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Abstract: Ensuring the correctness of complex distributed software systems is a challenging task, the issue of building
frameworks for developing such safe and correct systems still remains a difficult issue. Where test coverage
is dissatisfying, formal analysis grants much higher potential to discover bugs during the development phase.
This paper presents a framework for formal verification of complex systems based on standardized test ob-
jectives. The framework integrates a transformation of test objectives into formal properties that are verified
on the system by model checking. The overall proposed approach for formal verification is evaluated by the
application to the standard European Train Control System (ETCS). Some critical safety properties have been
proved on the model, ensuring that the model is correct and reliable.

1 INTRODUCTION

The development, verification and testing of complex
software systems (e.g., embedded systems, control
systems, etc.) involve high challenges due to the com-
plexity of the implementation and the time required
for testing and verifying. In most cases, the deadline
is not met, products being launched several months
late and without achieving the required performance
targets. Within that context, many efforts have been
done in the processes of software validation and in
particular in the testing of these systems from the ver-
ification of formal specifications. However, although
languages and formal transformation have been pro-
posed for that purpose, very few works have been de-
voted to the verification of models from the testing
phases.

We herein provide a framework based on formal
methods that performs the methods and techniques
necessary to automate the development and verifica-
tion processes. The expected result consists in a more
reliable system, in terms of functionality, safety and
robustness and a reduction of the time necessary for
verification. Indeed, we aim at verifying software sys-
tems from the standardized definition of their test ob-
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jectives.
In order to highlight and assess our methodology,

we applied it on a real industrial case study, that is
the European Train Control System (ETCS) (ERTMS
Commission Group - European Commission, 2017).
Over the past century, Europe’s railways have been
developed within national boundaries, resulting in a
variety of different signaling and train control sys-
tems, which hampers cross-border traffic. In the
scope of increasing their interoperability, the Euro-
pean Union has decided to adopt a standard, the
ETCS. We formalized some components of this stan-
dard and based on standardized test objectives, we
verified some critical properties of the system.

In summary, the main contributions of this paper
are:

• a transformation that converts IF-test-objectives
to MCL-formulas in such a way that automatic
and exhaustive verification of safety properties
will be possible on application;

• an integrated framework suitable for software de-
velopers. The proposed framework relies on a
toolchain for automating test generation, thus it
complements the toolchain by allowing formal
verification;

• an example illustrating the approach and showing
its practical use by applying our framework on a
realistic case study.
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The paper is organized as follows. Section 2
presents the related works on the verification and test-
ing of complex systems and the relation between test-
ing and verification techniques. In section 3, basic
concepts and definitions for the modelling of the sys-
tem, and the description of test objectives are de-
scribed. Section 4 gives the language for the proper-
ties specification and the rules for the transformation
of test objectives into formal properties to be verified
on the formal model. In Section 5, the formal specifi-
cation of the ETCS system is provided as well as the
results of the experimentation performed on it. Fi-
nally, Section 6 gives the conclusion and perspectives
of this work.

2 RELATED WORKS

Verification and testing of complex systems (e.g.,
train or avionic software and industrial control sys-
tems) have been studied for many years. Several mod-
els and techniques have been proposed to either test
the systems (Asadollah et al., 2015; Garousi et al.,
2018) or verify their formal models (Bérard et al.,
2013; Karna et al., 2018). In the following, we cite
the works from which we get inspired.

Many works have defined languages or ap-
proaches to model complex systems. In (Salem et al.,
2015), a UML profile named R-UML has been pro-
posed to model and then verify flexible control sys-
tems. The model is enriched in order to consider the
management of resource sharing. Besides, a trans-
formation model to state machines is used for the
verification process. Also, the authors of (Belghiat
and Chaoui, 2015) proposed a Pi-calculus-based ap-
proach through transformation of sequence diagrams
for the verification process. An interesting mapping
is formally defined to analyse and verify well-defined
properties. Models transformation is of high impor-
tance and has been well described in a very recent sur-
vey (Kahani et al., 2018). The transformation is also
performed in our approach in order to apply model-
checking. However, although these studies propose
high semantics and transformation rules, the authors
do not propose experiments on real case studies and
the properties to be checked are not provided. Be-
sides, in our approach, our transformation through
models and languages are easily applied in a sense
that the procedures are tooled (based on Fiacre (Gar-
avel et al., 2011) - see Section 5.3).

We also get inspired of the researches on testing
and verification of complex software control systems.
(Kapinski et al., 2016) presents an interesting survey
for modeling, testing, and verifying embedded control

systems. The authors note that model-based devel-
opment approaches are crucial in industrial contexts.
They also raise the challenging consolidation between
testing and verification processes in software systems.
In this area, papers like (Petiot et al., 2014) experi-
mented an incremental methodology of deductive ver-
ification assisted by test generation. Though the pro-
posal is very promising, it tackles the software code
with no formal state machines. Nevertheless, relevant
combination between test and verification was intro-
duced. Time constraints in the validation processes
are also very important. In (Mubeen et al., 2017),
the authors studied them and proposed an approach
to represent and refine them among various abstrac-
tion levels. Besides, they verified timing constraints
on a complex system. In our paper, such information
has also been raised and we noted the importance of
such constraints in the model as well as into the veri-
fication phase.

It was shown in the survey of Fraser et al. (Fraser
et al., 2009) that testing could be performed from ver-
ification processes. Many efficient techniques and
tools have been developed in that purpose. Still in
that way, the authors of (Ferrante et al., 2018) have
recently presented the use of model-checking for au-
tomated test cases generation applied to a standard-
ized complex aerospace system. However, all these
works present the use of verification for testing with-
out raising the issue of the test objectives. Although
a recent interesting document about bridging the gap
between testing and verification approaches has been
published by Microsoft Research (Godefroid, 2016),
the methods always propose to apply verification to
testing. In our work, we present a way for verifying
a formal specification from standardized test objec-
tives in the context of Control Train Systems (TCS).
Such verification purposes are not new as depicted
in the well-known report published by the CMU on
TCS (Platzer and Quesel, 2009). In (Ghazel, 2014),
a dynamic model is proposed for model-checking
of European TCS specifications. UML, LTL and a
model-based methodology is successfully applied and
the author clearly focus that work as an entry point
for generating test cases. In a more recent work (Je-
sus Valdivia et al., 2017), the authors proposed a novel
testing platform based on virtual laboratory. Braking
events have been tested using faults injection. How-
ever, as mentioned, although these works are very in-
teresting, none of them started from standardized test
objectives (eventually automatically generated) to the
verification of the models. This is what we tackle in
our work we herein propose.
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3 PRELIMINARIES

3.1 Behavioural Models

There exist several modelling languages, such as the
symbolic state machines (Mouttappa et al., 2013),
to specify complex systems when the number of ex-
changed messages, data and parameters is important.
In our approach, we describe each process (the be-
haviour of each component) in terms of Labelled
Transition Systems (LTS for short) which are strongly
based on the definition and semantics of Symbolic
Transition Graph with Assignment (Hennessy and
Lin, 1995). The LTS extends the general notion of La-
belled Transition Systems by adding parameters and
value-passing features. Transitions are labelled by pa-
rameterised actions, to which are attached a set of pa-
rameters and variables.

Definition 1. (LTS) A Labelled Transition System is
a rooted directed graph where each state s is associ-
ated with a finite set of free variables and each edge

is labelled by a triple s
([b],α,~x:=~e)−−−−−−−→ s′. Where b is

a boolean expression, e is a data expression (which
may includes variables), x ranges over data variables,
~x :=~e is a multiple assignment and α ranges over a
set of abstract action algebras.

The set of abstract actions is a set of action al-
gebras that can encode naturally usual point-to-point
message passing calculi using ?a(x1, . . . ,xn) for in-
puts, !a(v1, . . . ,vn) for outputs. Figure 3 shows the
graphical representation of the two LTSs depicting the
behaviour of the OBU (On-Board Unit) and RBC com-
ponents (Radio Block Center).
The parallel composition of processes and their com-
munication is defined through parameterised Network
(pNet) (Ameur-Boulifa et al., 2017; Henrio et al.,
2015). pNets are tree-like networks of processes.
They provide means to represent in a structured and
hierarchical way the behaviour of processes, repre-
sented as labelled transition systems (LTS with value-
passing messages). Composition of pNets is realized
by synchronisation vectors that relate the actions of (a
subset of) the subnets, with a global action that will be
exported at the next level.

Figure 2 gives a graphical representation of pNets.
The pNet shown in this example is represented by a
set of four boxes: OBU, RBC, GETSPEED and RE-
LEASESPEED boxes inside the ETCS SYSTEM box
(hierarchy). Each box representing parameterised
process (which can be formed of other pNets or LTS
and that have parameters and local variables), is sur-
rounded by labelled ports encoding a particular sort of
the corresponding pNet. The ports are interconnected

through edges for communication and synchronisa-
tion. Edges are translated to synchronisation vectors.

3.2 The IF Language

IF is a language based on the semantic temporized
state machines, allowing the description of existing
concepts into specification formalisms (Bozga et al.,
2002). A real-time system described using IF lan-
guage is composed of processes running in paral-
lel and interacting asynchronously through shared
variables and message exchanges via communication
channels. The description of a system in IF consists
in the definition of data types, constants, shared vari-
ables, communication signals and processes. The sig-
nals set is divided into inputs and outputs provided by
the environment of a current state machine or sent to
its environment, respectively. One of the main advan-
tages of the IF language is the ease of use to formally
specify test objectives as described in the next section.

3.3 Test Objectives

In our work, we focus on the functional properties
to be tested on a system or implementation (namely
implementation or system under test (SUT)). In that
context, a test objective describes a particular func-
tionality of a SUT by specifying the property to be
checked in the system implementation. It is an ob-
servable action of the system that once described in
IF language (Bozga et al., 2004) is used for guiding
the space exploration of the system’s states.

A test objective is described as a conjunction of
conditions, including the following optional condi-
tions: instance of a process with an identifier, a state
of the system (a source state or a destination state),
an action of the system (a message sent, a message
received, an internal action), a variable of the process
or a clock of the process, specifying a value and its
state (active or inactive). Table 1 shows the general
structure of a test objective in the IF description.

From a test objective, a set of test cases is gener-
ated. Basically, a test case is a sequence of input and
output actions. It represents a trace of an LTS that
satisfies the test objective.

4 FRAMEWORK - FROM TEST
OBJECTIVES TO VERIFIED
PROPERTIES

Our goal is to use formal methods both to increase
the quality of such systems through enhancing the
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Table 1: General structure of Test Objective.

TO = TO1∧TO2
TO1 = P1∧P2∧·· ·∧P5
P1 = process : instance = {proc}id
P2 = state : source = s1
P3 = state : destination = s′1
P4 = input action : α1(parameters)
P5 = variable : (v1 = value)∗

TO2 = Q1∧Q2∧·· ·∧Q5
Q1 = process : instance = {proc}id
Q2 = state : source = s2
Q3 = state : destination = s′2
Q4 = output action : α2(parameters)
Q5 = variable : (v2 = value)∗

verification activity, and to prevent unnecessary tests.
However, since we aim at a general approach for spec-
ifying properties, we advocate to use the test objec-
tives to generate formal specifications or properties
that may be used for proving or disproving the cor-
rectness of the systems. As described before (Section
3.3) test objectives express the desired or unexpected
behaviour of a system in terms of input and output
actions. Their distinctive features are typically the
dealing with data parameters that are generally ab-
stracted away in formal models because verification
problems are undecidable for infinite systems. Fur-
thermore, the crucial characteristic of our models is
the parameterised action.

Precisely, MCL (Model Checking Language) is a
language for expressing properties that addresses this
crucial matter: representing and handling data, and
reasoning about their value.

4.1 Property Language

Basic MCL logic extends action in modal µ-calculus
with data variables (Mateescu and Thivolle, 2008), so
it suits for describing the property of concurrent sys-
tems. Indeed, MCL language provides high-level op-
erators facilitating the construction of formulas. It al-
lows to handle in a natural way the data values present
in the LTSs and to reason about systems described in
value-passing process algebras such as LOTOS.

The MCL formulas are logical formulas built over
regular expressions using boolean operators, modal-
ities operators (the necessity operator denoted by [ ]
and the possibility operator denoted by 〈 〉), maximal
fixed point operator (denoted by µ) and data-handling
constructs inspired from functional programming lan-
guages. From LTS’s point of view, a transition se-
quence starting at the initial state and satisfying a reg-
ular formula ε can be expressed in MCL either as an

example for the 〈ε〉true formula, or as a counterex-
ample for the [ε]false formula. For specifying tran-
sition sequences, MCL uses regular formulas.

A regular formula is a logical formula built from
action formulas, traditional and extended regular ex-
pression operators, namely concatenation (.), choice
(|), and transitive- reflexive closure (*).

An action formula is a logical formula built from
action predicates which includes action patterns, and
the ”tau” constant operator. Action pattern can either
action for matching values denoted by {α !e1 . . .!en},
or action for extracting and storing values denoted by
{α?x1 : T1 . . .?xn : Tn} where α is an action name, ei
is an expression, variable name or function name, xi
is a variable name and Ti is a basic data type. It is
important to note that the usage of ! and ? symbols
in MCL specification has different meaning from the
notation introduced in LTS models. They enable to
match a given value against an expression or to extract
and store it in a variable. MCL also uses other specific
notations: the ”true” constant is used to match a value
of any action formula and the wildcard clause ”any”
matches a value of any type.

4.2 Encoding Test Objectives into MCL
Formula

We define the transformation of IF test objectives
into MCL specification by associating to each test
objective a MCL formula expressing a liveness
property. Consider TO a test objective:

TO= ′′process : instance={proc}id ′′
∧′′state :source=s ′′∧′′input action :α1(x1, ..,xn)

′′

∧′′output action:α2(x′1, ..,x
′
n)∧′′state:destination=s′ ′′

The encoding of test objective TO is the following
MCL property pattern:

[true∗.{α1?x1 :T1 . . .?xn :Tn}] inev({α2 † x′1 . . .† x′n})

where {α1?x1 :T1 . . .?xn :Tn} and {α2 † x′1 . . .† x′n} are
the input action and the output action resp. Note that
for dataless actions, brackets can be omitted. And
such that †x can be either !x or ?x : T depending on
whether x′i consists of matching values with data xi
(encoded !xi) or extracting and storing them in typed
variables (encoded ?xi : Ti). MCL uses the usual
datatypes e.g., bool, nat, string.

The predicate inevitability of an action α denoted
inev(α) expresses that a transition labelled with α is
eventually reached from the current state. It can be
defined in MCL using fixed point operator by the fol-
lowing macro definition:

macro inev(α)=
µ X.(<true> true and [not (α)] X)
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macro end

meaning that as long as there has been no α action,
there is always an execution leading to α.

It is important to note that our translation does not
care about the conditions on the states which are in-
volved in test objectives. For the formal verification,
the pointing of the states of a system is useless infor-
mation. Because the approach checks properties by
means of an exhaustive search of all possible states
that the system could reach.

Concerning the variables that we have not con-
sidered in the given general test objective. They are
also translated but not in completely automatic man-
ner. The translation requires sometimes the interven-
tion of the user. As mentioned earlier, such as a pro-
gramming language, MCL offers constructors to fa-
cilitate the handling of data values. Thus, for encod-
ing the variable conditions that are not empty, we use
such constructors, in particular the where construc-
tor. The action pattern ending with the optional clause
”where b” means that the pattern matches an action
if and only if the guard (boolean expression) b is true.
The guard can be the equality check, i.e, like where
vi = vali.

5 EXPERIMENTS

5.1 ETCS System

Our work has been experimented on a formal model
of the European Train Control System (ETCS). The
ETCS is a part of the European standard that defines
the European Railway Traffic Management System1.

The normative documents describe ETCS as a
train control standard, based on in-cab equipment,
an On-Board Unit (OBU) able to supervise train
movements and to stop it according to the permit-
ted speed at each line section, along with calculation
and supervision of the maximum train speed at all
times (ERTMS Commission Group - European Com-
mission, 2017). The information is received from the
ETCS equipment beside the track. For that purpose,
the OBU runs concurrently with a Radio Block Center
(RBC). Basically, this standard is proposed in order to
improve the safety in European railways. The trains
running limits are stated by movement authorities.

The train control system ensures the reception of
messages like safety distance, speed limitations and
controls the driving according to these limitations.
Secondly, the safety is increased by the supervision of
train driving. As illustrated in the Figure 1, data are

1http://www.ertms.net/

used by the on-board ETCS equipment to supervise
the train drivers2. Therefore, the on-board equipment
has to know both information regarding the route as
well as information regarding the train.

Figure 1: The ETCS system.

This train data is introduced by the train driver be-
fore starting the journey. Based on the track data and
on the data entered by the driver, the on-board sub-
system calculates a dynamic speed profile, calculates
a set of braking curves for train movement supervi-
sion and commands the brake application, if neces-
sary3. A high performance is given by an increas-
ing speed and capacity due to a track-train transmis-
sion system and the on-board equipment knowledge.
The track-train transmission system uses precise in-
formation about running limits and consequently, su-
pervises a train permanently to avoid that the speed
limits exceed. The on-board equipment knowledge
about train running limits is used to inform drivers
through displays, allowing the railways to increase the
running speeds without worrying about shortening the
time period for track side signal observation.

5.2 ETCS Formal Specification

The Figure 2 shows the semantic model of our use
case, the signature of interfaces, and the behaviour of
its components and its methods. The overall architec-
ture of the system consists of:

• The OBU component receiving the information
about the current speed, the current location and
maximum authorized speed, and makes a decision
to the issue to brake or not,

• The RBC component that manages the exchange
of data required for a safe train travel,

• A behavioural specification of methods GET-
SPEED and GETRELEASESPEED that returns re-
spectively at any time the current speed of the
train and the maximum authorized speed under
which the train must to respect.

2https://medium.com/@POST UK/moving-block-
signalling-b9b0b9f498c2

3https://ec.europa.eu/transport/modes/rail/ertms en
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In this section we describe only the structure of the
pNets, the communication among them and the be-
haviour of the local methods. The local methods com-
pute regularly the new value of the speed. They are
naturally encoded as an infinite loop of actions that
returns a random value in the range [0 . . .max value]
such that max value is the maximum value of speed
attainable by each of them. The internal behaviour
of OBU and RBC components are represented by the
LTSs given in Figure 3.
The ETCS system as specified in the European stan-
dard uses a clock. Each component owns a clock
which is synchronized with clocks of the other com-
ponents. Particularly, the RBC component receives a
location of a danger point for a certain period of time.
In our models, we abstract away this kind of detail and
represent the receiving of a location of danger point as
an infinite loop.

The OBU Component. The OBU receives the cur-
rent estimated location (?ELocation(l)) of the train
from the environment. This location is encapsulated
in a request sending to the RBC (!MARequest(id, l)).
Thus, it receives in return a release speed consisting
of a limited speed under which the train must to re-
spect (?MA(id, rs)). The local method GETSPEED
will fill the current speed with the calculated value
(?ESpeed(s)). If the current speed s of the train is less
than or equals to the limited speed, it can continue to
operate. Otherwise, if the current speed s exceeds the
maximum authorized speed, an emergency brake is
applied (!EBcmd(1)). The brake is hold until the train
totally stops. The OBU sends a Driver Machine In-
terface command to display speed information to the
driver (!DMIspeed(rs)).

The RBC Component. The RBC receives the Dan-
ger locations that are sent from the environment
(?DLocation(l)). Based on this information and the
estimated location report received from the OBU, the
RBC computes release speeds by calling the method
RELEASESPEED (!call computation(rs)). The re-
lease speed is then sent to OBU via the (!MA(id, rs))
message.

Test Objectives for Automatic Verification. A
critical property of the ETCS that is particularly cru-
cial to be verified is the ability of the system of tak-
ing over control if the driver appears to be going too
fast. Among scenarios describing this property we
consider the following:

Example 1. Scenario in which the train is in the in-
dication state (encoded s5), running at 120km/h while

the release speed is 80km/h, thus OBU has to gener-
ate a brake command and to pass to the intervention
state (encoded s8) – by traversing the normal state
(encoded s3)–. The associated test objective is formu-
lated in the IF description (where {OBU}0 is used to
identify the first instance of process OBU) as follows:

TO=′′process:instance={OBU}0′′∧′′variablers=80′′

∧′′ state :source=s5
′′∧′′ variables=120′′

∧′′ state:source= s8
′′∧′′output action:EBCMD1′′

As detailed in previous works (Nguyen et al.,
2014), TestGen-IF tool can be used to generate effi-
cient test cases for testing and validating of a system
from such test objectives. However, as the system
deal with data variables over a domain the authors
show that the number of test cases generated by ex-
haustive strategy grows too large even for relatively
small domains.

5.3 Results

The source specification was written in the inter-
mediate format Fiacre language (Berthomieu et al.,
2012). The Fiacre language provides syntax for data
types and expressions, definition of LTSs, and a form
of composition of processes by synchronization on
channels. Then we run a combination of CADP tools
(Garavel et al., 2011), the most important ones are
ceasar.open for generating transition systems from
Fiacre programs, ocis the interactive simulator, and
Evaluator4, the model-checker that deals with the
MCL logic. All the tools provided by the CADP tool-
box are command-line tools, but also integrated into
graphical user interface (GUI). Through the Xeuca in-
terface (see Figure 4) CADP toolbox allows an easy
access to the offered functionalities.

From a finite model pNet of ETCS we have com-
puted the LTS of the global system. Choosing small
values for the domain of parameters, i.e. [0..4] inter-
vals for all data, we obtain an LTS with 662 states and
3615 transitions.

To formally verify the correct execution of the dif-
ferent scenarios, we generated several properties in
MCL in precise and generic way; they express var-
ious facets of the system. Some properties express
global correctness of the application, seen from the
(external) ETCS point of view, and that reveals the
feasibility of several scenarios or the impossibility of
some errors.

First, we started by verifying usual properties the
system is deadlock-free. As well, we verified a prop-
erty expressing that each scenario is acyclic, i.e. spec-
ifying the absence of unfair execution actions, which
is characterized using the infinite looping operator
(denoted by @ operator):
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Figure 2: pNet model for the ETCS system.
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Figure 3: Model for ETCS System.

[true∗] <true> @

Not surprisingly, this property does not hold for all
scenarios. By using ocis simulator (as depicted in Fig-
ure 4), we visualize this is because the RBC processor
can stay in its state after receiving a ?DLocation(l).
Indeed, since we abstracted away the clock, the RBC
process can be engaged in a circular receiving loop
of danger locations that are sent from the environ-
ment. However, under the hypothesis that this action
is performed over a time period, such a cycle is exe-
cuted at most a finite number of times. Thus, cycles
of this form should not be considered a problem, and

the model is refined, for instance by allowing only a
finite number of actions.

Next, we proved a formula that checks the reach-
ability of the emergency brake command:

[true∗.”EBCMD1”] true

This property is evaluated to TRUE meaning that
the break command is reachable over all computa-
tions paths.

Afterwards, we proved properties that we gener-
ated from test objectives. For instance, consider the
following test objective checking global correction of
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Figure 4: Graphical user-interface of CADP.

the ETCS system:

TO= ′′process : instance={RBC}0 ′′
∧′′state :source=s′0

′′∧′′input action :MAREQUEST(id)′′

∧′′output action:MA(id,sr)′′∧′′state:destination=s′1
′′

It formalises the scenario in which the train is in
the initial state (encoded s′0) issues a MAREQUEST, thus
the RBC has to send MA and to pass to the idle state
(encoded s′1).

Based on the property pattern, our framework de-
rives from the test objective the following MCL for-
mula:

[true∗.({MAREQUEST ?id:nat})] inev({MA !id ?any})

Note how the identifier id of the OBU is extracted
from a transition label by the first action predicate
{MAREQUEST ?id:nat} (by wildcard symbol ?) and is
used subsequently in the property. This property is
evaluated to TRUE meaning that for each possible re-
quest of a train (id being the identifier of an OBU),
the return of the corresponding movement authority
permission is reachable with some returned value of
speed (denoted any).

From the test objective given in the Example 1,
our framework generates also a MCL formula al-

though in a less systematic way:

[true∗.{MA ?any ?v1:nat}.(not{ESPEED ?any})∗.
{ESPEED ?v2:nat where v2>v1}] inev(”EBCMD 1”)

This formula expresses a general property for veri-
fying that OBU issues a brake command at each state
whenever speed is greater than releaseSpeed. Actu-
ally, the test objective does not specify the input ac-
tion but the value of the variables s and rs (s = 120
and rs = 80), and the output action: EBCMD 1. It is
specified that the speed of the train is greater than the
release speed. By analysis of the models of the train,
we look for the actions that set the value of these vari-
ables, we use them to express the assignment instead
of the variables assignment. As it can be noted, the
variable s is set by the action ESPEED sets and the
variable rs is set by the action MA. Thereby, for these
actions that are used in the formula, it is explicitly ex-
pressed that the argument of the first is greater than
the argument of the second. Note that the values 80
and 120 of the variables are not set in the formula to
express this safety property in a general form. It is
evaluated to TRUE: once an RBC delivers a release
speed, upon the first speed exceeding this limit the
train always issues the brake command.
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6 CONCLUSION AND
PERSPECTIVES

This article provides a framework for the generation
of logical properties from test objectives with the aim
of verifying properties on complex distributed sys-
tems. A test objective provides a convenient descrip-
tion for generating test cases to be executed to achieve
a particular software testing requirement. This pa-
per describes the translation of such test objectives to
MCL properties. MCL properties enable the exhaus-
tive verification of applications; the correctness of ap-
plications can be proved by using the model checking
technique.

Concerning future work, first we plan to refine the
behavioural model by taking time into consideration.
Preliminary modifications allow to encode implicitly
the notion of time and go beyond the issues raised by
its abstraction. However, from the test objective point
of view, it would be interesting to study what could be
the property pattern corresponding to the test objec-
tive involving the clock. Moreover, we will consider
the eventual changes of the model parameters due to
the clock phases over the time.

Finally, our framework could be extended to take
into account other aspects in order to offer the ability
to analyse non-functional properties.
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