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Abstract: This paper presents a method for generating a 3D point-cloud map using multilayer lidar mounted on two-
wheeled vehicle. The vehicle identifies its own 3D pose (position and attitude angle) in a lidar-scan period 
using the normal distributions transform (NDT) scan-matching method. The vehicle’s pose is updated in a 
period shorter than the lidar-scan period using its attitude angle and angular velocity measured by an inertial 
measurement unit (IMU). The pose estimation is based on the extended Kalman filter (EKF) under the 
assumption that the vehicle moves at nearly constant translational and angular velocities. The vehicle’s pose 
is further estimated in a period shorter than measurement period of the IMU using a linear interpolation 
method. The estimated poses of the vehicle are applied to distortion correction of lidar-scan data, and a point-
cloud map is generated based on the corrected lidar-scan data. Experimental results of mapping a road 
environment using a 32-layer lidar mounted on a bicycle show the efficancy of the proposed method in 
comparison with conventional methods of distortion correction of lidar-scan data.  

1 INTRODUCTION 

In recent years, many studies have been conducted on 
the active safety and autonomous driving of vehicles 
and personal mobility devices. There are also many 
studies on last mile automation by delivery robots. 
Important technologies in these studies include the 
environmental map generation (Cadena et al., 2016) 
and map-matching based self-pose estimation by 
vehicles using the generated environment maps 
(Wang, et al., 2017). 

In this study, we focus on map generation with a 
lidar mounted on a vehicle. In intelligent 
transportation systems (ITS) domains, maps are being 
generated using mobile mapping systems (Seif and 
Hu, 2016). Their maps are applied to autonomous 
driving and active safety for automobiles in wide road 
environments, such as highways, and major arterial 
roads. In this study, we consider environment maps 
for active safety and autonomous driving of personal 
mobility devices and delivery robots as well as for 
various social services such as disaster prevention and 
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mitigation (Schwesinger et al., 2017, Morita et al., 
2019).  

To that end, we generate 3D point-cloud maps in 
narrow road environments, such as community roads 
and scenic roads in urban and mountainous areas, 
using lidar mounted on two-wheeled vehicles 
(bicycles and motorcycles) with higher 
maneuverability than four-wheeled vehicles. To 
generate 3D point-cloud maps using an onboard lidar, 
lidar-scan data captured in the sensor coordinate 
frame have to be accurately mapped on the world 
coordinate frame using pose (i.e., position and 
attitude angle) information of the vehicle. Since the 
lidar obtains scan data by laser scanning, all scan data 
within one scan cannot be obtained at the same time 
when a vehicle is moving or is changing its attitude. 
Therefore, if all scan data within one scan are 
transformed based on the vehicle’s pose at the same 
time, distortion occurs in scan data mapped on the 
world coordinate frame.   

To reduce distortion in the scan data, several 
methods have been proposed (Brenneke et al., 2003, 
Hong et al., 2010, Kawahara et al., 2006, Moosmann 
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and Stiller, 2011, Zhang and Singh, 2014), in which 
the information of global navigation satellite system 
(GNSS), inertial measurement unit (IMU), or wheel 
encoder is observed within a short period, and the 
vehicle’s pose is estimated in a period shorter than the 
lidar-scan period. In urban and mountainous 
environments, the GNSS information is often denied. 
Therefore, for the application in GNSS-denied 
environments, we proposed a method to correct 
distortion in the scan data using the normal 
distributions transform (NDT) scan matching and the 
extended Kalman filter (EKF) using only lidar 
information (Inui et al., 2017).  

Most conventional methods were intended to 
correct distortion in lidar-scan data from a lidar 
mounted on four-wheeled vehicles, such as 
automobiles and mobile robots, moving on flat road 
surfaces. To the best of our knowledge, studies that 
have handled distortion correction when vehicles 
change their poses drastically are very few.  Although 
several studies (Bosse et al., 2012, Kuramachi et al., 
2015, Zhang and Singh, 2014) handled distortion 
correction in lidar-scan data from lidars with pose 
changes, their lidars were hand-held lidars which 
slowly change their poses.  

Thus, in this paper, we propose a method that 
generates 3D point-cloud maps by correcting 
distortion in the scan data obtained from lidars 
mounted on two-wheeled vehicles that change their 
pose drastically, compared to lidars mounted on four-
wheeled vehicles and hand-held lidars.  

The rest of this paper is organized as follows. In 
Section 2, we give an overview of the experimental 
system. In Section 3, we summarize scan-data 
mapping based on the NDT scan matching. In Section 
4, we present the distortion correction and mapping 
methods. In Section 5, we conduct experiments to 
reveal the performance of the proposed method, 
followed by conclusions in Section 6. 

2 EXPERIMENTAL SYSTEM 

Figure 1 shows the overview of the two-wheeled 
vehicle (YAMAHA electric bicycle). As the first step 
of the study, we use the bicycle as a two-wheeled 
vehicle. 

On the upper part of the bicycle, a 32-layer lidar 
(Velodyne HDL-32E) and IMU (Tokyo Aircraft 
Instrument CSM-MG200) are mounted. The 
maximum range of the lidar is 70 m, the horizontal 
viewing angle is 360° with a resolution of 0.16°, and 
the vertical viewing angle is 41.34° with a resolution 
of 1.33°. The lidar provides 384 measurements (the  

 

Figure 1: Overview of experimental bicycle. 

object’s 3D position and reflection intensity) every 
0.55 ms (at 2° horizontal angle increments). The 
period for the lidar beam to complete one rotation 
(360°) in the horizontal direction is 100 ms, and 
70,000 measurements are obtained in one rotation.  

The IMU outputs attitude angles (roll and pitch 
angles) and their angular velocities every 10 ms. The 
resolution of attitude angle is 6.0×10-3° and its error 
is ±0.5° (typ.). The resolution of angular velocity is 
0.03 °/s, and its error is ±0.5 °/s (typ.). 

In this paper, one rotation of the lidar beam in the 
horizontal direction (360°) is referred to as one scan, 
and the data obtained from this scan is referred to as 
scan data. The lidar’s scan period (100 ms) is denoted 
as   and scan-data observation period (0.55 ms) as 
 . The observation period (10 ms) of IMU is 

denoted as 
IM U  . Therefore, IMU data are obtained 

10 times in one scan of the lidar (τ = 10ΔτIMU), and 
lidar-scan data are obtained 18 times within the 
observation period of IMU (ΔτIMU =18Δτ). 

3 SCAN-DATA MAPPING USING 
NDT SCAN MATCHING 

In the process for scan-data mapping using the NDT 
scan matching, the scan data captured in the sensor 
coordinate frame is mapped onto a 3D grid map (a 
voxel map) represented in the bicycle coordinate 
frame b . A voxel grid filter (Munaro et al., 2012) is 

applied to downsize the scan data. The voxel used for 
the voxel grid filter is a cube with a side-length of 0.2 
m. 

In the world coordinate frame W , a voxel map 

with a voxel size of 1 m is used for the NDT scan 
matching. For the i-th (i = 1, 2, …n) measurement in 
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the scan data, we define the position vector in b  as 

bip   and that in W  as ip  . Then, the following 

relationship is given: 
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where Tzyx ),,,,,( X   is the bicycle’s pose. 
Tzyx ),,(   and T),,(    are the 3D position and 

attitude angle (roll, pitch, and yaw angles) of the 
bicycle, respectively, in W . T(X) is the following 

homogeneous transformation matrix: 
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The scan data obtained at the current time t  (t = 
0, 1, 2, …),  )()(2)(1)( ,,, tbntbtbtb pppP   or ,{ )(1)( tt pP   

,,)(2 tp  })(tnp , are referred to as the new input scan, 

and the scan data obtained in the previous time  before 
)1( t  ,  )1()1()0( ,,,  tPPPP   , is referred to as the 

reference scan. 
The NDT scan matching (Biber and Strasser, 

2003) conducts a normal distribution transformation 
for the reference scan in each grid on the voxel map; 
it calculates the mean and covariance of the 3D 
positions of the lidar-scan data. By matching the new 
input scan at t   with the reference scan obtained 
prior to )1( t  , the bicycle’s pose )( tX   at t   is 

determined. The bicycle’s pose is used for conducting 
a coordinate transform by Eq. (1), and the new input 
scan is then mapped to W .  

In this study, we use point cloud library (PCL) for 
the NDT scan matching (Rusu and Cousin, 2011). It 
should be noted that the downsized scan data is only 
used to calculate the bicycle’s pose using the NDT 
scan matching at small computational cost. 

 

Figure 2: Notation related to bicycle motion. 

4 DISTORTION CORRECTION 
AND MAPPING 

4.1 Motion and Measurement Models 

As shown in Fig. 2, the linear velocity of the bicycle 
in b   is denoted as Vb (the velocity in the xb-axis 

direction), and the angular velocities about the xb-, 
yb-, and zb- axes are denoted as b  , b  , and b  , 

respectively.  
If the bicycle is assumed to move at nearly 

constant linear and angular velocities, the following 
motion model can be derived (Inui et al., 2017): 
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where 2/2
)()(1

bV
tbt wVa   ,  )()(2 tbta 

2/2

b
w  , and 2/2

)()(3 b
wa tbt    . 

bV
w  , 

b
w , 

b
w , and 

b
w  are the acceleration disturbances. 

We express Eq. (2) in the following vector form: 

 ,,)()1( wξfξ tt   (3)

where T
bbbbVzyx ),,,,,,,,,(  ξ   and w  

T
V bbbb

wwww ),,,(   . 

The attitude angle and angular velocity of the 
bicycle obtained at time IM Ut by IMU is denoted as 

( )IMU tz . The measurement model is then  

( ) ( ) ( )IMU IMU IMUt t t z H ξ z  (4)

where IMUz  is sensor noise, and HIMU is a 

measurement matrix. 
We also denote the bicycle’s pose obtained at t  

using the NDT scan matching as )()( ˆ ttNDT Xz  . The 

measurement model is then 

( ) ( ) ( )NDT NDT NDTt t t z H ξ z  (5)

where NDTz  is the measurement noise, and HNDT  is 

the measurement matrix. 
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4.2 Distortion Correction 

Figure 3 shows the sequence for correcting distortion 
in the lidar-scan data. When at the time 
( 1) ( 1) IMUt k     , where k =1–10, the state 

estimate of the bicycle, ( 1)
( 1)

ˆ k
t


ξ , and its associated 

error covariance ( 1)
( 1)

k
t


Γ   are obtained, the EKF 

prediction algorithm  (Yaakov et al., 2001) gives the 

state prediction ( / 1)
( 1)

ˆ k k
t


ξ   and its error covariance 

( / 1)
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k k
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where F = ξf ˆ/  , G = wf  /  , and Q is the 

covariance matrix of the plant noise, w. 
At the time ( 1) IMUt k   , we observe the 

attitude angle and angular velocity IMUz  of the 

bicycle with IMU. The EKF estimation algorithm 
(Yaakov et al., 2001) then gives a state estimate 
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t ξ  and its error covariance ( )
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 S H Γ H R  . RIMU is the 

covariance matrix of the sensor noise ΔzIMU. 
We denote the state estimate related to the 

bicycle’s pose ),,,,,( zyx  as ( ) ( )
( 1) ( 1)ˆˆ k k
t t X ξ . 

Using the state estimates ( 1)
( 1)ˆ k
t


X  and 

( )
( 1 )ˆ k

t X at the time ( 1) ( 1) IMUt k     and 

)1( t + IMUk , respectively, the pose ( 1)
( 1, )ˆ k
t j


X  

of the bicycle at the time )1( t + ( 1) IMUk   jΔτ, 

where j = 1–17, is interpolated by 
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Then, the scan data ( 1)
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k
t jbi
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p obtained at the 

time )1( t + ( 1) IMUk   jΔτ is transformed to 
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Figure 3: Sequence of correcting distortion in the scan data. 

Using the pose estimate (10)
( 1)ˆ t X  of the bicycle, 

the scan data ( 1)
( 1, )

k
t ji


p  are again transformed to the 

scan data *
( )tbiP   in at the time t  by 

* ( 1)
(10) 1( ) ( 1, )ˆ( ( 1))

1 1

k
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The scan data corrected with Eq. (10), 

 * * * *
( ) ( ) ( ) ( )1 2, , ,t t t tb b b bnP p p p , are used as the new 

input scan for scan matching, and the pose angle NDTz  

of the bicycle at the time t is calculated. In this scan 
matching, we use the estimate (10 )ˆ ( 1)t X  as the 

initial pose in the recursive calculation. Then, the 
EKF estimation algorithm calculates the state 

estimate ( )
ˆ

tξ  and its error covariance ( )tΓ  of the 
bicycle at the time t  as follows: 
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where, (10 ) 1
( ) ( 1) ( )

T
t t tNDT


K Γ H S ,

(10 )
( ) ( 1)

T
t tNDT NDT NDT S H Γ H R , and NDTR  is 

the covariance matrix of . 

4.3 Map Generation 

We generate the map using the scan data corrected in 
the previous section.  

When the state estimate ( 1)
ˆ

t ξ  and its error 
covariance ( 1)t Γ  of the bicycle are obtained at the 
time )1( t , the EKF prediction algoritm obtains the 

state prediction ( / 1)
ˆ

t t ξ  and its error covariance 
( / 1)t t Γ  at the time t  as follows:  

b

NDTz

Point-cloud Mapping using Lidar Mounted on Two-wheeled Vehicle based on NDT Scan Matching

449



ˆ ˆ( / 1) [ ( 1),0, ]

( / 1) ( 1) ( 1) ( 1)

                        ( 1) ( 1)

T

T

t t t

t t t t t

t t

   


     


   

ξ f ξ

Γ F Γ F

G QG

 (12)

Here, we denote the state prediction related to the 

bicycle’s pose ),,,,,( zyx  as ( / 1) ( / 1)
ˆˆ t t t t X ξ . 

We use the corrected scan data 

 * * * *
( ) ( ) ( ) ( )1 2, , ,t t t tb b b bnP p p p  as the new input scan to 

perform scan matching. Then, we calculate the pose 

NDTz  of the bicycle at the time t . In this scan 

matching, we use the prediction, ( / 1 )ˆ t t X  as the 
initial pose in the recursive calculation. 

The new input scan *
( )tbP  is mapped on the world 

coordinate frame W  using ( )NDTT z  in  Eq. (1). 

Then, the EKF estimation algorithm calculates the 

state estimate ( )
ˆ

tξ  and its error covariance ( )tΓ at 
the time t  as follows: 
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where 1
( ) ( / 1) ( )

T
t t t tNDT


K Γ H S  and 

( ) ( / 1)
T

t t tNDT NDT NDT S H Γ H R . 

5 EXPERIMENTAL RESULTS 

The bicycle moved on a road shown in Fig. 4, and 
lidar-scan data in 1500 scans (150 seconds) were 
captured. The maximum velocity of the bicycle was 
18 km/h. Figure 5 shows IMU output of roll and pitch 
angles of the bicycle. To change the attitude of the 
lidar largely, the bicycle was moved in zigzag. Then, 
the large rolling motions of the bicycle occurred as 
shown in Fig. 5 (a). 

We evaluate mapping performance in the 
following four cases: 

Case 1: Mapping by the proposed method  
Case 2: Mapping without distortion correction 
Case 3: Mapping by our previous method (Inui et. 

al., 2017) 
Case 4: Mapping using lidar-scan data, in which 

distortion is corrected using pose information from 
onboard GNSS/ IMU unit 

In case 3, we correct distortion in the lidar-scan 
data using only the lidar information (using no IMU 
information); a bicycle identifies its own 3D pose in 
a lidar-scan period (0.1 s) using the NDT scan 
matching. Based on the pose information, the 
bicycle’s pose is estimated every 0.55 ms using the 
EKF, in which Eqs. (3) and (5) are used as motion and 

measurement models, respectively. We then 
corrected the lidar-scan distortion by the estimated 
pose.  

The bicycle is equipped with the GNSS/IMU unit 
(Novatel, PwrPak7-E1) to evaluate the bicycle 
motion in experiments. The root mean square error 
(RMSE) in horizontal and vertical positions of the 
GNSS/IMU unit are 0.02 m and 0.03 m, respectively. 
The RMSE in role/pitch and yaw angles are 0.03° and 
0.1°, respectively. In case 4, we measure the bicycle’s 
pose every 0.1s with the GNSS/IMU unit and 
estimate the bicycle’s pose every 0.55 ms using the 
interpolation method. We then correct the lidar-scan 
distortion by the interpolated pose. 

Figure 6 (a) shows the close-up view of yellow 
rectangular area shown in Fig. 4. Figure 7 shows the 
mapping result of the environment in Fig. 6 (a). 
Figure 8 also shows the mapping result of the traffic 
sign in Fig. 6(b) and neighbouring tree.  

 

Figure 4: Experimental environment (bird-eye view). 

  
(a) Roll angle.                         (b) Pitch angle. 

Figure 5: Attitude angle of bicycle. 

 
(a) Mapping environment.                 (b) Traffic sign. 

Figure 6: Mapping environment and traffic sign. 
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(a) Case 1 (using proposed method). 

 
(b) Case 2 (without distortion correction). 

 
(c) Case 3 (using previous method). 

 
(d) Case 4 (using distortion correction by pose information 
from GNSS/IMU unit). 

Figure 7: Result of environment mapping. Different 
coloured dots indicate lidar-scan data with different 
reflective intensities. 

It is clear from Figs. 7 and 8 that the mapping 
result by the proposed method (case 1) is more 
crispness than that by the other methods. 

 

   
(a) Case 1.                                     (b) Case 2. 

     
(c) Case 3.                                      (d) Case 4. 

Figure 8: Mapping result of traffic sign and tree. 

6 CONCLUSIONS 

In this paper, we proposed a method to generate 3D 
point-cloud maps with a lidar mounted on a two-
wheeled vehicle. Distortion in lidar-scan data that 
occur by sudden changes of the vehicle’s pose were 
corrected; pose of the two-wheeled vehicle were 
calculated by the NDT scan matching using the lidar-
scan data obtained at each scan period.  

The distortion in the scan data was corrected by 
estimating the vehicle’s pose in a period shorter than 
the scan period via the EKF and interpolation method 
using the information of the NDT scan matching and 
IMU. The corrected scan data were applied to 
accurate 3D point-cloud mapping. 

The experimental results of road-environment 
mapping by a 32-layer lidar mounted on a bicycle 
validated the efficacy of the proposed method.  

As future works, we will perform reduction in 
computational costs in mapping, quantitative 
evaluation of the mapping performance, and 
experiments using a lidar mounted on a motorcycle. 
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