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Abstract: Sleep scoring is a fundamental but time-consuming process in any sleep laboratory. To speed up the process 
of sleep scoring without compromising accuracy, this paper develops an automatic sleep scoring toolbox with 
the capability of multi-signal processing. It allows the user to choose signal types and the number of target 
classes. Then, an automatic process containing signal pre-processing, feature extraction, classifier training (or 
prediction) and result correction will be performed. Finally, the application interface displays predicted sleep 
structure, related sleep parameters and the sleep quality index for reference. To improve the identification 
accuracy of minority stages, a layer-wise classification strategy is proposed according to the signal 
characteristics of sleep stages. The context of the current stage is taken into consideration in the correction 
phase by employing a Hidden Markov Model to study the transition rules of sleep stages in the training dataset. 
These transition rules will be used for logic classification results. The performance of proposed toolbox has 
been tested on 100 subjects with an average accuracy of 85.76%. The proposed automatic scoring toolbox 
would alleviate the burden of the physicians, speed up sleep scoring, and expedite sleep research. 

1 INTRODUCTION 

Sleep covers almost one-third of human lifespan. 
Adequate and high-quality sleep is vital to our 
physical and mental well-being (Pagel and Pandi-
Perumal, 2014). However, and likely because of our 
ephemeral lifestyle in modern society, sleep disorder 
complaints increase dramatically among people. 
Assessing sleep behaviour and analysing the sleep 
structure, therefore, become more and more crucial. 
Up to now, the conventional visual scoring method is 
still the main method in most clinical and sleep 
research labs worldwide. 

Visual scoring, mainly based on the rules of 
Rechtschaffen & Kales (R&K) (Rechtschaffen and 
Kales 1968) and the recently updated American 
Academy of Sleep Medicine rules (AASM) (Berry et 
al., 2012), requires at least one registered sleep 
technologist (RST) who has sufficient expertise and 
experience in sleep scoring. Generally, the annotation 
of 8-h recording requires approximately 2-4 hours 
(Hassan and Bhuiyan, 2016a), which is rather time-
consuming. Besides, visual scoring in some degree is 
subjective, as the inter-scorer reliability among 

trained technologists is less than 90% (Danker-Hopfe 
et al., 2009). In contrast, automatic sleep scoring has 
demonstrated advantages of cost-effective and 
preferable scoring performance.  

Electroencephalogram (EEG) signals are mainly 
used in automatic sleep scoring since they contain 
valuable and interpretable information resembling 
brain activities (Boostani et al., 2017). According to 
the morphological characteristics of EEG signals, 
sleep EEG waves are mainly composed by α wave,  
wave,  wave and  wave, K complex, sleep spindles 
and saw-tooth (Niedermeyer and da Silva, 2005). 
These rhythm waves form the foundation of sleep 
scoring. Some studies (Hassan et al., 2015; Hassan 
and Bhuiyan, 2016b) tried to extract statistical and 
spectral features from these rhythm waves to perform 
an automatic sleep scoring. Cross frequency coupling 
estimated between rhythm waves also showed high 
classification accuracy (Dimitriadis et al., 2018). 
Instead of traditional linear features, multiscale 
entropy and autoregressive models for single-channel 
EEG were employed in Liang et.al’ s study, obtaining 
a good scoring performance (Liang et al., 2012). 

Sleep  is  a  complex  process  involving   multiple
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Figure 1: The interface of sleep scoring toolbox. 

organs. Signals recorded from different physical areas 
change with the sleep cycle. The multi-modality 
signals’ contribution to sleep scoring has been 
explored in several studies (Gharbali et al., 2018; Yan 
et al., 2019; Šušmáková and Krakovská, 2008). Özşen 
concluded that as the  sleep deepen, the frequency of 
EEG signals attenuated gradually, along with rare eye 
movements, low electromyography (EMG) activity 
and slow heart rate (Özşen, 2013). Ebrahimi and his 
colleagues found that under the control of 
parasympathetic nervous system and sympathetic 
nervous system, cardiovascular and respiratory 
behaviours fluctuated with the alternation of sleep 
stage (Ebrahimi et al., 2015). It has demonstrated that 
features from multi-modality signals were beneficial 
to the improvement of scoring accuracy (Boostani et 
al., 2017). 

Although there are many studies on automatic 
sleep scoring, the available software and toolbox is 
limited. Given that, this study aims to develop an 
automatic sleep scoring toolbox with the capability of 
multi-signal processing, see Figure 1. The main 
contributions of this work are presented as following: 

a) An automatic sleep scoring toolbox is proposed 
which supports multiple sleep signals and two 
data formats. 

b) An interactive interface is provided which allows 
the user to select the number of target classes, 
change signal types and visualize various analysis 
results.  

c) A layer-wise classification strategy is proposed 
which can significantly improve the classification 
accuracy of minority stages without 
compromising the accuracy of other classes. 

d) A correction procedure is proposed to make 
classification results logical. 

The article is organized as follows: Section 2 explains 
the details of experimental data and methodology of 
this study. Section 3 demonstrates the performance of 
proposed toolbox. Section 4 provides discussions of 
results and limitations of this study. Finally, section 5 
gives conclusions of this paper. 

2 MATERIALS AND METHODS 

2.1 System Overview 

The proposed toolbox consists of a training module, 
an offline prediction module, an online prediction 
module and several parameter panels, as shown in 
Figure 1. Their functions are briefly described in the 
following lines. The specific model structure will be 
introduced in detail in section 2.5. 
Training Module: The objective of the training 
module is to train a classifier based on the user’s 
selection. The user can choose signal types and the 
number of target stages as required. The software 
automatically performs signal pre-processing, feature 
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extraction and classifier training. The output of this 
module is a trained model which can be used to 
predict sleep structures. 
Prediction Module: The aim of this module is to 
predict sleep structure based on the predefined model 
or user-specified model. The module automatically 
checks if the user has trained a model, and allows the 
user to determine if the predefined model is needed. 
Once the model selected, the module automatically 
processes the test data based on model parameters. 
Finally, the application interface displays the 
predicted sleep structure, related sleep parameters and 
a sleep quality index as a reference to sleep quality. If 
a hypnogram (e.g., labels scored by RST) is available 
for the test data, the interface would display both the 
hypnogram and predicted labels together, and 
highlight the disagreement by pressing the button 
named “Comp”.  
Online Prediction Module: The module is similar to 
the offline prediction process except for the real-time 
updating results. The module can be connected to a 
sleep monitoring device in order to realize the real-
time analysis of sleep signals and to visualize sleep 
structures. The updated sleep signal will be saved as 
a TXT file in storage. 

2.2 Description of Experiment Data 

The sleep data for this investigation was provided by 
the Sleep Heart Health Study (SHHS) database. We 
used only the first round (SHHS-1) due to its wide age 
range. The recordings employed in this study were 
selected by considering a Respiratory Disturbance 
Index 3 Percent (RDI3P) < 5 to have near-normal 
characteristics. Moreover, subjects did not use beta-
blockers, alpha-blockers, inhibitors, and did not 
suffer documented hypertension, heart disease, or 
history of stroke. Given that, a total number of 100 
subjects were selected with the total duration of 816 
hours and 43 minutes. The age of subjects ranged 
from 40 to 54 years, with a mean value of 47 years 
and a standard deviation of 4.3 years. Each record was 
scored by the experienced research assistant or sleep 
technologist according to the R&K rules. The sleep 
recordings were segmented into 30-second per epoch 
and labelled as wakefulness (W), non-rapid eye 
movement stage (NREM, containing S1, S2, S3 and 
S4) and rapid eye movement stage (REM). The 
deepest NREM stage, namely S3 and S4, were 
collectively referred to as “slow wave sleep” (SWS), 
based on a prevalence of low-frequency oscillations 
(Berry et al., 2012). A detailed description of SHHS 
was given in the study (Quan et al., 1997) . 

2.3 Pre-processing 

For the predefined model and the following 
experiments, four modalities of polysomnography 
(PSG) signals were considered: EEG channels (C4-
A1 and C3-A2, following the 10-20 international 
electrode placement system), two electrooculography 
(EOG) channels (named: ROC, LOC), one submental 
electromyography (EMG) channel and one 
electrocardiography (ECG) channel. All the 
aforementioned signals were fully included within the 
evaluation process without discarding any recorded 
segments, thereby to have a near-clinical situation. 

In order to remove noise and artefacts, a notch 
filter, a high-pass filter with a cut-off frequency of 
0.3Hz and a low-pass filter with a cut-off frequency 
of 30Hz were applied to the signals of EEG, EOG and 
ECG. In terms of EMG, a notch filter, a high-pass 
filter with a cut-off frequency of 10Hz and a low-pass 
filter with a cut-off frequency of 75Hz were 
performed. The whole night recordings were 
smoothed by its mean value ±5×standard deviation to 
remove the outliers. In order to eliminate individual 
differences, the sleep signals were normalized to [-
100, 100]. Afterwards, all the signals were divided 
into 30-second epochs, each epoch corresponding to 
a single sleep stage. 

2.4 Feature Extraction 

The features, employed in this study, involves a 
variety of traditional and modern characteristics 
serving as distinctive markers for various psycho-
physiological states. They are summarized in Table 1. 
Some of the parameters are introduced in the 
following, and the others can be found in Yan et al.’s 
research (Yan et al. 2019). 

2.4.1 Time Domain Parameters 

Some statistical parameters, such as minimum value, 
maximum value, standard deviation, arithmetic mean, 
variance, skewness, kurtosis and median are derived 
from signal segments. These statistical parameters are 
good indicators of the amplitude and distribution of 
time series (Şen et al. 2014). Percentile analysis is 
known as the most effective time domain measures 
for EEG signals (Boostani et al. 2017). Hjorth 
parameters (i.e., activity, mobility and complexity) 
represent the signal power, the mean frequency and 
frequency changes (Vidaurre et al. 2009). 
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Table 1: Parameter list. 

Type Feature Name 

Statistical measures 

Minimum Value (MinV), Maximum Value (MaxV),  Arithmetic Mean(AM), Median(M), 
Standard Deviation (SD), Variance(V), Skewness(S), Kurtosis(K), The 5th Percentile 
(Pre5), The 25th Percentile (Pre25), The 75th Percentile (Pre75), The 95th Percentile 
(Pre95), Hjorth Parameters（HA, HM, HC）, Zero-Crossing(ZC) 

Spectral measures 

Power Spectral Density(PSD), Mean Value of PSD (mPSD), Median Value of PSD 
(mdPSD), Power Ratio(PR), Absolute and Relative Spectral Power (APSD, RPSD), Brain 
Rate (BR), Spectral Centroid (Sc), Spectral Width (Sw), Spectral Asymmetry (Sa), 
Spectral Flatness (Sk), Spectrum Flatness (Sf), Spectral Slope (Ss), Spectral Decrease (Sd), 
Edge_D, Spectral Edge Frequency at 90% and 50% 

Nonlinear measures 
Mean teager energy (MTE), Mean Energy (E), Mean curve length (CL), SecD, The 4th 
Power, 

Fractal measures Petrosian fractal dimension (PFD) 

Entropy measures Spectral Entropy(SpE) 

Mutual measures Coherence 

 
2.4.2 Spectral Features 

The calculation of spectral measures is based on 
Fourier transform using hamming window in the time 
domain. The following spectral measures are 
considered. 

Power spectral density is calculated based on the 
following formula. Meanwhile, its mean value and 
median value are also considered. 
 

ܦܵܲ ൌ ሺ߱ሻܨ	 ൈ ሺ߱ሻ/ܰ (1)∗ܨ
 

where ω is the frequency, * representing the complex 
conjugate, and N is the length of time series. 

Spectral edge is defined as the frequencies 
corresponding to 90% and 50% of the total spectral 
power (Imtiaz and Rodriguez-Villegas 2014). The 
difference between the two frequencies (edge_D) is 
also considered. 
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where p is equal to 0.9 or 0.5, fmin is 0.3Hz in terms of 
EEG, EOG and ECG, and 10Hz in EMG. 

Absolute and relative spectral power are obtained 
from seven frequency bands of EEG, namely, 0.3-
4Hz (delta), 2-3.9Hz (K complex), 2-6Hz (saw-
tooth), 4-8Hz (theta), 8-12Hz (alpha), 14-30Hz 
(beta), and 12-16Hz (spindle). Absolute spectral 
power is spectral power within the specific frequency 
bands. The relative value is defined as the ratio of the 
absolute value to the total spectral power. The total 
spectral powers of EEG, EOG and ECG signals are 
computed within the range of 0.3-30Hz, and 10-30Hz 
for EMG signals. 

Power ratios are computed based on absolute 
spectral powers in aforementioned frequency bands. 
The following power ratios are computed: delta/theta, 
delta/alpha, delta/beta, theta/alpha, theta/beta, 
alpha/beta, alpha/(theta + delta), delta/(theta + alpha) 
and theta/(beta + delta). 

Brain rate estimates the EEG mean frequency 
weighted over the brain spectrum distribution (Pop-
Jordanova and Pop-Jordanov 2005). 

 

ܴܤ ൌ ෍ ௜݂ ൈ ௜ܲ

ெ

௜
/෍ ௜ܲ

ெ

௜
 (3)

 

where ܯ is the number of frequency bins, ݅ the sub-
band, ௜ܲ  the power of the spectral distribution 
corresponding to frequency band 	݅ , and ௜݂  is the 
frequency at bin ݅. 

Spectral centroid is defined as the frequency-
weighted sum of the magnitude spectrum of the signal 
normalized by its unweighted sum, indicating the 
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Figure 2: Layer-wise classifier. 
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location of the spectrum centre (Hassan et al. 2015). 
Spectral width is the wavelength interval over which 
the magnitude of all spectral components is equal to 
or greater than a specified fraction of the magnitude 
of the component having the maximum value. 
Spectral asymmetry represents the asymmetry in the 
distribution of the spectrum of eigenvalues of an 
operator. Spectral flatness, measured in decibels, 
provides a way to quantify how noise-like a sound is 
(Dubnov 2004). Spectrum flatness defines the 
planeness properties from an audio signal’s spectrum, 
which shows how the power spectrum of a signal 
deviates from a frequency of a flat shape (Lazaro et 
al. 2017). Spectral slope is a measure of the slope of 
the spectral shape (Hassan et al. 2015). The steepness 
of the decrease of the spectral envelope of the signal 
with respect to its frequency is defined as spectral 
decrease (Hassan et al. 2015). The detailed definition 
of these parameters can be found in Chen et al.’s 
study (Chen et al. 2018). 

2.5 Classification 

It is well-known that the distribution of epochs among 
sleep stages are highly imbalanced. Unfortunately, 
the traditional classifier is kind of sensitive to the 
distribution of data sets. When instances of one class 
in the training set vastly outnumber the instances of 
other classes, the classifier inclines to classify 
instances as belonging to the majority class and ends 
up creating suboptimal classification models in the 
process (Hassan and Bhuiyan 2016c). After studying 
the characteristics of sleep stages, we find that the 
REM, S1 and wakefulness present a certain similarity 
leading to misclassification. For example, the level of 
brain activity and eye movements increase in REM 
stage which is similar to the waking period. In 
addition, S1 is a transition phase of wakefulness and 
sleep, along with the ambiguous neuronal oscillation, 
that makes the detection of S1 is the most problematic 
of the sleep stages. For S2 and SWS, with the 

deepening of sleep, the activity levels of various 
organs decrease to some extent. 

Based on these characteristics of the sleep stages, 
we develop a layer-wise classification strategy (See 
Figure 2) which is used in this toolbox to train and 
predict sleep structures. The strategy uses three 
random forest classifiers. The first layer is a multi-
class classifier dividing the sleep sequences into 
SWS, S2, and others. The second layer is a two-class 
classifier, which aims to distinguish the REM stage 
according to its lowest EMG activity and obvious eye 
movements. The third layer discriminates the 
characteristics of S1 and awake stage. Experiments 
have confirmed that the structure can significantly 
improve the recognition accuracy of the minority 
sleep stages, such as S1, without significantly 
reducing the classification accuracy of other classes. 

2.6 Result Correction 

Studies have found that sleep transition is not a 
random process. However, the traditional classifier 
can only give its decision according to the 
information of the current stage, but can’t remember 
the context. Therefore, a correction process is applied 
to classification results. Firstly, the Hidden Markov 
Model is used to learn the transition rules among 
sleep stages in the training data. Then, the correction 
rule can be derived according to these transition rules 
and some natural characters of sleep. These rules refer 
to the epochs prior to and posterior to the current 
epoch. The development of correction rules is 
inspired by the studies of Liang et al. (Liang et al. 
2012) and Li et al. (Li et al. 2018). More specifically, 
the stage sequences, like [Si-1, Si, Si+1], are smoothed 
by the rules proposed in the study (Liang et al. 
2012) to  correct some sudden changes in predicted 
results. For the stage sequences that do not meet the 
aforementioned smooth rules, the transition rules 
derived from Hidden Markov Model will be used to 
analyse the rationality of the stage transitions. 

Table 2: Sleep parameters and its definition. 

Sleep Parameters Definition 
Time in bed From light off to getting up
Sleep period time From sleep onset to sleep end, in minutes
Sleep efficiency Total sleep time / Bed time
Sleep onset latency From recording start to sleep onset, in minutes
REM latency From sleep onset to the occurrence of the first REM period, in minutes 
Stage shifts/h Number of sleep stage shifts after sleep onset per hour
Waking times Number of awakenings after sleep onset per hour
Waking time Wakefulness after sleep onset, percentage of sleep period time 
Number of REM Number of REM periods
Stage time Specific stage time after sleep onset, in minutes
Stage percentage Specific stage time in percentage of sleep period time
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*C: single-modality ECG; M: single-modality EMG; O: single-modality EOG; E: single-modality EEG; &: combination signals; 2 classes: wakefulness and 
sleep (W&S); 3 classes: wakefulness, non-rapid eye movement sleep and rapid eye movement sleep (W&NREM&REM); 4 classes: wakefulness, light sleep 
(containing S1 and S2), deep sleep (SWS) and rapid eye movement sleep (W&LS&DS &REM); 5 classes: W, S1, S2, SWS and REM 

Figure 3: The classification accuracy for different signal fusions and target class. 

Table 3: Selected features for distinguishing specific pair of sleep stages. 

Sleep stages SWS-S2 SWS-S1 SWS-R SWS-W S2-S1 S2-R S2-W S1-R S1-W R-W 

T
op

 1
5 

fe
at

ur
es

 

Top1 C.Per25 C.Per25 C.Per25 M.ZC C.PFD O.ZC C.ZC O.ZC E.SPE O.ZC 

Top2 M.ZC C.Per75 C.Per75 C.ZC E.PSD O.Sw M.ZC O.Per75 C.PSD O.Per75 

Top3 C.Per75 M.ZC C.Per95 M.PFD C. mPSD E.PR E.SPE E.K O.Ss O.Per25 

Top4 C.ZC C.Per95 M.Per25 C.Per25 E.PR E.PFD C.PFD O.Per25 O.Sf O.PFD 

Top5 C.Per5 M.Sf M.ZC C.PFD C.HM O.edge90 O.Sf O.PFD E.MTE M.ZC 

Top6 C.Per95 E.PSD C.PSD E.PSD M.PFD C. mPSD M.PFD O.HC O.MTE C.ZC 

Top7 C.K C.Per5 E.Per95 C.Per75 O.Sd C.K O.Ss O.HM C.ZC E.Per5 

Top8 O.K M.Per25 C.Per5 M.Sf M.Sf O.Sd E.PFD O.SPE C.Ss O.Ss 

Top9 E.Per5 O.PFD O.Power4 O.edge.D E.PFD O.PFD C.HM O.K O.MaxV O.RPSD 

Top10 M.Per25 E.RPSD M.Per75 O.Sk O.BR E.S C.PSD O.K E.D O.CL 

Top11 M.K C.ZC E.PR E.PR O.PFD O.BR E.edge90 O.CL C.Sf C.PSD 

Top12 O.Per75 C.HM C.K E. mdPSD C.ZC C. mdPSD E.PR O.RPSD O.RPSD E.CL 

Top13 E.Per25 M.HM C.HA M.HM O.edge90 O.HC C.R R O.SecD E.MaxV O.SecD 

Top14 M.HM E.RPSD O.Sf E.PR C.mPSD O.S C.mPSD O.MaxV M.ZC O.Sf 

Top15 E.K O.edge.D C.PFD E.PR O.Sw E.PR M.HM O.Sc C.PFD E.Sc 

EEG features (colour: yellow); EOG features (colour: green); EMG features (colour: red); ECG features (colour: blue). 

2.7 PSG Sleep Quality Index 

Usually, sleep quality is evaluated by the 
standardized questionnaire, such as the Pittsburgh 
Sleep Quality Index (PSQI), the Berlin 
Questionnaire, and so on. These self-report 
questionnaires are subjective, and can be 
easily exaggerated or minimized by the person 
completing them. Furthermore, some items of 
questionnaires are challenging to self-evaluation. For 
example, the PSQI needs to evaluate the time it takes 
to fall asleep and the actual sleep time per night. Some 
papers claimed that the correspondence between the 

objective measurement and a person’s subjective 
assessment of the sleep quality is surprisingly small, 
if existent (Sohn et al., 2012). In order to overcome 
the uncertainty of subjective assessment, the toolbox 
proposed a sleep quality index. The algorithm will 
calculate various sleep parameters (summarized in 
Table 2) according to the predicted sleep stages. 
Based on these sleep parameters, PSG sleep quality 
index is statistically calculated and displayed in a bar 
in the lower-right corner of the interface. Detailed 
sleep parameters can be obtained by pressing the 
button “Detail”. 
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3 PERFORMANCE ASSESSMENT 

3.1 Influence of Signal Types 

In order to explore the relationship between signal 
types and classification accuracy, we performed a 
greedy search for several signal fusions referring to 
different target classes. The result was shown in 
Figure 3 where the column denoted the mean 
accuracy of 10-fold cross-validation and the bars 
represented the standard deviation. Four categories 
were considered, highlighted in different colours in 
Figure 3. For each category, twelve signal fusions 
were listed along X-axis where signals’ names were 
abbreviated to its middle letter.  

Figure 3 depicted the uncertainty or variation of 
classification accuracy under each condition. 
Collectively, with the enrichment of signal types, the 
mean value of accuracy increased, and the uncertainty 
decreased to some extent. More specifically, Figure 3 
indicated that the required signal types varied with the 
number of target classes. If sleep recordings were 
classified into two classes, namely wakefulness (W) 
and sleep (S), all considered signal fusions gave 
satisfactory results. With the increasing number of 
target classes, the number of required signals 
increased accordingly. 

From the perspective of signal types, the signal 
fusions containing EEG signals showed better 
identification accuracy, indicating a crucial role of 
EEG signals in sleep scoring. Furthermore, the 
discriminative information provided by ECG and 
EMG channels was inferior to that from EEG and 
EOG signals. 

3.2 Feature Evaluation 

To further elucidate the contributions of features and 
signals, the important features, measured by their 
contribution to distinguishing each pair of sleep 
stages, were derived from random forest classifier. 
The top 15 features were shown in Table 3, where 
features sorted in descending order of discriminative 
capability. As can be seen from Table 3, the features 
from EEG contributed to the recognition of most 
stages. Meanwhile, ECG features demonstrated its 
contribution to the discrimination of SWS from the 
others. For EOG signal, its features were good at 
distinguishing REM stage and wakefulness. In terms 
of feature types, the top 15 features indicated that the 
optimal feature subset was a fusion of statistical 
measures (e.g. Percentiles, Hjorth parameters, Zero-
Crossing), spectral measures (e.g. spectral edge, 
power spectral density), entropy measures (e.g. 

spectral entropy), fractal measures (e.g. Petrosian 
fractal dimension) and nonlinear measures (e.g. mean 
curve length, the 4th Power). 

4 DISCUSSION 

PSG, the golden standard for measuring sleep 
qualitatively, is a traditional technology which is 
time-consuming and has barely changed over the 
years. Burgeoning public interest in sleep quality 
improves a strong impetus for a robust, easily 
implemented and rapid sleep scoring system. Limited 
toolbox or software is available for automatic sleep 
scoring, although there are many theoretical 
researches in this field. In previous studies, some 
portable devices were developed based on ECG and 
respiration. For example, Hermawan et al. 
(Hermawan et al., 2012) developed a real-time sleep 
stage classification device which classified sleep 
recordings into 2 stages (wakefulness and sleep)  with 
an average precision of 0.941. Recently, some deep 
learning-based scoring tools sprouted out, such as 
SLEEPNET (Biswal et al., 2017) and SeqSleepNet 
(Phan et al., 2019). The classification accuracy of 
these deep learning-based tools was about 0.85 with 
the support of tremendous training data and highly 
configured computer (like GPU or server).  

Compared with previous studies, the proposed 
toolbox provides comparable precision and greater 
freedom. The toolbox, based on MATLAB, allows 
users to select the available signal types and the 
number of target classes according to their condition 
and need. Meanwhile, it supports two popular data 
formats (MAT file and EDF file) that make data 
transfer easy. This offline prediction module is 
helpful for researchers, especially the newcomers in 
this field, to accelerate their understanding of sleep 
structures. It can also be used in clinic to speed up the 
annotation of PSG records, thus alleviating the 
burden of the physicians. The online prediction 
module provides the potential to control sleep tasks 
automatically by combining the toolbox with sleep 
experiments. 

Even though our results are encouraging, our 
model still has several limitations. One of them is that 
the performance of proposed toolbox is affected by 
the data property. As our model learns from training 
data, it might not perform well when the trained 
model is applied to the data with different properties. 
For example, a scoring model trained by healthy 
subjects may not perform well for the analysis of 
patients' sleep structure. To achieve better results in 
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that condition, the model might have to be re-trained 
or fine-tuned. 

5 CONCLUSIONS 

This paper proposed an automatic sleep scoring 
toolbox that supported four types of sleep signals and 
two data formats. The toolbox provided an interface 
for user-friendly operation. Sleep recordings could be 
automatically analysed to reveal multiple sleep 
parameters and sleep quality index. A layer-wise 
classification strategy was proposed to improve the 
classification accuracy of minority stages. In 
addition, a Hidden Markov Model was used to make 
classification results logic. Compared with manual 
scoring, the proposed automatic scoring toolbox is 
cost-effective, which would alleviate the burden of 
the physicians, speed up sleep scoring and expedite 
sleep research. 
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