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Abstract: In the paper the first version of Nonparametric System Identification Matlab Toolbox is presented. It is based
on theoretical results concerning nonparametric identification method, achieved for the last four decades. The
library includes both standard (kernel based or orthogonal expansion based) nonparametric methods and recent
algorithms including combined (parametric-nonparametric) algorithms. Hammerstein and Wiener models and
their serial connections are considered. Nonparametric estimates, usually run as a preliminary steps, play
supporting role in the main procedure of estimating system parameters by the least squares method. Multi-
level (hybrid) structure of algorithms, i.e. combining both parametric and nonparametric approaches allows
to decompose the problem of identification of interconnected complex system into simpler local subproblems.
Moreover, asymptotic consistency of all estimates was formally proved, even under existence of random and
correlated noise.

1 INTRODUCTION

1.1 History

The need of having accurate models of relationships is
of crucial meaning for decision making, system iden-
tification, forecasting, designing of optimal control,
system identification, pattern recognition, simulation
and many others. For ages, people wanted to explain
the nature of real relationships to improve efficiency
of production and organization, increase the level of
safety or to forecast the future and adapt to changing
conditions. Formally, the paper by Gauss ((Gauss and
Davis, 1857)), from 19th century, which introduces
the least squares method is treated as initiation of the
field. In general, building models is based on two kind
of knowledge:

• parametric, a priori, usually provided by experts
or determined by laws of physics, i.e., we are
given the formula with finite and known number
of unknown parameters,

• nonparameric, i.e., the set of input-output data
collected in the experiment (learning sequence).

As we feel intuitively, thanks to parametric knowl-
edge we can significantly narrow the class of poten-
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tial relationships taken into consideration, and conse-
quently speed up the convergence rapidly. Neverthe-
less the risk of false parametric assumption cannot be
neglected. If the assumed formula is not correct, the
non-zero approximation error appears, which cannot
be reduced even when the number of measurements
tends to infinity.

Traditional approaches assumed linear dynamic
models as the simplest (rough) approximation of the
real system. If they turned out insufficient, the poly-
nomial or bilinear models were applied. Assuming
smoothness of nonlinear characteristics the Volterra
kernel expansion approach has been proposed ((Boyd
et al., 1984)). Nevertheless, the computational com-
plexity of algorithms was not rewarding, owing to
large number of parameters needed to be estimated,
particularly for long-memory systems with irregular
nonlinearities. Moreover, the theoretical analysis of
statistical properties of the parametric estimates is rel-
atively difficult in general case. As an alternative to
Volterra representation, the concept of block-oriented
models was proposed in 1960’s ((Narendra and Gall-
man, 1966)). The system is modelled by intercon-
nections of simple components of two types – linear
dynamics and static nonlinearities. The most popular
structures in this class are Hammerstein and Wiener
models (see (Pintelon and Schoukens, 2004) and (Giri
and Bai, 2010)).
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In parallel, the theory of nonparametric regres-
sion function estimation was developed ((Nadaraya,
1964), (Stone, 1982), (Cristobal et al., 1987), (Härdle,
1990), (Wand and Jones, 1995), (Efromovich, 1999),
(Gyorfi et al., 2002), (Ruppert et al., 2003)). First
attempts to nonparametric identification of dynamic
systems were made by Greblicki and Pawlak in
1980’s (see e.g. (Greblicki and Pawlak, 1986)). The
theory was developed towards relaxation of assump-
tion concerning nonlinearities and restrictions im-
posed on the input process ((Hasiewicz et al., 2005),
(Pawlak et al., 2007), (Greblicki and Pawlak, 2008),
(Bai, 2010), (Rochdi et al., 2010), (Śliwiński, 2013)).
The proposed algorithms recover true characteristics
and are free of approximation error. Nevertheless,
since they are based on measurements only (neglect
risky prior knowledge about parametric representa-
tion), the rate of convergence is relatively slower and
the obtained results are satisfactory only asymptoti-
cally.

Recent approaches to system identification tries
to combine both parametric and nonparametric algo-
rithms to inherit advantages of both philosophies, i.e.
to achieve accurate estimates for moderate number of
measurements and guarantee asymptotic consistency,
when the number of data grows large. The idea was
introduced in (Hasiewicz and Mzyk, 2004) and con-
tinued in (Hasiewicz and Mzyk, 2009), (Greblicki and
Mzyk, 2009), (Mzyk, 2014) and (Mzyk and Wachel,
2017). In general, the nonparametric pilot kernel esti-
mate supports least squares method in the sense that it
censors the data to allow for decomposition of inter-
connected system identification task into simple (lo-
cal) subproblems.

1.2 Paper Organization

The paper starts from recalling standard nonparamet-
ric estimates of probability density function (Section
2) and of the regression function (Section 3). Both
kernel based and orthogonal expansion methods are
reminded. Next, in Section 4, nonparametric algo-
rithms are applied for identification of nonlinear static
characteristic in Hammerstein system. Also the cross-
correlation method is presented for nonparametric
identification of linear dynamic element in Ham-
merstein system. Finally, the combined parametric-
nonparametric method is shown, in which, kernel or
orthogonal algorithms recover inaccessible interac-
tion signal for independent modeling of individual
blocks by the least squares. In Section 5, Wiener
system identification problem is considered. It is
relatively more difficult comparing to Hammerstein
system, owing to correlated excitation of the nonlin-

ear static component. Firstly, the traditional cross-
correlation based method is shown under assump-
tion of Gaussian excitation, and next, more sophisti-
cated algorithms, based on input censoring or deriva-
tive estimation are shown. Finally, the multi-level
(hybrid) strategies, elaborated for sandwich L-N-
L (Wiener-Hammerstein) and N-L-N (Hammerstein-
Wiener) systems are presented in sections 6 and 7, re-
spectively. General information about Nonparametric
System Identification Toolbox can be found in Section
8. Our goal is to provide the ready to use identifica-
tion tools in accessible form, based on the theoretical
results of nonparametric estimates, elaborated in the
team over the last three decades.

2 ESTIMATION OF
PROBABILITY DENSITY
FUNCTION

Let us assume that we are given the sequence of N re-
alizations {uk}N

k=1 of random variable u, and we need
to recover the probability density function f (u), with-
out any prior assumptions concerning its parametric
form.

2.1 Kernel Method

The kernel estimate of the probability density func-
tion has the form

f̂ (u) =
1

Nh

N

∑
k=1

K
(

uk−u
h

)
, (1)

where K () is a kernel function, e.g.

K (v) =
{

1, as |v| ≤ 1
2

0, otherwise , (2)

which selects measurements from neighbourhood of
the point u, and h = h(N) is a bandwidth parameter
(radius of selection). It can be show that for N → ∞,
in all continuity points u it holds that

h(N) → 0 =⇒ E f̂ (u)→ f (u) , (3)

Nh(N) → ∞ =⇒ var f̂ (u)→ 0, (4)

i.e., the f̂ (u)→ f (u) in the mean squared sense, if
both (3) and (4) are fulfilled.

2.2 Orthogonal Expansion Method

Alternatively, assuming that f (u) is square integrable,
i.e. f (u) ⊂ L2, and using any complete set of or-
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thonormal basis functions {ϕi(u)}
∞

i=0, it can be rep-
resented as follows

f (u) =
∞

∑
i=1

aiϕi(u), (5)

where

ai = f (u)◦ϕi(u) =
∫

D
f (u)ϕi(u)du = Eϕi(u). (6)

The set D in (6) is specific for the orthonormal ba-
sis {ϕi(u)}

∞

i=0 used in the identification algorithm.
The most popular are trigonometric series, orthogo-
nal polynomials (Laguerre, Lagrange, Hermite), or
wavelets. The unknown coefficients ai’s can be re-
covered from experimental data {uk}N

k=1, as sample
means

âi =
1
N

N

∑
k=1

ϕi (uk) , (7)

and owing to Parseval equality, arbitrary accuracy of
the approximate

f̂ (u) =
Q

∑
i=1

âiϕi (u) (8)

can be achieved, using appropriately selected scale
(cut-off level) Q. In general, asymptotic consistency,
i.e. the convergence f̂ (u)→ f (u) in the mean square
sense is guaranteed as Q(N)→ ∞ and Q(N)

N → 0, as
N→ ∞.

3 ESTIMATION OF REGRESSION
FUNCTION

In this section we consider the problem of nonpara-
metric estimation of nonlinear characteristic µ() of
the static system, with noise-corrupted output

yk = µ(uk)+ zk. (9)

Assuming that the noise zk is zero mean, Ezk = 0, has
finite variance, var<∞, and is independent of the exci-
tation uk, it can easily be shown that the input-output
regression function is equivalent to characteristic µ(),
i.e.

R(u) = E {yk|uk = u}= µ(u). (10)

For all points u such that f (u)> 0 one can write

R(u) =
g(u)
f (u)

, (11)

where g(u) = R(u) f (u) = µ(u) f (u).

3.1 Kernel Method

Since the noise-free output µ(uk) is not accessible
for measurement, assuming continuity of µ(u) in the
point u, the natural idea in nonparametric estima-
tion of g(u) is to use selected measurements yk’s, for
which respective inputs uk’s belong to the neighbour-
hood of u,

ĝ(u) =
1

Nh

N

∑
k=1

ykK
(

uk−u
h

)
. (12)

It leads to kernel regression function estimate of the
form

R̂(u) =
ĝ(u)

f̂ (u)
=

∑
N
k=1 ykK

( uk−u
h

)
∑

N
k=1 K

( uk−u
h

) . (13)

The theoretical analysis of the limit properties of (13)
and the issue of optimal selection of the bandwidth
parameters h(N), e.g. by the cross-validation method,
is discussed in (Wand and Jones, 1995).

3.2 Orthogonal Expansion Method

Analogously, the numerator in (11) can be expanded
as follows

g(u) =
∞

∑
i=1

biϕi(u), (14)

where the unknown coefficients bi’s can be estimated
as

b̂i =
1
N

N

∑
k=1

ykϕi (uk) , (15)

and âi’s are given by (7). Consequently,

R̂(u) =
∑

Q
i=1 b̂iϕi (u)

∑
Q
i=1 âiϕi (u)

. (16)

For details concerning properties of the estimate
(16), for various kinds of orthogonal basis, we refer
the reader to (Śliwiński, 2013) and references cited
therein.

4 HAMMERSTEIN SYSTEM
IDENTIFICATION

The Hammerstein system (see Fig. 1) includes static
nonlinear element with the characteristic µ() followed
by the linear dynamic filter with the impulse response{

γ j

}∞

j=0
. The interaction signal wk is hidden in the

sense that it cannot be measured. The system is de-
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{ }∞
=0jjγ()μku kw

kz

ky

Figure 1: Hammerstein system.

scribed by the following equation

yk =
∞

∑
j=0

γ jµ
(
uk− j

)
+ zk. (17)

Assuming that the linear dynamics is asymptotically
stable, i.e. ∑

∞
j=0

∣∣∣γ j

∣∣∣< ∞, the goal is to estimate both

characteristic µ() and the impulse response
{

γ j

}∞

j=0

from the input-output data {(uk,yk)}N
k=1, collected in

the experiment. The crucial meaning has the fact that
for i.i.d. input sequence, it holds that

R(u) = γ0µ(u)+ c1, (18)

where c1 = Eµ(uk)∑
∞
j=1 γ j = const, i.e. standard re-

gression R(u) is Hammerstein system is scaled and
shifted version of the nonlinear characteristic of its
static component. Assuming that µ(0) = 0, one can
avoid the offset c1, using the corrected nonparametric
regression estimate

µ̂(u) = R̂(u)− R̂(0) . (19)

The observation (18) allows to generalize nonpara-
metric estimates (13) or (16) for dynamic system. It
can be proved that under standard conditions concern-
ing h(N) or Q(N) (see e.g. (Greblicki and Pawlak,
2008)), it holds that µ̂(u) → γ0µ(u). The scale γ0
is not identifiable independently of the identification
method, owing inaccessibility of wk. The Hammer-
stein systems µ(u)×

{
γ j

}∞

j=0
and γ0µ(u)×

{
γ j
γ0

}∞

j=0
are equivalent from the input-output point of view.

As regards identification of linear block, for
i.i.d. input sequence one can apply standard cross-
correlation analysis. It can easily be shown that the
input-output cross-correlation coefficients

ς j = E
{
(uk−Euk)yk+ j

}
(20)

are proportional to the unknown impulse response el-
ements, i.e.

ς j = c2γ j, (21)
where c2 = const for all j = 0,1,2.... It leads to the
following estimate

γ̂ j =
1

N− j

N− j

∑
k=1

(uk−u)yk+ j, (22)

where u = 1
N ∑

N
k=1 uk. Asymptotically, for N→ ∞, to

assure consistency of the cut model
{

γ̂ j

}S(N)

j=0
of the

stable linear subsystem, the order S(N) should behave
such that S(N)→ ∞, but S(N)

N → 0.
Despite pure nonparametric estimates (19) and

(22) guarantee asymptotic convergence to the true
characteristic, the convergence rate is rather slow,
and the results can be not satisfying for moderate
number of measurements. Hence, the combined
parametric-nonparametric algorithms proposed firstly
in (Hasiewicz and Mzyk, 2004) are worth notifying.
They allow to decompose complex system identifica-
tion task into simpler local subproblems, and can be
applied under partial or uncertain knowledge of in-
dividual components. In step 1 (nonparametric) we
identify inaccessible interaction signal

ŵk = R̂(uk)− R̂(0) (23)

with the use of kernel orthogonal regression estima-
tors, and next, in step 2 (parametric) we incorporate
least squares or instrumental variables approach for
both static and dynamic subsystems using the pairs
{(uk, ŵk)}N

k=1, and {(ŵk,yk)}N
k=1, respectively. For

example, under parametric knowledge that µ(u) =
µ(u,θ∗), the true vector of parameters, θ

∗, is esti-
mated as follows

θ̂ = argmin
θ

N

∑
k=1

(ŵk−µ(uk,θ
∗))2 . (24)

Let us emphasize, that nonparametric estimate ŵk is
plugged in to the definition of parameter estimate θ̂.
The formal proofs of consistency of θ̂ and parametric-
nonparametric estimates for IIR linear dynamics can
be found in (Hasiewicz and Mzyk, 2009).

5 WIENER SYSTEM
IDENTIFICATION

The Wiener system (Fig. 2) includes the components
of Hammerstein system connected in reverse order. It

 
0jj

ku kx

kz

ky
()

Figure 2: Wiener system.

is described by the equation

yk = µ

(
∞

∑
j=0

λ juk− j

)
+ zk. (25)

The Wiener structure has very wide scope of potential
applications (see (Giannakis and Serpedin, 2001)).
Unfortunately, since the hidden nonlinearity input,
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xk, is correlated, the problem is much more diffi-
cult. In the contrary to Hammerstein system iden-
tification task, sufficient identifiability conditions for
Wiener system were formulated in the literature only
for some special cases. One of them is based on
application of Gaussian excitation. In this specific
situation, also the hidden process {xk} is normally
distributed, and the Bussgang theorem holds. It al-
lows to identify impulse response elements λ j anal-
ogously to (22), i.e., λ̂ j =

1
N− j ∑

N− j
k=1 (uk−u)yk+ j.

Using the FIR approximate model of the linear dy-
namic block, the interaction signal xk can be approx-
imated as follows x̂k = ∑

S
j=0 λ̂ juk− j, and the charac-

teristic of the nonlinear component can be estimated
from the pairs {(x̂k,yk)}N

k=1, analogously to (24), i.e.
θ̂= argminθ ∑

N
k=1 (yk−µ(x̂k,θ

∗))2. The input density
restriction has been relaxed in (Mzyk, 2007), (Gre-
blicki, 2010), (Pawlak et al., 2007) and (Wachel and
Mzyk, 2016). For the survey of parametric and non-
parametric methods for identification of Wiener sys-
tem we refer the reader to (Mzyk, 2010).

6 WIENER-HAMMERSTEIN
SYSTEM IDENTIFICATION

Although Hammerstein and Wiener models general-
ize the class of linear systems, they are still not suf-
ficient in some practical applications. In this section
we consider cascade connection of Wiener and Ham-
merstein system, with the L-N-L (sandwich) structure
(see Fig. 3). The system is described by the equation

()
ku kx

kz

kykv
j j0

p  j j0

q

Figure 3: Wiener–Hammerstein system.

yk =
q

∑
j=0

γ jµ
(
xk− j

)
+ zk, (26)

where xk = ∑
p
i=0 λiuk−i.

First attempts to parametric-nonparametric identi-
fication of Wiener-Hammerstein system were made in
(Mzyk, 2012) and the proposed estimates were further
analyzed in (Mzyk and Wachel, 2017). The algorithm
consists of three steps.

Step 1. Nonparametric kernel identification on the
nonlinear characteristic

µ̂N(x) =
∑

N
k=1 yk ·K

(
δk(x)

h

)
∑

N
k=1 K

(
δk(x)

h

) , (27)

where

δk(x),
p+q

∑
j=0

∣∣uk− j− x
∣∣ . (28)

Step 2. Estimation of the convolution of impulse
response of linear dynamic objects

κ j = λ j ∗ γ j =
j

∑
i=0

γiλ j−i, (29)

by the local cross-correlation censored by the kernel
technique

κ̂τ =
1

Nηp+q+3

N−(p+q)

∑
k=p+q+1

ukyk+τK
(

∆k

η

)
, (30)

where η is a bandwidth (analogously to h) and

∆k = max
j=0,1,...,p+q

∣∣uk− j
∣∣ . (31)

Step 3. Splitting the polynomial

W (d) = κp+qdp+q +κp+q−1dp+q−1 + ...+κ1d +κ0

= κp+q (d−d1)(d−d2) ...(d−dp+q) ,
(32)

where Ω =
{

d1,d2, ...,dp+q
}

denotes the set of roots
(generally complex), into two separate factors

W (d) = κp+qΛΘ(d) ·ΓΘ(d), (33)

where ΛΘ(d) = ∏
di∈Θ

(d−di), and ΓΘ(d) =

∏
di∈Ω\Θ

(d−di), such that

{
λ̂, γ̂
}
= arg min

Θ∈Ω
Q̂(lΘ,gΘ), (34)

where Q̂(lΘ,gΘ) = 1
N ∑

N
k=1 [yk− yk (lΘ,gΘ)]

2 and
yk (lΘ,gΘ) is the model output for impulse responses
lΘ, and gΘ, respectively.

Since the speed of convergence is sensitive on the
orders p and q, the algorithm is rather devoted to FIR
Wiener-Hammerstein systems with short memory.

7 HAMMERSTEIN-WIENER
SYSTEM IDENTIFICATION

Serial connection of Hammerstein system with
Wiener system leads to the N-L-N sandwich structure
(see Fig. 4). The system is describes as follows

yk = η

(
q

∑
j=0

γ jµ
(
uk− j

))
+ zk. (35)
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Figure 4: Hammerstein–Wiener system.

Our algorithm (see (Biegański, 2018)) uses both
parametric and nonparametric system identification
tools to recover parameters of each individual block
and it estimates linear and nonlinear parts of the
Hammerstein–Wiener system separately. We assume
that nonlinear characteristics of the input and output
static blocks are described by the linear combinations
of a priori known base functions f and g

µ(u) = µ(u,a∗) = a∗T f (u), (36)

a∗ = (a∗1,a
∗
2, . . . ,a

∗
m)

T ,a∗ ∈ Rm,

f (u) = ( f1(u), f2(u), . . . , fm(u))
T ,

η(x) = η(x,b∗) = b∗T g(x), (37)

b∗ = (b∗1,b
∗
2, . . . ,b

∗
n)

T ,b∗ ∈ Rn,

g(x) = (g1(x),g2(x), . . . ,gn(x))
T .

Dimensions of the parameters vectors a∗ and b∗ are
fixed and known. Moreover it is assumed that static
nonlinear characteristics are both Lipschitz functions,
i.e. are uniformly continuous with bounded first
derivatives. Characteristics are twice differentiable
in arbitrarily small neighbourhoods of some points
u0 and x0 = µ(u0)∑

q
j=0 γ∗j and µ′(u0) 6= 0, η′(x0) 6=

0. Additionally, output characteristic is strictly
monotonous, and therefore invertible. Hence the
identification procedure is divided into four stages:

Stage 1. Direct identification of the finite impulse
response parameters γ∗ of linear dynamic subsystem
in the presence of random input and random noise
with the use of kernel-censored least squares method

γ̂ =

(
N

∑
k=1

φkφ
T
k K
(

∆k

h

))−1( N

∑
k=1

φkykK
(

∆k

h

))
,

(38)
where

φk =
(

u(1)k ,u(1)k−1, . . . ,u
(1)
k−q

)T
, (39)

and ∆k is the infinity norm of the regression vector

∆k = ‖φk‖∞
= max

j=0,1,...,q

∣∣∣u(1)k− j

∣∣∣ . (40)

Stage 2. Estimation of parameter vector b∗ of
output nonlinear characteristic in active experiment
(binary sequence excitation) with the use of kernel
method

η̂
(
x[i]
)
=

∑
N
k=1 ykδ(φk,ϕi)

∑
N
k=1 δ(φk,ϕi)

, (41)

where

δ(φk,ϕi) =

{
1, if φk = ϕi

0, otherwise
. (42)

The result of this step is given by the set of N0 pairs{(
x[i], η̂

(
x[i]
))}N0

i=1 . (43)

Using this set of pairs, we can find the most suitable
parameters with the least squares method

b̂ =
(
Ψ

T
Ψ
)−1

Ψ
T

ζ, (44)

where Ψ and ζ are respectively

Ψ =
(
g(x[1]),g(x[2]), . . . ,g(x[N0])

)
,

ζ =
(
η̂
(
x[1]
)
, η̂
(
x[2]
)
, . . . , η̂

(
x[N0]

))
.

Stage 3. Filtration of output signal yk in order to
generate additional process rk with the same condi-
tional expected value as non-measureable signal xk.
With

ς(y) = E {xk|yk = y}=
∫

∞

−∞

η
−1(y− z) f (z)dz. (45)

we can generate additional signal

rk = ς(yk), (46)

with the same conditional expected value as xk, i.e.,

R(u) = E {rk|uk = u}= E {ς(yk)|uk = u}=

= E
{∫

∞

−∞

η
−1(yk− z) f (z)dz|uk = u

}
=

= E
{∫

∞

−∞

η
−1 (η(xk)) f (z)dz|uk = u

}
=

= E
{

xk ·
∫

∞

−∞

f (z)dz|uk = u
}
= E {xk|uk = u} .

Stage 4. Identification of input nonlinear charac-
teristic

R̂(u) =
∑

N
k=1 rkK

(
uk−u
h(N)

)
∑

N
k=1 K

(
uk−u
h(N)

) . (47)

The idea was to develop a procedure that would adapt
itself to separate block-oriented structures, such as
Hammerstein and Wiener systems, even without any
additional a priori knowledge about the examined
system. The problem of identification of such com-
plicated structure is rather difficult, not only because
of existence of Wiener part in which linear dynam-
ics precedes static nonlinearity, but also because of
the correlation between non-measurable signals. In
the algorithm we benefit from multistage and two-
experiment approaches to achieve specific, advanta-
geous conditions in which linear and nonlinear parts
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of the system were less complicated to identify. Addi-
tionally, further steps of the algorithm profit from the
former ones which significantly reduces the complex-
ity and dimensionality of the identification problem.
The uniqueness of the solution is strictly related to
the impulse response fulfilling the given assumptions
and for the output nonlinear characteristic satisfying
Haar condition. The main drawback of the algorithm
is that the effectiveness of the procedure is dependent
on the length of the finite impulse response, which
is characteristic for the whole class of Wiener-type
systems (”course of dimensionality”). Therefore the
proposed method is recommended for linear dynamic
blocks with short impulse response and more sophis-
ticated memoryless nonlinear characteristics.
Example 1. Let’s investigate the simple example of
compensator building under knowledge of η(x) and
f (z). Assume that nonlinear output block is described
by η(x) = 3

√
x and the system is disturbed by additive

random, uniformly distributed noise zk ∼ U[−1,1].
Compensator can be determined as follows

ξ(y) = E{xk|yk = y}=
∫ 1

−1
(y− z)3 · 1

2
dz = y3 + y,

i.e., rk = y3
k + yk. Below, in Fig. 5, we present the

estimate (47) of Hammerstein system nonlinearity

µ(u) =
{

u , |u| ≤ 1
sgn(u) , |u|> 1

for γ = (γ0,γ1)
T = (1,1)T . The result illustrates ap-

plicability of the proposed method.

Figure 5: True characteristic µ(u) vs. the estimate µ̂(u).

8 THE MATLAB TOOLBOX

The actual version of toolbox and its documentation
can be accessed at the WWW page

http://staff.iiar.pwr.wroc.pl/grzegorz.mzyk/KIT
Below we present the list of names of selected

functions:

cosineKernel() – returns value of the cosine kernel
function

epanechnikovKernel() – returns value of the
Epanechnikov kernel

gaussianKernel() – returns value of Gaussian ker-
nel

triangularKernel() – returns value of triangular
kernel

uniformKernel() – returns value of uniform
(Parzen) kernel

kernelDensityEstimation() – computes probability
density function estimate for a given point, by the ker-
nel method

orthogonalRegressionEstimation() – computes
model of the regression function using orthogonal ex-
pansion method

kernelRegressionEstimation() – computes model
of the regression function using kernel method

hammerstein() – identifies both components of
Hammerstein system using input-output data

wiener() – identifies both components of Wiener
system using input-output data

trigonometricOrthonormalBasis() – supporting
function generating trigonometric orthogonal basis
functions

estimateDynamicSubsystem() – identification of
linear dynamic block

crossValidation() – selection of optimal band-
width parameter in kernel methods, or the scale in or-
thogonal expansion methods

9 SUMMARY

The methods presented in the paper combine the non-
parametric and parametric tools. Such a strategy
allows to solve various kinds of specific obstacles,
which are difficult to be overcome in purely paramet-
ric or purely nonparametric approach. In particular,
the global identification problem can be decomposed
on simpler local problems, the measurement sequence
can be pre-filtered in the nonparametric stage, or the
rough parametric model can be refined by the non-
parametric correction when the number of measure-
ments is large enough. The schemes proposed in the
paper can be used elastically and have a lot of de-
grees of freedom. In most of them we can obtain
traditional parametric or nonparametric procedures by
simple avoiding of the selected steps of combined al-
gorithms. In this sense, the proposed ideas can be
treated as generalizations of classical approaches to
system identification.
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