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Abstract: This paper presents a tracking (estimating position, velocity and size) of moving objects, such as cars, two-
wheeled vehicles, and pedestrians, using a multilayer lidar mounted on a two-wheeled vehicle. The vehicle 
obtains its own pose (position and attitude angle) by on-board global navigation satellite system/inertial 
navigation system (GNSS/INS) unit and corrects the distortion in the lidar-scan data by interpolating the pose 
information. The corrected lidar-scan data is mapped onto 3D voxel map represented in the world coordinate 
frame. Subsequently, the vehicle extracts the interested lidar-scan data from the current lidar-scan data using 
the normal distributions transform (NDT) scan matching based map-subtraction method. The extracted scan 
data are mapped onto an elevation map, and moving objects are detected based on an occupancy grid method. 
Finally, detected moving objects are tracked based on the Bayesian Filter. Experimental results show the 
performance of the proposed method. 

1 INTRODUCTION 

In mobile robotics and vehicle automation domains, 
tracking (estimation of position, velocity, and size) of 
moving objects, such as cars, two-wheeled vehicles, 
and pedestrians, is an important technology to 
achieve the advanced driver assistant system (ADAS) 
and autonomous driving. A lot of studies of moving-
object tracking using cameras, lidars, and radars have 
been actively conducted (Mukhtar et al., 2015, Mertz 
et al., 2013).  

When compared with vision-based tracking, lidar-
based tracking is robust to lighting conditions and 
require less computational time. Furthermore, lidar-
based tracking provides tracking accuracy better than 
radar-based tracking due to higher spatial resolution 
of lidar. From these reasons, we have presented a 
lidar-based tracking of moving objects (Hashimoto et 
al., 2006, Tamura et al., 2017). 

Most methods of moving-object tracking have 
been applied to ADAS and autonomous driving for 
four-wheeled vehicles traveling on flat road surfaces. 
Although moving-object tracking is required for 
advanced rider assist systems (ARAS) for two-
wheeled vehicle, there are few studies on moving-
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object tracking with sensors mounted on two-wheeled 
vehicles (Amodio et al., 2017, Barmpounakis et al., 
2016, Jeon and Rajamani, 2018).  

In this paper, we present a method of moving- 
object tracking using a lidar mounted on a two-
wheeled vehicle. Moving-object tracking by a two-
wheeled vehicle is more difficult than that by a four-
wheeled vehicle, because the attitude of a two-
wheeled vehicle changes more drastically than that of 
a four-wheeled vehicle, and the sensing accuracy then 
deteriorates.  

The occupancy grid method (Thrun et al., 2005), 
in which the grid map is represented in the world 
coordinate frame, is usually applied to moving-object 
detection and tracking. In order to perform accurate 
moving-object detection, it is necessary to accurately 
map a lidar-scan data obtained in the sensor 
coordinate frame onto a grid map using a vehicle's 
pose (position and attitude angle). Since the lidar 
obtains data by the laser scanning, all scan data within 
one scan cannot be obtained at the same time when 
the vehicle is moving or changing its own attitude. 
Therefore, if all scan data within one scan are mapped 
onto the world coordinate frame using the vehicle's 
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pose at the same time, distortion in the lidar-scan data 
occurs (Inui et al., 2017). 

In addition, when the lidar is mounted on a two-
wheeled vehicle, the mapping accuracy deteriorates 
due to the large swing motion of the lidar. As a result, 
undetection and false detection of moving objects 
increase. In order to address this problem, in this 
paper, we estimate the vehicle’s pose every shorter 
period than lidar-scan period, and then using the pose 
estimates, we correct the distortion in lidar-scan data. 

Furthermore, the differences (subtracted scan 
data) are extracted between the 3D-point cloud 
environment map acquired in advance and the current 
lidar-scan data, and only the subtracted scan data is 
mapped onto the grid map. Thereafter, moving-object 
detection and tracking are performed by the 
occupancy grid method and Baysian filter. 

The rest of this paper is organized as follows. In 
Section 2, an overview of the experimental system is 
given. In Section 3, the methods of distortion 
correction and map subtraction are described. In 
Section 4, method of detecting and tracking moving 
objects is described. In Section 5, experimental 
results are presented, followed by conclusions in 
Section 6. 

2 EXPERIMENTAL SYSTEM 

Figure 1 shows the overview of two-wheeled vehicle. 
As a first step of the study, we use a bicycle (Yamaha 
PAS-GEAR-U) as a two-wheeled vehicle. On the 
upper part of the bicycle, a 32-layer lidar (Velodyne 
HDL-32E) is mounted, and a global navigation 
satellite system/inertial navigation system (GNSS/ 
INS) unit (Novatel PwrPak7-E1) is mounted on the 
rear part. 

The maximum range of the lidar is 70 m, the 
horizontal viewing angle is 360° with a resolution of 
0.16°, and the vertical viewing angle is 41.34° with a 
resolution of 1.33°. The lidar acquires 384 
measurements including the object’s position every 
0.55 ms (at 2° horizontal angle increments). The 
period for the lidar beam to complete one rotation 
(360°) in the horizontal direction is 100 ms, and about 
70,000 measurements are acquired in one rotation. In 
this paper, one rotation in the horizontal direction of 
the lidar beam is referred to as one scan, and the data 
including measurements acquired by the one scan is 
referred to as the lidar-scan data. 

The GNSS/INS unit outputs the 3D position and 
attitude angle (roll, pitch and yaw angles) every 100 
ms. The horizontal and vertical position errors (RMS) 
are 0.02 m and 0.03 m, respectively. The roll and 

pitch angle errors (RMS) are 0.02°, and the yaw angle 
error (RMS) is 0.06°. 

 

Figure 1: Experimental bicycle. 

3 SUBTRACTION OF SCAN 
DATA 

3.1 Distortion Correction 

The lidar-scan data are obtained in the sensor 
coordinate frame ΣS fixed on the lidar, and they are 
mapped on the world coordinate frame ΣW using the 
bicycle’s pose. The output of the GNSS/INS unit can 
be used as the bicycle’s pose in GNSS environments.  

The observation period of the GNSS/INS unit is 
100 ms at which the lidar makes one rotation, and 
scan data every 0.55 ms are captured 180 times within 
one rotation of the lidar. Therefore, the bicycle's pose 
is estimated every 0.55 ms by interpolating the 
bicycle's pose from the GNSS/INS unit every 100 ms. 
For the i-th (i = 1, 2, ...)  measurement in the scan 
data, we define the position vector in ΣS as pi = (xi, 
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3.2 Extraction of Scan Data Related to 
Object 

After correcting the distortion in the lidar-scan data, 
scan data related to road planes are removed and those 
related to objects are extracted to detect moving 
objects.  

As shown in Fig. 2, we consider 32 measurements 
captured every horizontal resolution (about 0.16°) of 
the lidar. We assume that the measurement r1, which 
is the closest measurement to the bicycle, is the 
measurement related to road planes. We obtain the 
angle of a line connecting the adjacent measurements 
r1 and r2 relative to the XY plane in ΣW. If it is less 
than 15°, the measurement r2 is determined to belong 
to the road planes. If the angle is larger than 15°, the 
measurement r2 is determined to belong to the object. 
By repeating this process for all the lidar-scan data, 
we can find the scan data related to objects and apply 
them to detect moving objects. 

3.3 Scan-data Subtraction 

We assume that the bicycle has an environment map 
(3D point-cloud map related to static objects) in 
advance. As shown in Fig. 3, current scan data are 
compared with the environment map, and the scan 
data that subtract background from current scan data 
are extracted. 

Since the environmental map and the current scan 
data contain a lot of scan data, it takes much 
computational cost for the scan-data subtraction. 
Therefore, as shown in Fig. 4, to reduce the 
computational cost, we apply a voxel grid filter 
(Munaro et al., 2012); scan data related to the 
environment map and current scan data are 
downsized by the voxel grid filter. Thereafter, scan 
data are mapped onto the 3D grid map (voxel map). 
Here, the voxel used for the voxel grid filter is a cube 
with a side-length of 0.2 m, whereas the voxel for the 
voxel map is a cube with a side-length of 0.5 m. 

Next, the current scan data are matched with the 
environment map using the normal distributions 
transform (NDT) scan matching (Biber and Strasser, 
2003). The NDT scan matching conducts a normal 
distribution transformation for the scan data in each 
voxel of the environmental map; it calculates the 
mean qi and covariance Ωi of 3D positions of the scan 
data. Then, the likelihood function  of the current 
scan data P’(t) ={p1

' (t), p2
' (t), ..., pn

' (t)} is calculated by 
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Figure 2: Extraction of lidar-scan data related to objects. 
Red and blue points indicate the scan data related to the road 
planes and objects, respectively. 

 

Figure 3: Map-subtraction method. 

 

Figure 4: Mapping sequence of lidar-scan data. 

Then, the bicycle’s pose X that maximizes Λ is 
calculated, and the coordinates of the current scan 
data in ΣW is calculated by Eq. (1). The scan-data 
subtraction is performed by comparing the 
environmental map with the current scan data. In this 
study, we use the point cloud library (PCL) (Rusu and 
Cousins, 2011) for the NDT scan matching. 
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4 MOVING-OBJECT 
DETECTION AND TRACKING 

We apply an elevation map to detect moving objects 
at small computational cost; the subtracted scan data 
are mapped onto the elevation map. In this study, the 
cell of the elevation map is a square with a side-length 
of 0.3 m. 

A cell in which scan data exist is referred to as an 
occupied cell. For scan data related to moving 
objects, the time to occupy the same cell is short, 
whereas for scan data related to static objects, the 
time is long. Therefore, by using the occupancy grid 
method based on the cell occupancy time (Hashimoto 
et al., 2006), we classify two kinds of cells: moving 
and static cells. The moving cell is occupied by the 
scan data related to moving objects, and the static cell 
by the scan data related to static objects. 

Since scan data related to an object usually 
occupies more than one cell, adjacent occupied cells 
are clustered. Then, clustered moving cells (moving-
cell group) and clustered static cells (static-cell 
group) are obtained. 

When moving-object detection is completed, 
moving-object tracking (estimating position, 
velocity, and size) is performed. In this paper, the 
shape of the tracking object is represented by a cuboid 
with a width W, a length L, and a height H as shown 
in Fig. 5. As shown in Fig. 6, we define an XvYv-
coordinate frame, on which the Yv-axis aligns with the 
heading of a tracked object. From moving-cell group, 
we extract the width Wmeas and length Lmeas. 

When a moving object is perfectly visible, its size 
can be estimated from these moving-cell groups. In 
contrast, when it is partially occluded by other objects, 
its size cannot be accurately estimated. Therefore, the 
size of a partially visible object is estimated using the 
following equation (Tamura et al., 2017): 

( ) ( 1) ( ( 1))

( ) ( 1) ( ( 1))
meas

meas

W t W t G W W t

L t L t G L L t

    
     

 (3)

where t and t-1 are time steps. G is the filter gain. 
The height of the moving-cell group uses as the 

height estimate H. 
We then define the centroid position of the 

rectangle estimated from Eq. (3) by ),( yx  in ΣW. 

From the centroid position, the pose of the tracked 
object in ΣW is estimated using the Kalman filter 
under the assumption that the object is moving at an 
almost constant velocity (Tamura et al., 2017).  

To track objects in crowded environments, we 
need data association (i.e., one-to-one or one-to-many  

 

Figure 5: Cuboid around the tracked object (car). 

 

Figure 6: Observed vehicle size. Red squares and green 
arrow indicate moving cells and vehicle heading direction, 
respectively. Blue rectangle and circle indicate observed 
size and centroid, respectively. 

matching of tracked objects and moving-cell groups). 
We exploit the global-nearest-neighbour (GNN) 
based and rule-based data association to accurately 
perform data association (Tamura et al., 2017).  

The number of moving objects in the sensing 
areas of the lidar changes over time. Moving objects 
enter and exit the sensing area of the lidar. They also 
interact with and become occluded by other objects in 
environments. To handle such conditions, we 
implement a rule-based data handling method 
including track initiation and termination (Hashimoto 
et al., 2006). 

5 EXPERIMENTAL RESULTS 

We conducted experiments in our university campus 
as shown in Fig. 7. The maximum speed of the bicycle 
is 15 km/h. Figure 8 shows the roll and pitch angles 
of the bicycle. To change the attitude of the lidar 
largely, we rode the bicycle in zigzag. 

 

Figure 7: Photo of experimental environment (bird-eye 
view). Red line indicates moved path of the bicycle. 

ICINCO 2019 - 16th International Conference on Informatics in Control, Automation and Robotics

456



 

Figure 8: Attitude angles of bicycle. Black and red lines 
indicate the roll and pitch angles, respectively. 

To confirm the performance of moving-object 
tracking by the bicycle, a four-wheeled vehicle (a car) 
followed the bicycle. The car is equipped with a 
GNSS/INS unit, which performance is the same as 
that mounted on the bicycle. 

Figure 9 (a) shows the tracks of four pedestrians 
and a car estimated by the bicycle’s lidar. Figure 9 (b) 
shows the result of tracking the car in area #1, and 
Figure 9 (c) shows the result of tracking three 
pedestrians in area #2. In Figs. 9 (b) and (c), all scan 
data (black dots) are plotted in order for readers to 
easily understand these figures. In addition, the 
estimated size (blue cuboid) is plotted every 1 s (10 
scans), and the estimated position (blue dot) every 0.1 
s (1 scan). 

In Fig. 9 (c), pedestrians #2 and #3 are tracked as 
a large rectangle, because they walk side by side, and 
their neighbouring moving cells are then clustered as 
the same group. 

Figure 10 shows the performance of the car 
tracking shown in Fig. 9 (b). Figure 10 (a) shows the 
result of an estimated size of the car. Figure 10 (b) 
shows the error of an estimated position of the car. A 
true position of the car is obtained by the GNSS/INS 
unit mounted on the car. Figure 10 (c) shows the 
result of an estimated velocity of the car. A true 
velocity of the car is obtained by the GNSS/INS unit 
mounted on the car. 

As shown in Fig. 10 (a), the estimated error of 
length becomes large after 150 scans, because a 
distance between the bicycle and the car is large; in 
75–150 scans, the distance is about 6 m, and scan data 
of the whole car can thus be captured. However, after 
150 scans, the distance becomes about 11 m, and scan 
data of only the front part of the car can then be 
captured. This is why the estimated length of the car 
is smaller than the true length. 

As shown in Fig. 10 (b), the position error is large 
in the X direction. In the world coordinate frame ΣW, 
the east-west aligns with the X axis, and the north-
south does with the Y axis. The bicycle and car ran 
from east to west. In the proposed method, the 
centroid of the estimated rectangle is used as position 

(measurement) of the tracked object. Because the car 
follows the bicycle, the position on the front part of 
the car is always estimated as shown in Fig. 11. On 
the other hand, the GNSS/INS unit outputs the 
position information of the rear part of the car. This is 
why the position error in the X direction is large. 

We conducted another experiment, in which 34 
pedestrians and a car existed. We compare the 
tracking performance in the following four cases. 

Case 1: Tracking using distortion correction and 
map subtraction (proposed method),  

Case 2: Tracking using map subtraction and no 
distortion correction,  

Case 3: Tracking using distortion correction and no 
map subtraction, and  

Case 4: Tracking using neither distortion correction 
nor map subtraction. 

Table 1 shows the tracking result, where 
untracking means that tracking of moving objects 
fails, and false tracking means that static objects are 
tracked. It is clear from the table that the proposed 
method (case 1) provides the tracking performance 
better than the other cases. 

 

(a) Estimated track of a car and pedestrians. 

 

(b) Estimated track and size of a car in area #1. 

 

(c) Estimated track and size of pedestrians in area #2. 

Figure 9: Tracking result of a car and pedestrians (top 
view). 
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(a) Size. Black and red lines indicate the estimated width 
and length, respectively. Their true values are indicated by 
dashed lines. 

 

(b) Position error. Black and red lines indicate the error of 
the estimated positions in X and Y directions, respectively. 

 

(c) Velocity. Black and red lines indicate the true and 
estimated velocities, respectively. 

Figure 10: Tracking result of a car. 

 

Figure 11: Estimated size and position of a car (top view). 

Table 1: The number of correct and incorrect tracking. 

 
Correct 
tracking 

Untracking 
False 

tracking 
Case 1 35 0 1 
Case 2 26 9 (pedestrians) 1 
Case 3 35 0 6 
Case 4 26 9 (pedestrians) 10 

6 CONCLUSIONS 

This paper presented a moving-object tracking 
method with the lidar mounted on a two-wheeled 
vehicle. The self-pose of the vehicle at the time when 
the lidar-scan data is captured was estimated by 
interpolating the self-pose outputted from the 
onboard GNSS/INS unit, and based on the estimated 
self-pose, the distortion in the scan data was 
corrected. 

By comparing the corrected lidar-scan data with 
the environment map, the subtracted scan data was 
mapped onto the elevation map to detect and track 
moving objects. The NDT scan matching method was 
applied to the scan-data subtraction. The 
experimental results of tracking pedestrians and a car 
by a 32-layer lidar mounted on a bicycle validated the 
efficacy of the proposed method. 

As future works, we will extend the proposed 
method to moving-object tracking in GNSS-denied 
environments, in which the GNSS/INS unit cannot 
work well. In addition, we will build moving-object 
tracking system with a lidar mounted on a 
motorcycle. 
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