amount of safety stock 

decreases by the number of proposed models, still 

they manage to have the expected service level. 

From the other side this figure shows that in 

most of the cases the actual level of service is more 

than what was expected (more than 90 percent while 

90% is enough), which means that the retailer keeps 

extra level of inventory in most of the periods of 

planning horizon to deal with the uncertainty in 

demands. Therefore, having the bars more close to 

zero in figure 3 shows the efficiency of the model 

(in this case model 8) in satisfying the demand while 

avoiding the huge inventory level.  

To check with the models to see whether they are 

accurate in their results, we compare the estimated 

level of inventory at each period with actual levels. 

Figure 4 illustrates this differences for all the 

considered cases in this paper. Models with lower 

level of safety stock are more accurate in the 

inventory level in comparison with the ones with 

bigger safety stock (we have excluded model 1 and 2 

(table 1) in this figure due to the high level of 

difference in inventory).  In addition, the cases with 

lower data accuracy have lower accuracy in their 

results which makes sense, because the model needs 

to compensate it with more delivered products which 

might not be used in the end. 

 

5 CONCLUSION 

In this paper we considered stochastic demands in 

IRP when the variability of demand increases among 

the periods. Several uncertainty rates are examined 

as well as different safety stock-based models to 

solve the SPIRP model.  We developed the SPIRP 

model for one retailer with an average level of 

demand, and standard deviation for each period. The 

objective is to find an optimum level of safety stock 

to be allocated to the retailer, in order to achieve the 

expected level of service, and minimize the costs. 

The performance of the model based on the defined 

indicators and DOE cases is evaluated for a 50 

period planning horizon, and simulated for 280 

replications to compare the expected results with 

actual outcomes.  

The results have shown a gradual reduction in 

inventory levels at the retailer for the cases with 

smaller safety stock level. The models 7, 8, 9 (table 

1) are almost the same regarding the inventory 

volume and accuracy check, among all the defined 

uncertainty levels. These models showed that for the 

long term planning horizon we are able to reduce the 

safety stock to minimize the costs. In addition, in 

these models the impact of uncertainty level is less 

than other models. Expected service level is 

achieved in all the scenarios except for some cases 

of model 9 and one case of model 8, due to the lack 

of available inventory. For the future research, we 

will involve more variation of cases in the design of 

experiments to be able to evaluate the model from 

different perspectives.  
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