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Abstract: This paper proposes a discrete-time adaptive regulation approach for scalar linear time-invariant systems with
unknown, constant input time delay that has a known upper-bound, without explicitly estimating the time
delay. To cope with the unknown time delay, a state substitution is made that results in a delay free system that
simplifies the control law design. In addition, the proposed approach does not require that the system have
stable open-loop zeros. A stability analysis shows that the proposed regulator drives the system state to zero
asymptotically and simulation results are shown to verify the approach.

1 INTRODUCTION

Processes with time delays at the input (i.e. delayed
control action) are encountered in many situations re-
quiring the use of feedback control, and these delays
may have significant consequences if a controller is
not designed to compensate for them (Richard, 2003)
(Gu and Niculescu, 2003). For example, communi-
cations delays in bilateral teleoperation can cause the
force feedback loop to become unstable, possibly cre-
ating a hazard for the remote operator (Abidi et al.,
2016). In visual servoing, the computational com-
plexity of visual information processing may insert a
significant delay into the control loop that could af-
fect stability (Bjerkeng et al., 2014). Pneumatic ac-
tuators are commonly used in soft robots, where long
pneumatic lines and the compressibility of air can in-
troduce actuator delays (Skorina et al., 2017). In all
these applications it is clear that a practical controller
must be able to cope with uncertainty in the plant pa-
rameters, including the time delay.

There are two ways to approach the problem of
compensating for input time delay. The first ap-
proach explicitly recognises the need to predict the
future state of the system. To illustrate this, con-
sider a discrete-time time-invariant system xk+1 =
f (xk,uk−d) where xk is the state and uk−d is the time-
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delayed control input. Shifting this d steps ahead, i.e.
xk+d+1 = f (xk+d ,uk), it becomes obvious that in or-
der to affect the state at k+d+1 it would be desirable
to have knowledge of the future state at k+d. A rig-
orous argument for the case of linear time invariant
plants with a single input delay is found in (Mirkin
and Raskin, 2003). Examples of predictor-based con-
trol laws for linear and nonlinear plants are (Mani-
tius and Olbrot, 1979) (Abidi, 2014) and (Abidi and
Postlethwaite, 2019) respectively.

The second approach, commonly known as Art-
stein’s model reduction (Artstein, 1982), applies
specifically to linear, possibly time-varying systems
with input delay. A state substitution is used to trans-
form the original system into an equivalent delay-free
system, for which it is easier to derive a control law.
The control law for the former can then be found by
reversing the substitution. This in fact leads to the
same control laws as the first approach, but it simpli-
fies the derivation in the general case where there may
be multiple lumped and/or distributed input delays.
As this paper will show, it is also a useful starting
point for generalising to the case of uncertain plant
parameters and time delay.

To illustrate the method with a simple example
from (Richard, 2003), consider the linear system with
input delay ẋ(t) = Ax(t) +Bu(t − d). Introducing a
state substitution

z(t) = x(t)+
∫ t

t−d
eA(t−d−τ)Bu(τ)dτ (1)
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yields the equivalent delay-free system in z(t) given
by

ż(t) = Az(t)+ e−AdBu(t) (2)

The control law for the latter is simply a state-
feedback law u(t) = Kz(t) where K is chosen to sta-
bilise (A,e−AdB). The control law for the original sys-
tem is then found by substituting the definition of z(t)
to get

u(t) = Kx(t)+K
∫ t

t−d
eA(t−d−τ)Bu(τ)dτ (3)

To cope with uncertainty in the plant parameters,
including the time delay, two paradigms are available.
The first paradigm is to make the controller robust to
the uncertainty. In delay-independent truncated pre-
dictor feedback (Wei and Lin, 2018), a state-feedback
controller is used with gains selected by a Lyapunov
equation based method which does not require knowl-
edge of the delay. However, this work assumes plant
parameters are known, and for unstable plants the
amount of delay that the method can handle is limited
(Wei and Lin, 2017). A more generally applicable but
mathematically involved alternative is to employ the
framework of robust control theory (Zhong, 2006).

The other paradigm to consider is adaptive con-
trol. Early work on adaptive controllers for time
delay systems only addressed uncertainty in the pa-
rameters but not the time delay (Ortega and Lozano,
1988)(Niculescu and Annaswamy, 2003). The reason
is that adaptive laws rely on the plant representation
being linear in the uncertain parameters, whereas the
time delay appears inside the argument of the con-
trol input. Krstic (Krstic, 2009) overcomes this by
expressing the plant dynamics in terms of the en-
tire input history over the delay interval (given by
the function u(x, t) where x parameterises a point on
the interval), and modelling the delay as a transport
PDE. Thus, the time delay can be estimated along
with other plant parameters, and used to compute a
predictor-based control law (Bresch-Pietri and Krstic,
2009). However, the resulting adaptive laws for both
time delay and parameter estimation are complicated.

Most time-delay controllers have been formulated
in a continuous-time setting, but they will almost cer-
tainly be implemented on a digital computer. Dis-
cretisation of continuous-time control laws, espe-
cially those for time-delay compensation, is fraught
with numerical pitfalls (Mirkin, 2004)(Zhong, 2004).
It may be more straightforward to design controllers
in discrete-time, for example the discrete-time APC
(Abidi et al., 2017) (Abidi and Xu, 2015). This is
a model-reference adaptive controller that achieves
reference trajectory tracking on a plant with an un-
known, constant, upper-bounded time delay. How-

ever, the model-tracking error does not vanish asymp-
totically, and its bound is dependent on the mismatch
between the delay upper-bound assumed by the con-
troller and the true delay. The adaptive law also con-
tains parameters that may be difficult to tune in prac-
tice.

This paper proposes a discrete-time adaptive regu-
lator for a scalar, linear time-invariant system with an
unknown, constant input time delay that has a known
upper-bound, without explicitly estimating the time
delay. Using an approach similar to Artstein’s model
reduction, a state substitution is devised that allows
the plant dynamics to be expressed in a delay-free
form, which facilitates derivation of a control law. In
order to apply the model reduction technique to the
case of unknown time delay, the plant dynamics and
the state substitutes are expressed in a manner that is
‘agnostic’ to the specific value of the time delay. This
also makes it possible to estimate the plant parameters
using recursive least squares, even without knowledge
of the time delay. A stability analysis shows that
the proposed regulator drives the plant state to zero
asymptotically.

2 PROBLEM DEFINITION

Consider the scalar system in continuous-time with
input delay given as

ẋ(t) = ax(t)+bu(t− τ) (4)

where the state is x∈R, the input is u∈R, the system
parameters a,b ∈ R are uncertain parameters, and the
constant time delay τ∈R is uncertain but has a known
upper-bound, τp, such that τ≤ τp.

Sampling this system at uniform time intervals T
(where in general the time delay τ may not be an in-
teger multiple of T ) gives a discrete-time system de-
scribed by

xk+1 = φxk + γ1uk−d + γ2uk−d−1 (5)

where φ,γ1,γ2 ∈ R are uncertain parameters, and d ∈
[0, p] ⊂ Z+ is the uncertain constant delay known
to be at most p time-steps long. It is not neces-
sary to ensure that the sampled system has stable ze-
ros, i.e., if the system is written in the form uk−d =
1
γ1
(−γ2uk−d−1 + xk+1−φxk) then the ratio γ2

γ1
need

not be inside the unit-circle.
Assumption 1: The upper-bound on the delay in time-
steps, p, satisfies pT ≤ τp ≤ (p+1)T .
Assumption 2: There exists a φmin > 0 such that φ ≥
φmin.
Assumption 3: There exists a γmin > 0 such that γ1 +
γ2 ≥ γmin.
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The regulation problem is to find a bounded con-
trol input uk which will drive the system state to zero
asymptotically, i.e. limk→∞ xk = 0, while keeping all
system signals bounded.
Remark 1. Since the parameter φ is computed as φ =
eaT∀a ∈ R then it is reasonable to assume a positive
lower bound such that 0 < φmin ≤ φ.

3 MAIN RESULT

In this section the design of the control law and adap-
tive law is presented which is then followed by a rig-
orous stability analysis of the system.

3.1 Adaptive Regulator

Consider the system (5) expressed in the form

xk+1 = φxk +
p+1

∑
i=0

ψiuk−i = θ
>

ζk (6)

where θ
> ,

[
φ ψ0 · · · ψp+1

]
∈ Rp+3 is

the augmented parameter vector and ζ
>
k ,[

xk uk · · · uk−p−1
]
∈ Rp+3 is the augmented

signal vector. The parameters ψi ∈ R are defined as

ψi =


γ1 i = d
γ2 i = d +1
0 otherwise

i ∈ [0, p+1] (7)

Defining the variables ηk and η̂k such that

ηk+1 = xk+1 +
p+1

∑
i=1

β̂i,kuk−i+1 (8)

and

η̂k = xk +
p+1

∑
i=1

β̂i,kuk−i (9)

where β̂i,k ∈ R. Consider now the system (6), adding
and subtracting the term φ̂kxk on the right-hand-side,
it is obtained that

xk+1 = φ̃kxk + φ̂kxk +
p+1

∑
i=0

ψiuk−i (10)

where φ̂k is the estimate of φ and φ̃k , φ− φ̂k is the es-
timation error. Substitution of (9) and (10) in (8) and
adding and subtracting the term β̂0,kuk on the right-
hand-side results in the delay free dynamics of the

form

ηk+1 = φ̃kxk + φ̂kη̂k + β̂0,kuk− β̂0,kuk− φ̂k

p+1

∑
i=0

β̂i,kuk−i

+
p+1

∑
i=0

ψiuk−i +
p+1

∑
i=1

β̂i,kuk−i+1

= φ̃kxk +
p+1

∑
i=0

ψiuk−i−
(

β̂0,k− β̂1,k

)
uk−

p

∑
i=1

(
φ̂kβ̂i,k

− β̂i+1,k

)
uk−i− φ̂kβ̂p+1,kuk−p−1 + φ̂kη̂k + β̂0,kuk

= φ̃kxk +
p+1

∑
i=0

ψiuk−i−
p+1

∑
i=0

ψ̂i,kuk−i + φ̂kη̂k + β̂0,kuk

(11)

where the adaptive parameters ψ̂i,k are the estimates
of ψi and are defined as

ψ̂i,k =


β̂0,k− β̂1,k i = 0
φ̂kβ̂i,k− β̂i+1,k i ∈ [1, p]
φ̂kβ̂i,k i = p+1

(12)

Note that the parameters β̂i,k∀i ∈ [0, p+ 1] are com-
puted from the adaptative parameters as

β̂i,k =



p+1

∑
j=0

φ̂
− j
k ψ̂ j,k i = 0

p+1

∑
j=i

φ̂
− j+i−1
k ψ̂ j,k i ∈ [1, p+1]

(13)

which is obtained by rearranging (12). Finally, defin-
ing ψ̃i,k , ψi− ψ̂i,k such that (11) is written as

ηk+1 = φ̃kxk +
p+1

∑
i=0

ψ̃i,kuk−i + φ̂kη̂k + β̂0,kuk

= θ̃
>
k ζk + φ̂kη̂k + β̂0,kuk (14)

where θ̃k , θ− θ̂k is the augmented parameter esti-
mation error vector and θ̂

>
k ,

[
φ̂k ψ̂0,k · · · ψ̂p+1,k

]
∈

Rp+3 is the augmented adaptive parameter vector,
then from (14), the control law is selected as

uk =−β̂
−1
0,k φ̂kη̂k (15)

With the formulation of the control law completed,
the adaptive law can be derived.
Remark 2. Note that the inverses of β̂0,k and φ̂k are
needed in (15) and (13), therefore, the adaptive law
must ensure that those terms are non-singular.

Proceeding with the adaptive law derivation, con-
sider the system (14) and the control law (15). Sub-
stitution of the control law results in the closed-loop
dynamics

ηk+1 = θ̃
>
k ζk (16)
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From (16), the adaptive law is selected as

θ̂k =

L
[
θ̂k−1 +Pkζk−1ηk

]
∀k ∈ (k0,∞)

θ̂k0 ∀k ∈ [0,k0]
(17)

Pk =

Pk−1−
Pk−1ζk−1ζ

>
k−1Pk−1

1+ζ
>
k−1Pk−1ζk−1

∀k ∈ (k0,∞)

Pk0 ∀k ∈ [0,k0]

(18)

where k0 ≥ 0 is the initial time-step, Pk ∈ Rp+3×p+3

is the symmetric positive-definite covariance matrix.
The purpose of the operator L [·] is to keep φ̂k and β̂0,k
non-singular. The definition of the operator L [·] for
φ̂k is given as

L [φ̂k] =

{
φ̂k φ̂k ∈ (φmin,∞)

φmin φ̂k ∈ (−∞,φmin]
(19)

Before proceeding with the definition of the operator
L [·] for

[
ψ̃0,k · · · ψ̃p+1,k

]
, consider (13) and note that

for i = 0

β̂0,k =
p+1

∑
j=0

φ̂
− j
k ψ̂ j,k. (20)

Since φ̂k > φmin and ideally ψ̂ j,k ≥ 0, then the only
possibility for a singular β̂0,k is if the adaptive param-
eters ψ̂ j,k = 0,∀ j ∈ [0, p+1]. Therefore, the operator
L [·] will need to be defined under two scenarios. In
the first scenario, consider the case that one or more
but not all adaptive parameters ψ̂ j,k are smaller than
or equal to zero, which leads to the L [·] being defined
as

L
[
ψ̂ j,k

]
=

{
ψ̂ j,k ψ̂ j,k ∈ (0,∞)

0 ψ̂ j,k ∈ (−∞,0]
(21)

for all j ∈ [0, p + 1]. In the second scenario, con-
sider the case when all the adaptive parameters ψ̂ j,k
are smaller than or equal to zero, then the operator
L [·] is defined as

L
[
ψ̂ j,k

]
=

γmin

p+2
(22)

for all j ∈ [0, p+1]. The block diagram of the result-
ing closed-loop system is shown in Fig. 1. Note that
in Fig. 1 the delay-operator is represented by q−1.
Remark 3. Note that since the delay d is uncertain,
it is not possible to assign the lower bound on γ1,γ2
correctly in the case when all the values ψ̂ j,k ≤ 0.
Therefore, the average value of the lower bound γmin
is assigned to every ψ̂ j,k.

+

+

+−β−1
0,kφ̂k q−1

q−1

q−1

γ1

γ2

q−1

β̂1,k

β̂p+1,k

q−1

φ

Adaptive
Law

d+ 1th delay

p+ 1th delay

η̂k xk+1 xkuk

Figure 1: Block diagram depicting the proposed adaptive
regulator connected to the system.

3.2 Stability Analysis

In this section, it is shown that the parameter adapta-
tion produces bounded and convergent parameter es-
timates (Lemma 1), that the adaptive system model
converges in input-output behaviour to the true sys-
tem (Lemma 2), and that the proposed adaptive reg-
ulator drives the system state to zero with vanishing
control effort (Theorem 3).
Lemma 1. For the system (16) with the adaptive laws
(17) and (18) it is true that

lim
k→∞

η2
k

1+ζ
T
k−1Pk−1ζk−1

= 0 (23)

Furthermore, it is also true that the parameter estimate
θ̂k is bounded, hence the parameter estimation error
θ̃k is also bounded.

Proof. Consider the positive function

Vk = θ̃
>
k P−1

k θ̃k (24)

The backward difference ∆Vk is

∆Vk =Vk−Vk−1 =
[
θ̃
>
k P−1

k θ̃k− θ̃
>
k−1P−1

k−1θ̃k−1

]
(25)

Using the fact that, (Abidi and Xu, 2008),(
θ−L

[
θ̂k
])> (

θ−L
[
θ̂k
])
≤
(
θ− θ̂k

)> (
θ− θ̂k

)
(26)

and that if P−1
k is positive-definite then it is obtained

that(
θ−L

[
θ̂k
])>

P−1
k

(
θ−L

[
θ̂k
])

≤
(
θ− θ̂k

)>
P−1

k

(
θ− θ̂k

)
(27)

Substituting the (27) and the adaptative law (17) in
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(25) leads to
∆Vk =Vk−Vk−1

=
(
θ̃k−1−Pkζk−1ηk

)>P−1
k

(
θ̃k−1−Pkζk−1ηk

)
− θ̃
>
k−1P−1

k−1θ̃k−1

= θ̃
>
k−1P−1

k θ̃k−1− θ̃
>
k−1P−1

k−1θ̃k−1− θ̃
>
k−1P−1

k

× (Pkζk−1ηk)− (Pkζk−1ηk)
>P−1

k θ̃k−1

+(Pkζk−1ηk)
>P−1

k (Pkζk−1ηk)

= θ̃
>
k−1(P

−1
k −P−1

k−1)θ̃k−1−2θ̃
>
k−1ζk−1ηk

+ζ
>
k−1Pkζk−1η

2
k (28)

and using the fact that P−1
k = P−1

k−1+ζk−1ζ
>
k−1, (Abidi

et al., 2017), it is obtained that (28) is simplified to
the form

∆Vk = θ̃
>
k−1ζk−1ζ

>
k−1θ̃k−1

−2θ̃
>
k−1ζk−1ηk +ζ

>
k−1Pkζk−1η

2
k (29)

Substituting in the model estimation error dynamics
(16) gives

∆Vk = η
2
k−2η

2
k +ζ

T
k−1Pkζk−1η

2
k

= η
2
k [−1+ζ

T
k−1Pkζk−1] (30)

Furthermore, from (18) it is obtained that

ζ
T
k−1Pkζk−1 =

ζ
T
k−1Pk−1ζk−1

1+ζ
T
k−1Pk−1ζk−1

(31)

Substitution of (31) in (30) finally leads to

∆Vk = η
2
k

[
−1+

ζ
T
k−1Pk−1ζk−1

1+ζ
T
k−1Pk−1ζk−1

]

=− η2
k

1+ζ
T
k−1Pk−1ζk−1

(32)

From the result (32) it is evident that ∆Vk is always
non-positive and, hence Vk, is non-increasing. There-
fore, the parameter estimation error θ̃k and the param-
eter estimate θ̂k are bounded. Furthermore, the value
of Vk is the accumulation of changes ∆Vk to its initial
value Vk0

Vk =Vk0 +
k−k0

∑
i=1

∆Vi (33)

Substituting (32) into (33) gives

Vk =Vk0 −
k−k0

∑
i=1

η2
i

1+ζ
T
i−1Pi−1ζi−1

(34)

and using the result in (Abidi et al., 2017) it is con-
cluded that

lim
k→∞

∆Vk = lim
k→∞

η2
k

1+ζ
T
k−1Pk−1ζk−1

= 0 (35)

Lemma 2. From Lemma 1, for the signals (8) and (9)
the following are true:
(a) |xk| ≤ c0 maxi∈[0,p+1] |η̂k−i|, for some positive

constant c0.

(b) |η̂k| ≤ d0 + d1 maxi∈[0,p+1] |ηk−i|, for some posi-
tive constants d0 and d1.

(c) limk→∞ η̂k = ηk.

(d) limk→∞ ηk = 0 and limk→∞ η̂k = 0.

Proof. Consider the signal (9) re-written as

xk = η̂k−
p+1

∑
i=1

β̂i,kuk−i (36)

Substitution of the control law (15), it is obtained as

xk = η̂k +
p+1

∑
i=1

β̂i,kβ̂
−1
0,k−iφ̂k−iη̂k−i (37)

In Lemma 1 it is established that the adaptive param-
eters are bounded which implies that β̂i,kβ̂

−1
0,k−iφ̂k−i

is bounded. Using the boundedness of the adaptive
paramters in (37), it is obtained that

|xk| ≤ |η̂k|+
p+1

∑
i=1
|β̂i,kβ̂

−1
0,k−iφ̂k−i||η̂k−i|

≤ c0 max
i∈[0,p+1]

|η̂k−i| (38)

for some positive constant c0.
Consider now the difference of the two signals (9)

and (8) given as

η̂k =−
p+1

∑
i=1

(
β̂i,k− β̂i,k−1

)
uk−i +ηk

=
p+1

∑
i=1

(
β̂i,k− β̂i,k−1

)
β̂
−1
0,k−iφ̂k−iη̂k−i +ηk (39)

Expressing this in augmented form and defining
β̃i,k , β̂

−1
0,k−iφ̂k−i(β̂i,k− β̂i,k−1) such that,

ˆ̄ηk =


β̃1,k β̃2,k · · · β̃p+1,k

1 0 · · · 0

0 1 · · ·
...

...
...

. . . 0

 ˆ̄ηk−1 +


1
0
...
0

ηk

(40)

where ˆ̄η>k−1 ,
[
η̂k η̂k−1 · · · η̂k−p

]
. From Lemma

1 and using the results in (Abidi et al., 2017),
limk→∞ β̂

−1
0,k−iφ̂k−i(β̂i,k− β̂i,k−1) = 0 and that implies

that the augmented system (40) is stable and a bound
on η̂k exists such that

|η̂k| ≤ d0 +d1 max
i∈[0,p+1]

|ηk−i| (41)
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for some positive constants d0 and d1.
Going back to the augmented system (40), at

steady state when k→ ∞, the term β̂
−1
0,k−iφ̂k−i(β̂i,k −

β̂i,k−1) will vanish resulting in an augmented system
of the form

ˆ̄ηk =


0 0 · · · 0
1 0 · · · 0
0 1 · · ·

...
...

...
. . . 0

 ˆ̄ηk−1 +


1
0
...
0

ηk (42)

which has a solution η̂k = ηk when k→ ∞.
Finally, given the result in (35), the Key Tech-

nical Lemma states that ηk vanishes if there exists
positive constants µ0,µ1 ∈ R such that |ζk−1| ≤ µ0 +
µ1 maxκ∈[0,k] |ηκ|. To show that this is indeed true,
recall that ζ

>
k ,

[
xk uk · · · uk−p−1

]
. It has been es-

tablished that |xk| ≤ c0 maxi∈[0,p+1] |η̂k−i| and, since,
β̂
−1
0,k−iφ̂k−i is bounded then |uk| ≤ c1|η̂k|. There-

fore, |ζk−1| ≤ µ0+µ1 maxκ∈[0,k] |ηκ| for some positive
constants µ0 and µ1 and, ultimately, limk→∞ ηk = 0.
Furthermore, from (c) it has been established that
limk→∞ η̂k = ηk resulting in limk→∞ η̂k = 0.

Theorem 1. The state of the closed-loop system, as
well as the control signal, approach zero asymptoti-
cally, i.e. limk→∞ xk = limk→∞ uk = 0.

Proof. Beginning with the closed-loop controller dy-
namics (15) and taking the limit of the norm of both
sides as k→ ∞, it is obtained that

lim
k→∞
|uk|

= lim
k→∞

∣∣∣−β̂
−1
0,k φ̂kηk

∣∣∣≤ lim
k→∞

∣∣∣β̂−1
0,k φ̂k

∣∣∣ |ηk|

= 0 (43)

Consider now the expression (8) as k→ ∞ which is
given as

lim
k→∞
|xk| ≤ lim

k→∞
|η̂k|+ lim

k→∞

p+1

∑
i=1
|β̂i,kuk−i|

= 0 (44)

which establishes the asymptotic stability of the state
xk.

4 SIMULATION EXAMPLE

Consider an unstable system with an unstable zero,
given by

xk+1 = 1.05xk +1uk−d +1.1uk−d−1 (45)

where the system delay is set as d = 0,1,2,3,4,5
while the upper bound is set as p = 5. The initial
condition of the system is set at xk = 2.

To investigate the adaptive performance of the
regulator with respect to mismatch between the de-
lay upper-bound p and the true delay d, the closed-
loop system is simulated using various values of d.
The adaptive regulator is initialised with P0 = 5×
Ip+3×p+3 and θ̂

>
0 =

[
0.1 0.4 · · · 0.4

]
. In Fig. 2-4 the

results are shown for the convergence of the signals
ηk, η̂k, the control input profile and state regulation
performance of the closed-loop system under various
values of the delay values. As expected, xk is regu-
lated to zero asymptotically. As it can be seen from
the results, the greater the mismatch between p and d,
the longer the settling-time. Note that with increasing
system delay, d, the initial divergence grows which
is to be expected as the controller cannot react fast
enough initially to force the system to converge.

Finally, the system is simulated with a longer sys-
tem delay, d, and an upper bound set at p = 10. The
adaptive regulator parameters are kept the same as
the previous case while the system delay is increased
from d = 5 until d = 10. The results are shown in
Fig. 5-7. The results for this case show a similar per-
formance to the shorter delay case. As it would be
expected, the convergence speed increases as the ac-
tual delay, d, and the upper bound, p, approach each
other.

5 CONCLUSIONS

In this paper, a discrete-time adaptive regulation ap-
proach was designed for a scalar system with an
unknown, constant time-delay with a known upper-
bound. The approach utilized a state substitution the
resulted in a delay-free system which simplified the
control law design. The approach is also capable of
handling systems with unstable zeros. A rigorous
stability proof was presented that shows the adaptive
control law drives the system state to zero asymptoti-
cally. Finally, numerical simulations were shown that
illustrate the ability of the adaptive control law to cope
with mismatches between the delay upper-bound and
the true delay in the system.
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Figure 2: Asymptotic convergence of ηk and η̂k when d = 5
and p = 5.
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Figure 3: Control input profile on the system when p = 5,
with various values of the actual system delay d.
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Figure 4: State regulation of the system when p = 5, with
various values of the actual system delay d.
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Figure 5: Asymptotic convergence of ηk and η̂k when d =
10 and p = 10.
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Figure 6: Control input profile on the system when p = 10,
with various values of the actual system delay d.
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Figure 7: State regulation of the system when p = 10, with
various values of the actual system delay d.
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