
An Algorithm for Message Type Discovery in Unstructured Log Data

Daniel Tovarňák a

Institute of Computer Science, Masaryk University, Brno, Czech Republic

Keywords: Log Abstraction, Message Type Discovery, Log Management, Logging, Unstructured Data.

Abstract: Log message abstraction is a common way of dealing with the unstructured nature of log data. It refers to the
separation of static and dynamic part of the log message, so that both parts can be accessed independently,
allowing the message to be abstracted into a more structured representation. To facilitate this task, so-called
message types and the corresponding matching patterns must be first discovered, and only after that can be this
pattern-set used to pattern-match individual log messages in order to extract dynamic information and impose
some structure on them. Because the manual discovery of message types is a tiresome and error-prone process,
we have focused our research on data mining algorithms that are able to discover message types in already
generated log data. Since we have identified several deficiencies of the existing algorithms, which are limiting
their capabilities, we propose a novel algorithm for message type discovery addressing these deficiencies.

1 INTRODUCTION

Log data analysis is pervasively used for a plethora of
mission-critical tasks, e.g. debugging, security mon-
itoring, forensic analysis, and network management.
Even though this is the case, log data are often con-
sidered low-grade due to their predominantly unstruc-
tured nature and their somewhat inherent free form.
This is what makes log analysis, and log data pro-
cessing in general, a challenging task, attracting a
considerable focus from academia and industry alike.

The matter at hand stems from the way log data
are generated. Logging is a programming practice. It
is used by software developers to communicate infor-
mation outside the scope of a program in order to trace
its execution. It is usually done in an ad-hoc manner
and the most important information of log entries – log
messages – predominantly take the form of relatively
short natural-language messages mixed with run-time
context variables. Although such log messages are
human-readable, the task of automatic log analysis is
seriously hardened, since it is challenging to obtain
the communicated information in machine-readable
forms and data structures.

Unstructured log messages and their transforma-
tion into suitable representations is a particular prob-
lem that has attracted a considerable amount of re-
search over the years. In literature, such a task is usu-
ally referred to as log abstraction (Nagappan and Vouk,

a https://orcid.org/0000-0002-7206-5167

2010; Jiang et al., 2008) or message type transforma-
tion (Makanju et al., 2012). Simply put, log abstraction
is the separation of static and dynamic part of the log
message so that both parts can be accessed indepen-
dently. The static part is referred to as message type,
which essentially corresponds to the parameterized log
message in a logging statement, and the dynamic part
corresponds to the actual logging variables and their
values. In order to facilitate the abstraction, regular
expression parsing/matching is usually used. In such a
case, each message type corresponds to a unique regex
pattern.

To better understand the concept, consider a sim-
ple example from Table 1 on the next page. From
the observed log messages, one can infer two mes-
sage types described as follows: [User * logged *]
and [Service * started]. In this commonly used
notation, the wildcard symbol [*] denotes variable
parts of the log message. Thus, in our example the log
message [User Jack logged in] corresponds to the
message type [User * logged *] with logging vari-
ables [$1=Jack, $2=in]. Note that since the users are
oblivious to the corresponding source code they can
easily assume that the log messages were generated via
logging statement comparable to [LOG.info("User {}
logged {}", user, action)] even though this may
not be the case. To technically facilitate the actual
separation, message types are typically represented by
corresponding regular expression patterns, which are
then in turn used to parse the log messages.

Tovarňák, D.
An Algorithm for Message Type Discovery in Unstructured Log Data.
DOI: 10.5220/0007919806650676
In Proceedings of the 14th International Conference on Software Technologies (ICSOFT 2019), pages 665-676
ISBN: 978-989-758-379-7
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

665

Table 1: Message type discovery.

Log Messages Message Types Regular Expressions

User Jack logged in

User John logged out

Service sshd started

User Bob logged in

Service httpd started

User Ruth logged out

⇒ User * logged * : [$1, $2]

Service * started : [$1]
⇒ User (\w+) logged (\w+)

Service (\w+) started

2 RELATED WORK

[This paper is a revised version of a text appearing
in the author’s dissertation thesis. For a further in-
formation on logging, log abstraction, and log data
normalization, please see (Tovarnak, 2017).]

Manual discovery of message types and the cor-
responding matching patterns based on empirical ob-
servations can be a challenging task. Although it may
be perfectly possible for a small number of message
types, as the number grows, automated approaches
for message type discovery can rapidly become the
only feasible option. Log data generated by a single
application or software project can contain hundreds
of unique message types since their logging code can
contain hundreds of unique logging statements.

When put bluntly, the goal of message type dis-
covery is to find all the „templates“ that correspond
to the parameterized log messages used in logging
code. In essence, this goal can be approached in two
ways, either via source code analysis or by utilizing
data mining techniques on historical log data. At this
point, it should be noted again that the focus lies on log
messages alone and it is assumed that they are already
extracted from log entries, regardless their representa-
tion. In literature, several works belonging to these two
orthogonal groups of approaches can be found with a
general focus leaning strongly towards data mining. In
this paper, our focus is also predominantly aimed at
the data mining approaches since we are interested in
covering the cases in which the source code generating
the log data in question is not available. Proprietary
hardware appliances and closed-source applications
are good examples of such cases.

2.1 Source Code Analysis

As it is apparent from the title, the approaches based
on source code analysis assume a certain structure
of the logging statements in the source code and the
message types are inferred based on the analysis of
those statements. Apart from the works discussed
below, we have been able to identify a number of

works that, although they analyze logging code, e.g.
(Yuan et al., 2012), or (Chen and (Jack) Jiang, 2017),
they do so for the purpose of characterizing logging
practices of the developers, not for the purposes of
message type discovery and log abstraction.

(Xu et al., 2009) proposed a general approach to
problem detection via the analysis of console logs and
discuss their experience with the extraction of message
types from source code via static analysis. The work-
flow of their general approach can be summarized as
follows – parse the log entries and structure them via
the discovered message types; construct feature vec-
tors from the extracted information; apply anomaly de-
tection methods to mine the feature vectors; visualize
results in a decision tree. The static logging code analy-
sis is achieved via abstract syntax tree (AST) traversal.
The authors report that by using a source code as a
reference to understand the structure of console logs,
they were able to parse logs accurately and extract
identifiers (message types) and state variables that usu-
ally ignored due to difficulties in log parsing. On the
other hand, they also observe that it was impossible for
them to correctly handle all special cases inherently
present in real-world application source code-bases.

Prior to their work characterizing logging practices,
(Yuan et al., 2010) proposed SherLog – a tool for diag-
nosing errors exhibited during production run failures.
SherLog can analyze logs from a failed production
run and source code to automatically generate useful
control-flow and data-flow information to help engi-
neers diagnose the error without reproducing the error
or making any assumption on log semantics. The au-
thors implemented LogParser, a general mechanism
analyzing source code and its AST to automatically
generate regex-based patterns in order to parse log mes-
sages and extract variable values. The only required
input of LogParser are the names of the used logging
functions and a position of the string-formatting argu-
ment within them. The source code is then scanned,
and AST traversal is used to extract and build cor-
responding regular expressions together with inverse
mapping to source code position. This information
is then used to analyze failure logs and infer execu-

ICSOFT 2019 - 14th International Conference on Software Technologies

666

tion paths and run-time values that are useful for the
developers to understand the root cause of the error.

2.2 Log Data Mining

Source code generating log data is not always available
for analysis, e.g. in the case of network devices, closed-
source applications, or software appliances. Thus, sim-
ilarly to many others, we have focused our attention
on approaches that discover message types in histor-
ical log data via data mining techniques. Generally
speaking, the existing works in this area can be roughly
divided into two groups. The first group uses special-
ized algorithms that are exploiting the nature of log
data, especially in terms of word frequencies. The
most commonly used mining technique is cluster anal-
ysis, where the message types are constructed from
the discovered log message clusters. A less common
group of approaches uses custom heuristics to directly
induce the message types, e.g. via natural language
processing. We have been also able to find works that
combine these approaches. The major focus of this
paper is on the former group of approaches.

Many of the log data mining approaches for mes-
sage type discovery utilize some variant of cluster anal-
ysis. Simply put, clustering is a data mining task of
dividing a set of objects into groups – clusters – so that
the objects from the same cluster are similar to each
other more than the objects in other clusters. In many
applications, the notion of a cluster is not precisely
defined and it is difficult to decide what constitutes a
cluster until described via a corresponding algorithm,
model, or concept (Tan et al., 2005). In the context of
message type discovery, the objects that are subjected
to the cluster analysis are log messages. The found
clusters of log message are then considered to consti-
tute the message types. For example, given the log
messages listed in Table 1, the clustering techniques
are able to automatically discover two clusters that rep-
resent the corresponding message types, which would
have to be otherwise inferred empirically/manually.

The approaches used in this area take advantage of
the observation that although the log messages are free-
form, they are generated by a limited set of fixed log-
ging statements and thus the generated log messages
are likely to form clusters with respect to variable po-
sitions. However, as originally discussed in (Vaarandi,
2003) and further revisited in (Makanju et al., 2012),
traditional clustering algorithms are not suitable for
log message clustering. Provided each log message is
considered to be a data point, and its individual words,
or tokens, are referred to as attributes, the reasons can
be paraphrased as follows.

• The log messages (message types) do not have a

fixed number of attributes.

• The data point attributes, i.e. the individual words
or tokens of each log message, are categorical.
Most conventional clustering algorithms are de-
signed for numerical attributes.

• Traditional clustering algorithms also tend to ig-
nore the order of attributes. In the context of log
messages (message types), the attribute order is
important.

• Log data are high-dimensional, and although clus-
tering algorithms for high-dimensional data have
been designed, they do not cope well with data
with different attribute types.

For these reasons, several algorithms and tech-
niques for automatic clustering and/or categorization
of log message with the goal of message type discovery
have been developed, e.g. (Vaarandi, 2003; Nagappan
and Vouk, 2010; Makanju et al., 2012; Fahad et al.,
2014). Moreover, several works have emerged that
do not use cluster analysis per se, yet, still take into
account both the facts stated above and also exploit
the same characteristics inherent to log data. The most
prominent characteristic, first observed by Vaarandi in
(Vaarandi, 2003), is the different frequency of word-
s/tokens representing static part of the message, i.e.
message type, and the tokens representing variable
part of the log message. (Vaarandi, 2004) is an exam-
ple of an approach that is not clustering per se – it uses
an Apriori-based algorithm that models message type
discovery as a task of frequent item-set mining.

We have been also able to identify several works
that rely largely on domain knowledge and the nature
of the targeted data set. For example, (Taerat et al.,
2011) classifies individual log message tokens based
on their type before clustering. In particular, it lever-
ages a dictionary of English words for classification.
After this classification, a meta-clustering step is per-
formed. The work presented in (Jiang et al., 2008)
represents a similar case, which is based on explicit
language and log message structure heuristics. Al-
though such approaches are certainly usable for some
cases, they cannot be considered general-purpose. On
the other hand, optional domain knowledge provided
by the log analyst generally results in an increased
accuracy of the message discovery approaches, e.g. as
shown in (Tang et al., 2011), or (Vaarandi and Pihel-
gas, 2015). For example, via corresponding regular
expressions, it is possible to indicate that an IP address,
e-mail, and MAC address should be always considered
to be variables. Moreover, it is quite common for
the discovery algorithm to be executed multiple times
by the log analysts with different parameters to yield
the best results for the targeted data set. In fact, user

An Algorithm for Message Type Discovery in Unstructured Log Data

667

review is a fairly common (and important) part of mes-
sage type discovery. Additionally, (He et al., 2016)
reports that, in some cases, the removal of evident
variables, e.g. IP addresses, can further improve the
discovery accuracy. However, such preprocessing is
not considered in this paper.

In the following paragraphs, we will present the
core principles of the most commonly cited techniques
and algorithms for message type discovery and then
further discuss their characteristics and address their
potential limitations in the context of our goals. Note
that a first common step of every algorithm is the
tokenization of log messages since usually, the input
is in the form of plain-text lines, yet, the clustering
algorithms work with individual words, also referred to
as tokens. Most commonly, the messages are tokenized
using inter-word spaces, unless we indicate otherwise.
Also, note that we will use a basic wildcard notation
to denote message types, i.e. [Service * started]
will denote a message type with one variable position
in the middle.

3 STUDIED APPROACHES

Simple Logfile Clustering Tool

In his seminal work (Vaarandi, 2003) Risto Vaarandi
presented Simple Logfile Clustering Tool (SLCT) that
uses a density-based method for clustering. The first
step of the algorithm is similar to popular Apriori algo-
rithm for mining frequent itemsets over transactional
databases, then, however, takes a different approach
and exploits two important observations about data
sets consisting of log messages: majority of the words
occur only a few times in the data set, and there are
many strong correlations between words that occur fre-
quently. Informally, the algorithm employed by SLCT
can be described as follows.

1. Discover frequent (position,word) pairs in the
data set, e.g. (1,Service). A pair is considered
frequent if it occurs at least N times in the data set,
where N is the user-specified support threshold.

2. For each log message, extract all frequent
(position,word) pairs it contains, for example
{(1,Service),(3,started)}, and calculate the num-
ber of occurrences of such extracted combinations.

3. Combinations that occur at least N (support thresh-
old) times in the data set are selected as clusters
and then converted to an internal representation of
message types – the missing word positions are
replaced by wildcards, e.g. {Service,∗,started}.
Since by default, a space is used for message tok-

enization, the final message type can be translated
to [Service * started].

Observe, that due to the way SLCT works, it is
unable to create wildcards after the last word in the
combination. This means that if we consider combina-
tion {(1,User),(3, logged)} to be selected as a cluster,
SLCT is not able to convert it to a proper message type
of [User * logged *].

LogHound

LogHound (Vaarandi, 2004) is another clustering tool
created by the same author as SLCT. It exploits the
same observations about log message data sets, yet it
transposes the clustering task to the problem of fre-
quent item-set mining. The LogHound algorithm can
be considered to be a generalization of Apriori and
it mirrors it closely. In order to mine message types,
LogHound views m-th log message in data set as a
transaction (m,X), where X = p1, ..., pk and p1, ..., pk
are (word, position) pairs. Frequent itemsets are then
converted to message types (Vaarandi, 2008). Simi-
larly to SLCT, LogHound is unable to detect wildcards
in the place of the last word of the message type and
does not consider multiple delimiters.

Jiang, et al.

The authors of (Jiang et al., 2008) propose an auto-
mated approach for abstracting execution logs to ex-
ecution events. The proposed approach is not used
for message type discovery per se, i.e. with the goal
of using the message types for pattern matching later,
but rather for summarization and categorization of
log messages within a data-set. Nevertheless, a ba-
sic heuristic-based algorithm with several clustering
steps is proposed that in fact results in the discovery
of message types.

1. The anonymize step uses heuristics to recognize
variable positions in log messages and replaces
them with generic tokens. Heuristics can be added
or removed from this step based on domain knowl-
edge. The heuristics used in the paper consist of
assignment pairs like [word=value] and phrases
like [is[are|was|were] value].

2. The tokenize step separates the anonymized log
messages into different groups (bins) according to
the number of words and number of generic tokens
in each log line. This means that log line with two
words and one generic token would be put into a
bin with the name (2,1).

3. The categorize step compares anonymized log
messages in each bin, and each anonymized log
message is assigned its unique id. Identical

ICSOFT 2019 - 14th International Conference on Software Technologies

668

anonymized messages are assigned identical ids
and represent the same execution event.

4. The reconcile step re-examines all the execution
events (message types) and merges such execution
events that meet the following requirements: they
belong to the same bin, differ from each other by
one word at the same position, and there exists at
least a predefined number of such execution events.

It can be seen that the proposed approach strongly
depends on the used heuristics, and the fine-tuning
possibilities are limited to the reconcile step. We have
also observed that in some cases, the algorithm can
produce overlapping message types.

Log Key Extraction (LKE)

The authors of (Fu et al., 2009) focus on log anal-
ysis for automated problem diagnosis. They pro-
pose a technique to detect anomalies based on finite-
state automata, including work-flow errors and low-
performance anomalies from system logs. Similarly
to others, a need for log message classification (ab-
straction) is recognized as a necessary step. Thus, a
technique to extract log keys from log messages is pro-
posed. Note that this is not message type discovery
per se since the authors are not interested in the dy-
namic content, but rather only in the static portion of
the log message. Therefore, instead of message types,
the technique discovers log keys, i.e. log messages
without parameters, which are then used to classify
log messages, without extracting the variable content.
In a nutshell, the technique works as follows.

1. Parameters are erased based on empirical rules, e.g.
numbers, URIs, and IP addresses. Such raw log
keys are then tokenized into words using a space
as a separator.

2. An initial connectivity-based clustering is per-
formed using weighted word-edit distance to mea-
sure the similarity of the tokenized raw log keys.

3. The initial clusters are repeatedly partitioned us-
ing a heuristic-based splitting procedure based on
dynamic positions’ cardinalities.

4. Log keys are extracted from the final clusters by
considering only common positions of the raw log
keys.

The discovered log keys are then used for classification.
The first step described above is repeated for each log
message and the corresponding log key is determined
by finding a minimal weighted edit distance. Note that
although this technique cannot be directly used to dis-
cover message types later usable for pattern matching,
it is able to induce a clustering on the targeted data set.

Nagappan-Vouk Algorithm

The Nagappan-Vouk algorithm presented in (Nagap-
pan and Vouk, 2010) is inspired by SLCT, yet it does
not form clusters of individual words (tokens), but
of their respective frequencies. As the authors point
out, that way, the clusters are not being discovered
across log messages, but rather within them. This
rather straightforward algorithm can be described as
follows.

1. Build a frequency table that contains the number
of word occurrences in a particular position in the
log message. Hence, the rows in the table are the
words, and the columns are the positions in each
log message (see Table 2).

2. For each log message, retrieve the corresponding
frequencies of the words the message consist of.
Then, find frequency Z that occurs the most times
within the log message – if there is a tie, pick the
lowest frequency.

3. All the words of the log message that have frequen-
cies greater or equal to Z are then considered to be
the static parts of the message. The rest are vari-
able parameters. Thus, a message type is created.

4. The discovered message types are saved into an
appropriate structure (e.g. hash-table) in order
to avoid duplicates. After the whole data set is
iterated, the found message types are returned.

Considering frequency table shown in Table 2
below, the log message [Service httpd started]
corresponds to word frequencies of {5,2,5}, respec-
tively. The most common frequency Z is equal to
5, therefore, message type internally represented as
{Service,∗,started} can be inferred. After the execu-
tion of the algorithm, a single message type [Service

* started] will be constructed from the internal rep-
resentation since the tokenization is based on a space
delimiter. Although quite elegant, the algorithm does
not provide any means for fine-tuning and produces
overlapping message types.

Table 2: Example of a frequency table for Nagappan-Vouk
Algorithm.

1 2 3
Service 5 0 0
httpd 0 2 0
sshd 0 2 0

started 0 0 5
xinetd 0 1 0

Iterative Partitioning Log Mining

Iterative Partitioning Log Mining (IPLoM) (Makanju
et al., 2012) is a technique based on hierarchical clus-

An Algorithm for Message Type Discovery in Unstructured Log Data

669

tering. In the first three steps the algorithm iteratively
(recursively) partitions the data set and in the final
step it attempts to discover the corresponding message
types. The four steps can be summarized as follows.

1. Partition the data set by a token count. After this
step the log messages in the resulting partitions
will have the same length, token-wise, forming
n-tuples within the partitions.

2. Partition by token position. For each partition cal-
culate the cardinality of the tokens present at each
position (the position can be viewed as a column
in the n-tuples). Pick the position with the smallest
cardinality and split the partition by unique values
on that position.

3. Partition by search for bijection. First, rule out par-
titions that already form good clusters (using clus-
ter goodness threshold). For each remaining par-
tition, find the most occurring cardinality among
the positions and pick first two positions that have
this cardinality. Search for bijections (1-1 rela-
tion) among unique tokens on these two positions
and split the partition by the found bijections. If
there are 1-M and M-1 relations, determine the
split based on upper and lower bound thresholds.
Ignore, or attempt to further split M-M relations.

4. The resulting partitions are considered to be the
discovered message types. Positions with cardi-
nality equal to 1 are considered to be constant, the
remaining positions are variable parameters.

IPLoM demonstrated statistically significantly bet-
ter performance than either SLCT or Loghound on six
of the seven different data sets tested in (Makanju et al.,
2012), and it achieved outstanding accuracy. Whilst
having a good performance, IPLoM tokenizes log mes-
sages using space as a fixed delimiter and does not
support multi-word variables, which limits its capabil-
ities, as also confirmed by the authors. Overall, the
algorithm can be parameterized using up to 4 bounded
parameters.

logSig

In (Tang et al., 2011) the authors propose a mes-
sage signature-based algorithm logSig to generate sys-
tem events from textual log messages. By searching
the most representative message signatures (message
types), logSig categorizes log messages into a set of
event types. The algorithm is not typical cluster analy-
sis per se, but rather classification since it tries to find k
message signatures (message types) to match all given
messages as much as possible, where k is specified by
the user, which is not very suitable for our purposes.
The algorithm itself consists of three steps.

The first step is to separate every log message into
all the possible pairs of words preserving order, e.g.
(Service,htt pd), (Service,started), (htt pd,started).
The second step is to find k groups of log messages
using local search optimization strategy such that each
group share as many common pairs as possible. The
last step is to construct message signatures (message
types) based on identified common pairs for each mes-
sage group. The authors evaluate the accuracy of the
algorithm and show that the incorporation of domain
knowledge led to increased accuracy for all the tested
data sets, except one.

Baler Tool

Baler tool (Taerat et al., 2011) takes a slightly differ-
ent approach than others since it classifies log mes-
sage tokens based on their semantics, whilst leverag-
ing English dictionary. The classified messages are
then (meta)-clustered in steps, using two defined sim-
ilarity functions based on Levenshtein edit distance.
In the final step, message types are extracted from
the discovered clusters by finding a "longest common
sub-sequence" of the tokens and wildcards. Note that
similar approaches rely on the existence of dictionary
for the language the log messages are written in, pro-
vided natural language is used at all. On the other hand,
Baler merges overlapping clusters and also supports
multi-word variable positions.

LogCluster

LogCluster (Vaarandi and Pihelgas, 2015) by Vaarandi
and Pihelgas addresses several shortcomings identi-
fied in their previous work and uses an algorithm that
is an evolution of SLCT and LogHound. The algo-
rithm does not consider token positions and after the
candidate clusters are generated, it utilizes two addi-
tional heuristics to join and aggregate the candidates
in order to deal with overlapping clusters and multi-
word variables. LogCluster generates special aggre-
gated message types, e.g. [User with name *{1,3}
(created|deleted)], where the ∗{m,n} wildcard
matches m to n words and the expression in paren-
theses can match only the listed tokens. To control
the heuristics, the algorithm takes up to 5 parameters
excluding regular expression used for tokenization.

Whilst we consider LogCluster to be currently the
most advanced algorithm for log message clustering, it
is our experience that it requires additional fine-tuning
to provide the expected results, and the optimal val-
ues are not easy to find. Additionally, the aggregated
message types are sometimes not suitable for direct
conversion to corresponding matching patterns. Fi-
nally, although internally, the algorithm uses regular

ICSOFT 2019 - 14th International Conference on Software Technologies

670

expressions for tokenization, i.e. it supports multiple
delimiters, these delimiters are then stripped from the
resulting message types, rendering this functionality
unusable.

4 IDENTIFIED DEFICIENCIES

Apart from the general comments provided above, we
have identified several deficiencies of the existing al-
gorithms that either limit their accuracy or usability
for log abstraction. In some cases, only some of the
approaches are affected, yet, there is no algorithm
avoiding all of them, thus, providing a room for im-
provement.

Generation of Overlapping Message Types

Cluster/message type overlapping is a characteris-
tic typical for frequency-based algorithms (SLCT,
LogHound, Nagappan-Vouk, Jiang, et al.). This rather
common situation occurs when the algorithm reports
message type that fully or partially matches some other
reported message type, e.g. [Service httpd *] and
[Service * started].

This is unsuitable for the purposes of log abstrac-
tion since one log message can adhere to two differ-
ent message types, introducing unwanted unambiguity.
The desirable outcome would be a single reported mes-
sage type, i.e. [Service * *] in this case, created by
merging of the overlapping clusters. This can be reme-
died via an advanced post-processing of the detected
message types.

No Support for Multiple Token Delimiters

All of the studied approaches rely on delimiter-based
tokenization for separating individual words (tokens)
of the log messages, yet, only a single character can be
used in most cases, which can be a limiting factor. The
commonly used delimiter is space for obvious reasons.
For example, the algorithms are unable to discover
message type [Login - user=* succ=*] since they
cannot use both the space [], and equals sign [=]
to tokenize the message. Instead, they are only able
to report message type [Login - * *], which is not
accurate.

Note that this is not as straightforward to fix in
the existing algorithms as it may appear and it would
likely result in non-trivial alterations – the challenge
of supporting multiple delimiters is not in the tokeniza-
tion phase per se, but rather in the phase of message
type construction/generation. This is also the case of
LogCluster, which, even though using regular expres-
sions for tokenization, omits the delimiters from the

generated output, rendering it useless. Note that in
some cases, it can be impossible to discover proper
message types in a single execution even when the al-
gorithm supports multiple delimiters for tokenization.
In such situations, a manual intervention is needed.

Complicated Parameterization

In one way or the other, all of the presented approaches
rely on the variability present in the targeted log mes-
sage data sets. Moreover, it is our experience that
the domain knowledge of the user is usually the main
deciding factor of what constitutes an acceptable mes-
sage type or their group. This means that the log ana-
lysts must be able to somehow control the sensitivity
of the message type discovery algorithm depending
on the targeted data set. This can be also traced in the
works discussed above – in the evaluation phase, the
respective algorithms were often fine-tuned to provide
the best results for the data sets of interest.

While some of the proposed approaches do not
support parameterization at all, for the others, except
logSig, we deem the fine-tuning to be rather compli-
cated and unintuitive. From our point of view, a single
bounded parameter controlling sensitivity would be
the most intuitive. Since the users usually react either
to overly general or to overly specific message types,
the parameter should ideally control granularity of the
output, i.e. at one end of the parameter’s interval, many
individual message types would be discovered and at
the opposite end, fewer, more general message types,
would be returned.

No Support for Multi-word Variables

Majority of the above-mentioned approaches rely on
the position of tokens within the log message. This
results in the inability to properly detect variable pa-
rameters consisting of multiple words. Also, for SLCT
and LogHound this results in the inability of detect-
ing message types with wildcards at the last position.
Consider data set that consists of variations of the
following two messages: [Service httpd started]
and [Service foo bar started]. Since they are of
different length with variables at different positions,
they would be eventually recognized as two distinct
types, i.e. [Service * started] and [Service * *
started].

In some cases, this can be considered to be a cor-
rect behavior, yet, usually, this is not optimal. The
approach to cope with this can be relatively straightfor-
ward, yet it requires additional iteration over the found
message types. For example, the detected message
types can be grouped using some kind of heuristic,
e.g. Levenshtein edit distance used on whole words as

An Algorithm for Message Type Discovery in Unstructured Log Data

671

proposed in (Makanju et al., 2012). Baler, and Log-
Cluster are the only algorithms to support multi-word
variables.

5 PROPOSED ALGORITHM

In order to address the above-mentioned deficiencies,
we have decided to design a new message type dis-
covery algorithm combining different techniques used
in the studied approaches. We refer to the algorithm
as to the Extended Nagappan-Vouk (ENG) since it
is based on the original idea of frequency table and
intra-message word frequency. Other than that, the
algorithm is significantly improved in order to support
multiple delimiters for tokenization, support multi-
word variables, report distinct message types with no
overlapping, and finally, the algorithm can be parame-
terized via a single parameter controlling the sensitiv-
ity of the algorithm and the granularity of the reported
message types.

Algorithm 1 (on the next page) takes three param-
eters – log message lines, i.e. the targeted data set;
a list of delimiters used for tokenization; and a word
frequency threshold represented by a percentile value
between 0 and 100, inclusive. The algorithm consists
of 5 steps – tokenization; frequency table generation;
generation of base message types; creation of merged
message types, i.e. elimination of overlapping clusters;
and detection of multi-word variables.

First, the log messages are tokenized using the
provided delimiters into a list of (position,word) pairs
and delimiters. It is important for the delimiters to be
a part of the tokenized line, otherwise the algorithm
would not be able to reconstruct proper message types
back. Note that it is sufficient for the algorithm to work
only with a set of unique log message lines, which is
enforced in the beginning of the processing in order
to improve an overall practical performance. After
the tokenization step, a frequency table is built, taking
only the tokenized words into account.

In the third step, a base message type is built for
each tokenized log message, which is then inserted into
a set of message types in order to eliminate duplicates.
This step extends the core idea of the original algo-
rithm. However, instead of most occurring frequency
within the log message, the method of q-th percentile
is used to discover variable parts of the message.

A word at a given position is a variable and it is
replaced by a wildcard, if its frequency is lower than
the q-th percentile of the frequencies present in the
current tokenized line. This method allows us to de-
fine what a variable position means and parameterize
the sensitivity of the variable discovery. For q = 0, i.e.

the minimum frequency, the algorithm reports more
words to be static, while for q = 100, i.e. the maxi-
mum frequency, it reports more words to be variable
positions. After the base message types are generated,
two post-processing steps are executed.

First, overlapping message types are eliminated in
favor of generating more general message types we
refer to as merge-types, which are strictly distinct. The
base message types are partitioned by their length, in-
cluding delimiters and wildcards, and reverse-sorted
so that the most general message types are first. Each
partition of the same length is then recursively iter-
ated, trying to merge the base message types. Two
message types can be merged if they exactly match
each other. Variable positions always compare to equal
to any word or other variable position. For example,
message types [f oo,t,?] and [?,t,bar] will result in
merge-type [?,t,?], corresponding to the internal rep-
resentations of [foo *], [* bar], and [* *] respec-
tively. The merging process continues until the par-
tition becomes stable, i.e. there are no other base
message types that can be merged. In the second post-
processing step, we aggregate wildcard sequences with
the aim of supporting multi-word variable positions.
For each (merged) message type, wildcard chains are
detected, i.e. sequences of wildcards that are delimited
via a single space.

For example, message type [f oo,?,t,?,t,?] will
become [f oo,t,?], [3] indicating that there are 3 space-
separated words on the first variable position. By iter-
ating all the message types, a temporary table is cre-
ated, containing all the aggregate message types that
differ only by the number of space-separated words
on the respective variable positions, i.e. so-called
wildcard lengths are calculated. Then, the tempo-
rary table is iterated and for each aggregate message
type, all the monotonic sequences of lengths are de-
tected. This means that, for example, for message
type [f oo,t,?], [[1,3,4]], the first variable position
is detected to be consisting of either 1 word, or 3-4
words. Based on such monotonic ranges, i.e. wild-
card cardinalities, all the possible aggregate message
types are generated. Since in our example the message
type has only one variable position, the cardinalities
[[(1,1),(3,4)]] will result in the algorithm reporting
two possible message types [foo %{1,1}] and [foo
%{3,4}] – the result of a Cartesian product of wildcard
cardinalities for each respective variable position.

5.1 Output Example

Listing 1 (page after next) shows an example of mes-
sage type discovery results of the described algorithm
– its Python implementation, to be precise. Notice that

ICSOFT 2019 - 14th International Conference on Software Technologies

672

Algorithm 1: Message type discovery (ENG).
Input: log message lines to be clustered, delimiters used for tokenization, percentile threshold
Output: message types set mt_set

1: function DISCOVERMESSAGETYPES(lines,delimiters, percentile)
2: tokenized_lines← [do tokenize(line,delimiters) for line in unique(lines)]
3: f req_tab← BUILDFREQUENCYTAB(tokenized_lines)
4: mt_set1← BUILDMESSAGETYPES(tokenized_lines, f req_tab, percentile)
5: mt_set2← BUILDSUPERTYPES(mt_set1)
6: mt_set← BUILDAGGTYPES(mt_set2)
7: return mt_set

8: function BUILDFREQUENCYTAB(tokenized_lines)
9: f req_tab← new HASHMAP(Pair→ Integer)

10: for tokenized in tokenized_lines do
11: for x in tokenized do . tokenized line is a list of (position,word) pairs and delimiters
12: if isWord(x) then . consider only words, not delimiters
13: f req_tab[x]++ . increment frequency of this (position,word) pair
14: return f req_tab

15: function BUILDMESSAGETYPES(tokenized_lines, f req_tab, percentile)
16: mt_set←{} . mt_set will contain only unique message types
17: for tokenized in tokenized_lines do
18: f requencies← [do f req_tab[x] for x in tokenized if isWord(x)]
19: threshold← qthPercentile(f requencies, percentile)
20: message_type← []
21: for x in tokenized do
22: if isWord(x) then
23: if f req_tab[x]< threshold then
24: message_type� ? . substitute word with a wildcard
25: else
26: message_type� x.word
27: else
28: message_type� x
29: mt_set� message_type . message_type is a list of words, wildcards, and delimiters
30: return mt_set

31: function BUILDSUPERTYPES(mt_set)
32: mrgt_set←{}
33: for partition in partitionByMsgTypeLength(mt_set) do
34: mtypes← reverse(sort(partition)) . wildcard > word > delimiter
35: merged_partition←{}
36: while mtypes 6=∅ do
37: merge_ f ound← FALSE
38: mt1← pop(mtypes)
39: for mt2 in mtypes do
40: success,mtx← tryToMerge(mt1,mt2)
41: if success then
42: remove(mt2,mtypes)
43: push(mtx,mtypes)
44: merge_ f ound← TRUE
45: break
46: if not merge_ f ound then
47: merged_partition� mt1
48: mrgt_set� merged_partition
49: return flatten(mrgt_set) . flatten the set of sets into a single set

50: function BUILDAGGTYPES(mt_set)
51: temp_tab← new HASHMAP(List→ List)
52: for message_type in mt_set do
53: mt, len_list← mergeWildcardChains(message_type) . mt is shortened message type
54: temp_tab[mt]� len_list . len_list contains lengths of merged wildcard chains in mt
55: agg_set←{}
56: for mt, len_lists in temp_tab do . len_lists is a list of lists
57: crd← []
58: for e in zip(len_lists) do . each element e is a list of possible lengths of each wildcard in mt
59: crd← [do (min(q), max(q)) for q in mnSeq(e)] . detect monotonic sequences of lengths
60: for f in cartesian(crd) do . generate all possible combinations of wildcard cardinalities for mt
61: agmt← (mt, f) . agmt is a message type paired with a list of its wildcard cardinalities
62: agg_set� agmt
63: return agg_set

An Algorithm for Message Type Discovery in Unstructured Log Data

673

Start processing (xor) Jen=user Service sshd:22 started
User John logged out Start processing (xor) Daniel=user
User Bob logged in User Ruth logged out
Start processing (xor) Thomas=user Start processing (xor) Tom Sawyer=user
Service httpd:8080 started Start processing (nor) Root=user

delimiters='\s', percentile=30:
User %{1:1} logged out
User Bob logged in
Start processing (xor) %{1:2}
Start processing (nor) Root=user
Service %{1:1} started

delimiters='\s:=\(\)', percentile=65:

User %{1:1} logged %{1:1}
Start processing (%{1:1}) %{1:2}=%{1:1}
Service %{1:1}:%{1:1} started

Listing 1: Message type discovery results for a simple data set, using different parameters.

different parameters result in message types of differ-
ent granularity. Also, note that the shown data set is
not an excerpt, but an actual input for the algorithm.
This illustrates that the discovery can be performed
even on a relatively small historical sample.

6 ACCURACY EVALUATION

The accuracy evaluation of message type discovery is
a typical task that can be achieved via classic infor-
mation retrieval techniques for clustering evaluation
(Manning et al., 2008). Assuming the discovery does
not produce overlapping message types, each discov-
ered message type induces a strict cluster of log mes-
sages in the original data set, i.e. each log message cor-
responds to exactly one message type. Note that this is
naturally true regardless if clustering-based methods
were used for the discovery or not. Provided there is
a second clustering available, which is representing
the ground truth, or gold standard, it is possible to
calculate a number of external criteria that evaluate
how well the discovered clustering matches the gold
standard classes (message types).

Similarly to many others, we use F-measure (F1
score) as the external criterion to be used for message
type discovery accuracy evaluation. F-measure is a
harmonic mean of precision and recall, other common
external criteria, which can be calculated as follows
(Manning et al., 2008). Let us view the task of cluster-
ing as a series of decisions, one for each of the N·(N−1)

2
pairs of items (documents, log messages) in the data
set. We want to assign two items to the same cluster
if and only if they are similar, e.g. when two log mes-
sages belong to the same message type. The ground
truth data set is used to determine if the decision is
correct or not. A true-positive (TP) decision assigns
two similar items to the same cluster, a true-negative
(TN) decision assigns two dissimilar items to different
clusters. There are two types of errors we can commit.
A false-positive (FP) decision assigns two dissimilar

documents to the same cluster. A false-negative (FN)
decision assigns two similar documents to different
clusters. Precision is the fraction TP

TP+FP of all the de-
cisions to cluster two items together and the decisions
that do so correctly. Recall is the fraction TP

TP+FN of
all the decisions to cluster two items that should have
been made and the decisions that were actually made.
F-measure can be calculated from the precision and
recall as follows.

F1 = 2 · Precision ·Recall
Precision+Recall

Thanks to the work of He et al. (He et al., 2016)
we have been able to evaluate the accuracy of our
algorithm on externally provided heterogeneous log
message data sets and accompanying ground truths,
which should add to the evaluation validity. Moreover,
we were able to compare the algorithm’s accuracy
with accuracies reported for some other algorithms for
message type discovery. In their evaluation study, the
authors used five real-life log message data sets rang-
ing from supercomputers (BGL and HPC), through
distributed systems (HDFS and Zookeeper), to stan-
dalone desktop software (Proxifier), in order to evalu-
ate accuracy of four different message type discovery
algorithms (SLCT, IPLoM, LKE, and logSig).

The data sets were randomly sampled for 2000 log
messages from each dataset in order to shorten the
running times of some of the more computationally in-
tensive algorithms. The ground truth was created man-
ually by the authors. The reported results (F-measures)
are summarized in Table 3. Note that in the evaluation
study, the authors also report results for preprocessed
log messages, e.g. with removed IP addresses, yet we
do not consider such preprocessing in our evaluation.

We were able to re-run the experiments on the
sampled data sets, which are available online1. We

1https://github.com/logpai/logparser

ICSOFT 2019 - 14th International Conference on Software Technologies

674

0 10 20 30 40 50 60 70 80 90 100

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Percentile threshold [x]

F-
m

ea
su

re

BGL HPC HDFS Zookeeper Proxifier

Figure 1: F-measure of ENG with respect to percentile threshold q = x and default delimiters.

Table 3: F-measures for algortihms evaluated in (He et al.,
2016).

BGL HPC HDFS Zookeeer Proxifier AVG
SLCT 0.61 0.81 0.86 0.92 0.89 0.818
IPLoM 0.99 0.64 0.99 0.94 0.90 0.892
LKE 0.67 0.17 0.57 0.78 0.81 0.600
LogSig 0.26 0.77 0.91 0.96 0.84 0.748

have implemented the presented Extended Nagappan-
Vouk (ENG) algorithm in Python, and the prototype
implementation was executed with several different
settings in order to demonstrate the effects of different
parameterizations and also to demonstrate the benefits
of the algorithm’s support for multiple delimiters. The
accuracy results for five different parameterizations
are shown in Table 4.

Table 4: F-measures for Extended Nagappan-Vouk algorithm
and its different parameterizations.

BGL HPC HDFS Zookeeer Proxifier AVG
(1) 0.8556 0.8778 1.0000 0.7882 0.8162 0.86756
(2) 0.9251 0.9861 1.0000 0.9999 0.8547 0.95316
(3) 0.9191 0.9861 0.6965 0.9182 0.8220 0.86838
(4) 0.4949 0.9856 1.0000 0.9979 0.8547 0.86662
(*) 0.9985 0.9861 1.0000 0.9999 1.0000 0.99690

The first parameterization (1) considers the default
percentile threshold (q = 50) with space serving as
a delimiter. The second parameterization (2) also
uses the default percentile, yet, now, multiple delim-
iters are used for tokenization in their default form
([,;:=[]()]). The third and fourth parameterization
(3), (4) shows the sensitivity of different data sets to
different percentile thresholds (q = 15, q = 85), again
with default delimiters. Finally, the fifth parameteriza-
tion (*) represents the best possible clustering results
that can be achieved for the algorithm. The percentile
q = 50 exhibits the best overall accuracy when each
respective data set is tokenized by an individual and
fine-tuned set of delimiters. Although from a subjec-
tive perspective these tokenizations do not produce
the best possible message types, they produce the best
clustering results. This is related to the fact that the

ground truth message types are also not at their best,
but again, this is subjective.

It can be seen that even for the default algorithm
settings, i.e. q = 50 with default delimiters, the al-
gorithm exhibits very high accuracy represented by
F-measure. Moreover, when considering different sets
of delimiters for each evaluated data set, the exhibited
accuracy is truly superior.

Figure 1 (above) illustrates that each of the tested
data sets exhibits different sensitivity to the percentile
threshold parameter q. It should also demonstrate, why
we have chosen q= 50 as a default threshold parameter
– during our use of the ENG algorithm in practice, the
range between q = 40 and q = 60 exhibited the best
results for many other real-life data sets.

7 CONCLUSIONS

In this paper, we have focused on the first tier of the log
abstraction task, i.e. message type discovery. The re-
search in this area is focused on automated approaches
for message type discovery and two orthogonal groups
of approaches can be identified. The message type dis-
covery can be based either on source code analysis or
on data mining techniques applied to already generated
log data. Since the source code of the targeted applica-
tion producing log data may not be always available
for analysis, we have turned our attention towards ap-
proaches that discover message types from historical
log data via data mining techniques. We have studied
the existing algorithms and identified several deficien-
cies, mainly in terms of their limited capabilities and
practical usability for our goals. By combining the
principles of several of these algorithms, we have been
able to design a message type discovery algorithm with
the ability to generate non-overlapping message types,
use multiple token delimiters, use a single bounded
parameter for fine-tuning, and support multi-word vari-
ables.

An Algorithm for Message Type Discovery in Unstructured Log Data

675

An accuracy evaluation based on five real-world
data sets with externally provided ground truth shown
that the proposed algorithm exhibits a superior ac-
curacy. In the best case, the algorithm exhibited an
average F-measure of 0.9969. In the future, we plan
to deal with the problem of incremental discovery and
message type evolution, which is somewhat inherent to
the logging domain. We plan to address this by altering
the algorithm so that it can work in an online manner,
i.e. the message types would be discovered on-the-fly
and the pattern-set for regex matching would be also
updated dynamically.

ACKNOWLEDGEMENTS

The publication of this paper and the follow-
up research was supported by the ERDF „Cy-
berSecurity, CyberCrime and Critical Informa-
tion Infrastructures Center of Excellence“ (No.
CZ.02.1.01/0.0/0.0/16_019/0000822).

REFERENCES

Chen, B. and (Jack) Jiang, Z. M. (2017). Characterizing
logging practices in java-based open source software
projects – a replication study in apache software foun-
dation. Empirical Software Engineering, 22(1):330–
374.

Fahad, A., Alshatri, N., Tari, Z., Alamri, A., Khalil, I.,
Zomaya, A. Y., Foufou, S., and Bouras, A. (2014).
A survey of clustering algorithms for big data: Tax-
onomy and empirical analysis. IEEE Transactions on
Emerging Topics in Computing, 2(3):267–279.

Fu, Q., Lou, J.-G., Wang, Y., and Li, J. (2009). Execution
anomaly detection in distributed systems through un-
structured log analysis. In International conference on
Data Mining (full paper). IEEE.

He, P., Zhu, J., He, S., Li, J., and Lyu, M. R. (2016). An eval-
uation study on log parsing and its use in log mining. In
2016 46th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pages
654–661.

Jiang, Z. M., Hassan, A. E., Flora, P., and Hamann, G. (2008).
Abstracting execution logs to execution events for en-
terprise applications (short paper). In 2008 The Eighth
International Conference on Quality Software, pages
181–186.

Makanju, A., Zincir-Heywood, A. N., and Milios, E. E.
(2012). A lightweight algorithm for message type ex-
traction in system application logs. IEEE Transactions
on Knowledge and Data Engineering, 24(11):1921–
1936.

Manning, C. D., Raghavan, P., and Schütze, H. (2008). In-
troduction to Information Retrieval. Cambridge Uni-
versity Press.

Nagappan, M. and Vouk, M. A. (2010). Abstracting log
lines to log event types for mining software system
logs. In 2010 7th IEEE Working Conference on Mining
Software Repositories (MSR 2010), pages 114–117.

Taerat, N., Brandt, J., Gentile, A., Wong, M., and Leang-
suksun, C. (2011). Baler: deterministic, lossless log
message clustering tool. Computer Science - Research
and Development, 26(3):285.

Tan, P.-N., Steinbach, M., and Kumar, V. (2005). Introduc-
tion to Data Mining, (First Edition). Addison-Wesley
Longman Publishing Co., Inc.

Tang, L., Li, T., and Perng, C.-S. (2011). Logsig: Generating
system events from raw textual logs. In Proceedings of
the 20th ACM International Conference on Information
and Knowledge Management, CIKM ’11, pages 785–
794. ACM.

Tovarnak, D. (2017). Normalization of Unstructured Log
Data into Streams of Structured Event Objects [online].
Dissertation thesis, Masaryk University, Faculty of
Informatics, Brno. Available from <https://is.muni.cz/
th/rjfzq/> [cit. 2019-05-10].

Vaarandi, R. (2003). A data clustering algorithm for mining
patterns from event logs. In Proceedings of the 3rd
IEEE Workshop on IP Operations Management, IPOM
’03, pages 119–126.

Vaarandi, R. (2004). A Breadth-First Algorithm for Mining
Frequent Patterns from Event Logs, pages 293–308.
Springer Berlin Heidelberg.

Vaarandi, R. (2008). Mining event logs with slct and
loghound. In NOMS 2008 - 2008 IEEE Network Opera-
tions and Management Symposium, pages 1071–1074.

Vaarandi, R. and Pihelgas, M. (2015). Logcluster - a data
clustering and pattern mining algorithm for event logs.
In Proceedings of the 2015 11th International Confer-
ence on Network and Service Management (CNSM),
CNSM ’15, pages 1–7. IEEE Computer Society.

Xu, W., Huang, L., Fox, A., Patterson, D., and Jordan, M. I.
(2009). Detecting large-scale system problems by min-
ing console logs. In Proceedings of the ACM SIGOPS
22Nd Symposium on Operating Systems Principles,
SOSP ’09, pages 117–132. ACM.

Yuan, D., Mai, H., Xiong, W., Tan, L., Zhou, Y., and Pasupa-
thy, S. (2010). Sherlog: Error diagnosis by connecting
clues from run-time logs. In Proceedings of the Fif-
teenth Edition of ASPLOS on Architectural Support
for Programming Languages and Operating Systems,
ASPLOS XV, pages 143–154. ACM.

Yuan, D., Park, S., and Zhou, Y. (2012). Characterizing
logging practices in open-source software. In Proceed-
ings of the 34th International Conference on Software
Engineering, ICSE ’12, pages 102–112. IEEE Press.

ICSOFT 2019 - 14th International Conference on Software Technologies

676

