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Abstract: The paper considers a problem of deviations (peak effect) in the free motion of linear discrete stable systems 
with a control signal delay. The problem consists in structure of eigenvectors of the state matrix. The control 
signal delay adds additional order to a discrete-time model and leads to the variation of eigenvectors structure 
and deviation increasing in the free motion of the system. A tracking discrete-time system is a subject of the 
research. An approach to the modal control law design taking into account the value of delay and the deviation 
is suggested in the paper. It is proposed to assess the upper bound of peaking processes in the system with the 
condition number of an eigenvectors matrix. The results are supported by an example. 

1 INTRODUCTION 

Large deviation problem in the free motion of a linear 
system is investigated for a long time (Feldbaum, 
1948), (Izmailov, 1978). Firstly, the relationship 
between the large deviations of the motion of a 
system and its poles was observed. Then, the problem 
of large deviations for systems with observers were 
investigated (Polotskij, 1981). The large deviations 
problem in cascade control systems was considered 
also (Sussman and Kokotovic, 1991), where the result 
of R.N. Izmailov was generalized to obtain 
estimations of the deviations for the outputs.  

Recently, the estimation of the deviations for the 
case of large and small values of the poles were 
obtained using the linear matrix inequalities 
technique (Polyak and Smirnov, 2016) and the state-
space approach (Vunder et al., 2015, 2016). Thus, it 
is found that not only the multiplicity of eigenvalues 
(Vunder et al., 2015, 2016), but also the output 
method of control signal can cause significant 
deviations of norm of a free-motion state vector of the 
discrete-time system ((Whidborne and McKernan, 
2007), (Vunder and Ushakov, 2016), (Halikias et al., 
2010), (Francis and Glover, 1978), (Kimura, 1981)).   

However, little number of publications is 
published on the deviations assessments for discrete-
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time systems. Therefore, the aim of this paper is to 
propose deviations estimations for the discrete-time 
system with the control system delay and design a 
modal control law taking into account the value of the 
delay and the deviation. The results of the paper can 
be useful for the stabilization problems solution like 
a stabilization problem for planes (Polyak at al., 
2015) or switching systems (Liberzon, 2003). 

The paper is laid out as follows. Firstly, the 
deviation assessments in discrete-time systems 
without control signal delay are presented. Then, the 
case of discrete-time systems with control signal 
delay is described and a modal control law taking into 
account the value of delay and the deviation is 
proposed. Thereafter, the example of a discrete-time 
plant is presented. The paper is finished with some 
concluding remarks. 

2 DEVIATIONS IN  
DISCRETE-TIME SYSTEMS 
WITHOUT CONTROL SIGNAL 
DELAY  

Any discrete-time control system is a composition of 
following parts: digital controller, a digital-to-analog 
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converter, and a continuous-time plant. In order to 
obtain a single mathematical description of this 
composition, processes are studied at the time 
instances t k t  , where k  is positive integer, it is 
called the discrete time; t  is the sample time. This 
means that the discrete-time plant is said to be 
discrete time sampling from continuous-time state 
and output variables under a piecewise-constant 
control signal with the duration t . Note that a 
control signal from the digital controller can output 
both without and with delay  . This fact gives rise to 
two discrete-time representations of the continuous-
time plant.  

Consider a linear continuous-time plant 

         
0

; 0
t

x t Ax t Bu t x x t


   ,

   y t Cx t , 
(1)

where , ,n r mx R u R y R    are state vector, input 

vector, output vector respectively; ,n nA R   
n rB R  , m nC R   are state matrix,  input matrix, 

output matrix. If the control of plant (1) for t k t   
is realized without delay, then it can be represented as 
follows 

     , 1u t u k k t t k t       (2)

Combining (1) and (2), from (Zadeh and Desoer, 
2008), we get following discrete-time model 

         
0

1 ; 0
k

x k Ax k Bu k x x k


    ,

   y k Cx k , 
(3)

where  argk t k t    is discrete time; t  is 

sample time;    dim dimA A ,    dim dimB B , 

   dim dim ;C C  expA A t  ,   1 ,B A I A B   

C С . 

Analytically, control (2) can be written as 

     gu k K g k Kx k  , (4)

where mg R  is an external input; 

,r m r n
gK R K R    are the feed forward matrix, the 

feedback matrix respectively. Combining (4) and (3), 
we get discrete-time closed-loop system 

         
   
     

0
1 ; 0

,

k
x k Fx k Gg k x x k

y k Cx k

k g k y k


   
 
  

 

(5)

where 

F A BK  , gG BK , (6)

 k  is a tracking error. Eigenvalues and 

eigenvectors of the state matrix F  is given by 

 
  

 
arg det 0 :

,
Im 0, ; , 1, ;

i

i i j

I F
F

i j n i j

      
     

 


  

 

(7)

; 1,i i iF i n    . (8)

If the external input is not available to direct 
measurement, then control (4) is presented as 

          ,g ru k K g k Kx k K k K x k   
 

(9)

where  

  
  

1

11

arg

,

,
y g

g g

r y K K

K K C I F BK I

C I F B

K K K C







   

 

 



 

rK  is feedback matrix for a part of the state vector 

components. 

Block diagram representation of system (5) with 
control (9) is shown in figure 1. 

Β

Α

 y k
C

 x k 1x k u k

rK

K

 g k



 k



1Z

 

Figure 1: Block diagram of system without control delay. 

Note also that the modification of control in form 
(9) does not change the mathematical representation 
of system (5).  

Let us single out the autonomous component in the 
discrete-time system (5) 

     1 ; 0 .x k Fx k x   (10)

The solution of equation (10) takes the form 

   0 .kx k F x  (11)
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For the state matrix F  the following condition 
satisfies 

M FM  , (12)

where     exp exp ; 1,i it diag t i n         

: ; 1,i i i i iM row M F i n          is a square 

matrix whose columns are the n linearly independent 
eigenvectors of F .  Using (11) and (12), we get 

MFM kk  , (13)

Now, combining (11) and (13), we obtain 

     10 0k kx k F x M M x   . (14)

From (14) it follows 

     
 0 1

0 0 ,k k k

x
x k F x F x F


     (15)

where   is any consistent norm here and elsewhere.  

Let us form an upper bound of (15) 

   
 

     
   

1

1

max

0

0

; 1, 0

0 ,

k

k

k
i

k

x k M M x

M M x

С M diag i n x

C M x





  

  

  







 (16)

where   1С M M M   is condition number 

(Gantmacher, 2000), (Golub and Van Loan, 2012) of 
the matrix M ; max  is a maximum eigenvalue of the 

matrix F  that satisfies conditions 

 max maxIm 0, 0   . Thus, by  0 1x  , we have 

the upper bound 

  
 

  max
0 1

sup k

x
x k C M


  . (17)

From (17) the following properties have to be 
considered: 

1. The condition number  С M  of the eigenvectors 

matrix M  determines quality of processes in the 
system on free motion norm. 

2. If eigenvalues are orthogonal to each other, then the 
condition number  С M  is equal to one. As a result, 

processes in the system (5) start from the point  0x  

and then decrease monotonic. 

3. If even one pair of close to collinear eigenvectors 
exists, then the condition number  С M  can be 

sufficiently large. Processes in the system (5) start 

from the point  0x  too but then there can appear 

significant deviation of free motion trajectory. In this 

case the upper bound   sup x k  start from the 

point      0 0С M x x . 

3 DEVIATIONS IN  
DISCRETE-TIME SYSTEMS 
WITH CONTROL SIGNAL 
DELAY 

The case of a discrete-time system with the control 
signal delay is characterized by the increased 
dimension of the matrices and modification of 
eigenvector structure of the state matrix. 

If the control  u t  of plant (1) for t k t   

realizes with delay t   , then it can be represented 
as follows (Grigoriev et al., 1983) 

 
 
   

1 , ;

, 1 .

u k k t t k t
u t

u k k t t k t

      
     




 (18)

Combining (18) and (1), we get following 
discrete-time model (Grigoriev et al., 1983) of plant 

           
   

11 1

,

x k x k u k u k

y k Cx k

     



 
 (19)

where 

   
   

1
1

1

,

.

I e

e I

 

 

     

     








 (20)

Block diagram representation of model (19) is 
shown in figure 2.  

 Β

 1Β

Α

 y k
C

 x k 1x k u k

 k 1k 

 1u k
1Z1Z

 

Figure 2: Block diagram of plant with control delay. 

Let us introduce an additional state vector  , 

then, by figure 2, we get a following discrete-time 
model 
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   
 

   
 

   

       

1

1
1

1

0 0

; ,

x k
x k

k

x k BA B
u k

k I

Ax k Bu k y k Cx k

  
    

    
      

    
  



  






 
(21)

where 

   1 ; ; 0
0 0

BA B
A B C C

I

   
        

  
  , (22)

    ru dimdim . 

It should be noted, it is recommended to take the 
discrete interval t   . At the same time, the 
discrete interval is limited as t     by the 

Nyquist–Shannon–Kotelnikov theorem, where   is 
a system bandwidth.  If it is impossible to take the 
discrete interval t    due to the theorem, then the 
order of the discrete model (19) increases by more 
than 1. This case is not considered in the paper. 

Consider two cases. The first case is called 
“unpredictable delay” (or unaccounted delay). The 
control is given by (4), but on account of the 
modification of plant model (21), (22) the discrete-
time system takes the form 

             
   

0
1 ; 0 ;

,

k
x к F x k G g k x x k

y k Cx k


   



   


 
 (23)

where  

     

   

1 ,
0

, 0 .g

g

A B K B
F

K

B K
G C C

K

 
   
 

       



 

 





 (24)

Block diagram representation of system (23) with 
control (9) is shown in figure 3. 

 Β

 1Β

Α

 y k

C
 x k 1x k

 u k

 k 1k 

 1u k

rK

K
 g k



 k


1Z 1Z

 

Figure 3: Block diagram of system with unpredictable delay 
in control. 

Free motion of system (23) can be represented by 

        10 0
k kx к F x M M x        . (25)

From (25) it follows 

      

     1
max

0

0 0 ,

k

k k

x k F x

M M x C M x

 

  

 

    




 (26)

where  C M  is condition number of a 

   1 1n n   -matrix M ; 

   arg ; 1, 1i i i iM row M F M M i n           is 

eigenvectors matrix of state matrix F ; 

   max max arg 0 ; 1, 1i
i

I F i n            . 

As a result, the upper bound of free motion of system 
(23) takes the following form 

  
 

  max
0 1

sup k

x
x k C M





  . (27)

It should be noted that a change of condition 

number  C M  happens even by 0   although 

eigenvalues set of the matrix    0F F    is 

increased a zero eigenvalue n 1 0   . Let us show 

that. Consider the matrix  0F   

  0
0

0

A BK
F

K

 
   

 . (28)

Obviously, by property (Gantmacher, 2000) of a 
block-triangular matrix, the eigenvalues set of matrix 
(28) consists of the eigenvalues set of the matrix 

   ; 1,i iF A BK i n        and n 1 0   . 

For eigenvectors i  of the matrix  0F  the following 

condition satisfies 

    0 0 0i i i i iF F I             . (29)

The eigenvector i  belongs to null space N

  0 iF I   of a characteristic matrix   0 iF I 

. Null space implementation for each eigenvalue i , 

including n 1 0   , which corresponds a nonzero 

eigenvector. Eigenvectors i  correspond to 

 ; 1,i i i n    but they don’t preserve components 
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of eigenvectors i . As a result, the condition number

 C M  significant changes even by 0  . 

The second case is called “predictable delay” (or 
accounted delay). The control of plant (21) takes the 
form 

       

     .
g x

xr

u k K g k K x k K k

K k K x k K k

   

  

    

    


 



 
 (30)

Combining (21) and (30), we get following 
discrete-time closed-loop system 

         
   

0
1 ; 0 ;

.

k
x k Fx k Gg k x x k

y k Cx k


   



    
 

 (31)

where 

 
     

 
 

1 ,

, 0 .

x

x

g

g

A B K B B K
F

K K

B K
G C C

K

  
 
   
 
      
 

  
  

 






  





 (32)

Control law (30) is formed such that an 

eigenvalues set of matrix  F  consists of 

eigenvalues set of matrix F  (6) and an eigenvalue 

n 1 
 . The eigenvalue n 1 

  is taken to much less than 

, 1,i i n .  

Block diagram representation of system (31) with 
control (30) is shown in figure 4. 

 Β

 1Β

Α

 y k

C
 x k 1x k

 u k

 k 1k 
 1u k

xK

K


K
 g k



K


1Z1Z

 

Figure 4: Block diagram of system with predictable delay 
in control. 

Free motion of system (31) can be represented 

        10 0
k

kx к F x M M x            . (33)

  
 

From (33) it follows 

      

     1
max

0

0 0

k

k k

x k F x

M M x C M x

 

  

 

        




 (34)

where  C M  is condition number of a 

   1 1n n   -matrix M ;  

   arg ; 1, 1i i i iM row M F M M i n               is 

eigenvectors matrix of state matrix F ; 

   max max arg 0 ; 1, 1i
i

I F i n               . As 

a result, the upper bound of free motion of system (30) 
takes the following form 

  
    max
0 1

sup k

x
x k C M 






  . (35)

4 EXAMPLE 

Consider discrete-time plant (3) for 0.01st   with 

matrices 1 0.01

0 1
A

 
  
 

; 0.0001

0.01
B

 
  
 

;  1 0C  .  

Design modal control law for discrete-time 
systems with and without delay gives the following. 

1. Assume the required quality indicators of the 
closed loop system are provided by assigning the 
following eigenvalues 

   1 20.9802; 0.9048F     , that corresponds to 

the eigenvalues    1 22; 10F       for the 

continuous-time analog of the plant. The satisfactory 
eigenvalues are achieved by the modal control with 
the feedback matrix  18.84 11.4K 

. 
Then, the 

state matrix of the close loop system (10) is obtained 

as 
0.999 0.0094

0.1884 0.886
F

 
   

 with the eigenvectors 

1 2

0.4472 0.0995
;

0.8944 0.995
 

   
        

, and the condition 

number of eigenvectors matrix 

    1 2, 5.434С M C    .  Norm (15) of free 

motion of the system (10) is shown in figure 5. 
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Figure 5: Norm  x t  of free motion of the system(10). 

The condition number  С M  is much greater 

than one. Thus, there is a deviation of free motion 
trajectories from a monotone decreasing curve. 

2. The case of “unpredictable delay”. If the control 

 u t  of plant (1) for 0.01t k t k s     is realized 

with delay 0.5 t t    ,  then  we get the discrete-

time system (23) with the same feedback matrix K  
and the following state matrix:  

     

       
   

1

0

1 18.84 0.5 1.5 0.01 11.4 0.5 1.5 0.5

18.84 1 11.4 .

18.84 11.4 0

A B K B
F

K

t t t t t

t t

 
  

 
            

        
   

  


     
  

 

Here, the eigenvalues and eigenvectors are 
derived as 

    1 2 30.9801; 0.8987; 0.0644 ,F            

1 2 3

0.2179 0.0089 0

0.4352 ; 0.0933 ; 0.0057

0.8735 0.9956 1

  
     
             
           

   . The 

condition number of eigenvectors matrix is  

   1 2 3, , 70.674С M C      
   . Norm of free 

motion of the system (23) is shown in figure 6. 

 

Figure 6: Norm  x t  of free motion of the system (23). 

The condition number  С M  is sufficiently 

large. Thus, there is significant deviation of free 

motion trajectories from a monotone decreasing 
curve. 
3. The case of “predictable delay”. Assume system 
(31) is realized with the control law (18). The third 

eigenvalue is assigned as 3 0.8187  . Then the 

feedback matrix  3.4157 2.247 0.715K  

provides the state matrix 

 
0.5 0.005

1 0.01 0

0.0171 0.9888 0.0086

3.4157 2.2468 0.715
t

F



  

 
   
   

 , 

with eigenvalues  

    1 2 30.9802; 0.9048; 0.8187 ,F             

eigenvectors 

1 2 3

0.2192 0.0102 0.0026

0.4363 ; 0.0996 ; 0.05 ,

0.8727 0.995 0.9987

      
             
           

        

and the condition number of eigenvectors matrix  

   1 2 3, , 131.9С M C       
      . Norm of free 

motion of this system is shown in figure 7a.  

If we take another third eigenvalue, that is close to 
1, then the feedback matrix  

 0.1875 0.3014 0.8766K    provides the state 

matrix

 
0.5 0.005

1 0.01 0

0.0009 0.9985 0.0094

0.1875 0.3014 0.8766
t

F
  

 
   
   




  

with eigenvalues 

    1 2 30.9802; 0.9048; 0.99 ,F               and 

eigenvectors 

1 2 3

0.2192 0.0102 0.5783

0.4363 ; 0.0996 ; 0.5769

0.8727 0.995 0.5769

  
      

             
           

      of 

the system (31). In this case the condition number of 
eigenvectors matrix is 

   1 2 3, , 17.5787С M C       
      . Norm of free 

motion of this system is shown in figure 7b. 
From received curves it follows that the greater 

modulus of eigenvalue 3
  is, the smaller condition 

number  С M . This indicates a damping of the 

deviation. 
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Figure 7: Norm  x t  of free motion of the system (31) 

with different values of the third eigenvalue. 

5 CONCLUSIONS 

Stable discrete-time systems with control signal delay 
were considered in the paper and the problem of large 
deviations in the free motion of the systems was 
investigated. The upper bound of peaking processes 
in the system was estimated with the condition 
number of its eigenvectors matrix. The modal control 
law was designed taking into account the delay and 
the deviation. It was shown relationship between the 
delay and the eigenvectors structure, and the value of 
the deviations in the free motion of the discrete-time 
system. Modification of the additional eigenvalue due 
to the control signal delay gives opportunity to affect 
the deviation and reduce it. The level of the deviation 
reducing depends on requirements to dynamic quality 
indicators of the researched system.  

In future, it is supposed to expand the results of 
the paper to the case of stabilization and control 
discrete-time systems by observers with unknown 
initial conditions. 
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