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Abstract: This paper addresses the rigid body attitude tracking control on the manifold SO(3) . This modeling scheme 
can avoid the singularity and ambiguity associated with local parameterization representations such as Euler 
angles and quaternion. A robust and almost global asymptotic stability control system is designed considering 
the parameters uncertainty and external interference. Based on the coordinate-free geodesic attitude error 
scalar function with its deduced attitude and velocity error vectors, a geometric asymptotic convergent sliding-
mode surface is designed firstly. Then, a geometric sliding-mode controller is introduced to enhance the 
robustness of the system for the low-amplitude fast-time-varying disturbances. Moreover, in order to attenuate 
the effect of the parameters uncertainty and slow-time-varying disturbance, two adaptive functions are 
employed to obtain the feedforward compensation. Comparison studies and simulation results show that the 
proposed controller is more practical with a high accuracy, strong robustness, less chattering and simple 
structure. 

1 INTRODUCTION 

The movement of a rigid body in a three-dimensional 
space can be divided into the movement in 
translational space and the movement in rotational 
space. The rotation control is usually the basis of the 
translation control for most rigid bodies. For example, 
in astronautics, the control forces of the satellite or 
missile are mainly produced by the thrusters. In 
aeronautics, the control forces of the aircraft or 
quadrotor are mainly produced by their wings and 
propellers. They are all executed based on the 
maneuver of a rigid body’s orientation and rotation. 
Therefore, the rigid-body attitude control has been 
studied and applied extensively in many areas 
recently, such as aerial vehicles, spacecraft vehicles, 
underwater vehicles, ground vehicles, and robotics 
(Islam et al., 2017; Forbes, 2014; Zlotnik and Forbes, 
2014). 

The orientation of the rigid body in a three-
dimensional space can be uniquely described by a 
directional cosine matrix, which is the element of the 
Lie group SO(3)  (three-dimensional special 
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orthogonal group). SO(3)  is also a nonlinear 

differentiable manifold with nine elements and six 
constraints. It is hard to analyze the geometric and 
algebra properties of SO(3) using the method in 
Euclidean space, which will be detailed later. 
Therefore, local parameterizations of SO(3)  were 

mainly studied historically. However, all minimal 
parameter presentations, such as Euler angle, 
Rodrigues parameters and modified Rodrigues 
parameters, are local and suffer from singularities. 
Quaternions consisting of four parameters do not have 
singularities but have ambiguities. It suffers from the 
unwinding phenomena. Because the three-
dimensional sphere 3  double covers SO(3) . In 

order to avoid the singularities and ambiguities in 
representing an attitude, the controllers using SO(3)  

directly in a coordinate-free format have been 
developed in recent years (Lee, Leoky and 
Mcclamroch, 2011; Liu et al., 2016; Maithripala and 
Berg, 2015). 

The early results of nonlinear differentiable 
manifolds are studied in (Boothby, 2003), where the 
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differential and integration properties, the tensor and 
tensor field on Riemannian manifolds are derived. 
Koditschek (Koditschek, 1988) designed the PD 
based controller on SO(3), where the almost globally 
asymptotically stability of the closed-loop system is 
proved. Bullo (Bullo and Murray, 1999) proposed a 
unified framework to design the controller for the 
mechanical systems modeled on nonlinear manifolds, 
such as 2 , SO(3)  and SE(3) . For SO(3) , it is 

also a Lie group with its compatible group operation 
and zero element. Using the left-invariant property of 
Lie group, the attitude and velocity error vectors can 
be translated into its Lie algebra space, which is 
diffeomorphism to 3  (Bullo and Murray, 1995; 
Bullo and Murray, 1999; Maithripala and Berg, 2015). 
Then, the vector operations addition and subtraction 
can be used again in this case. Employing these 
properties, Lee (Taeyoung, 2012; Lee, 2012; Lee, 
2008) designed some specific attitude error scalar 
functions on SO(3) , and based on these attitude 

error scalar functions, the matching attitude 
controllers are designed. 

However, the existing attitude controllers on 
SO(3)  are almost all designed based on the standard 

augmented PD control with a feedforward 
compensation loop (Bullo and Lewis, 2005; Lee, 
2008; Lee et al., 2011). Besides, all those control laws 
are designed based on the assumptions that the model 
is precisely modeled in advance and there is no 
external disturbance. The controllers above for a 
perfect attitude tracking can not be realized in practice 
due to the ideal assumptions. One feasible way to 
solve this problem is designing an adaptive robust 
controller (ARC) to estimate the uncertain inertial 
matrix and constant external disturbances (Fernando 
et al., 2011; Sanyal et al.; 2009). However, these 
adaptive controllers do not consider the time-varying 
disturbances. The sliding-mode controller (SMC) can 
deal with all bounded disturbances (Liu et al., 2016). 
However, SMC will cause a heavy chattering 
phenomenon for the high-amplitude disturbances, 
which might be dangerous in practice. 

Combined with the virtues of ARC and SMC, the 
adaptive robust sliding-mode controller (ARSMC) 
can handle these problems efficiently (Islam et al., 
2017). However, the ARSMC is hard to apply to a 
nonlinear manifold and its tangent space. As the 
attitude error vector of nonlinear manifold is deduced 
from the error scalar function (Bullo and Murray, 
1999). The error dynamics of nonlinear manifolds are 
not only determined by the topology structure of the 
manifold generally, but also related to the choice of 
the error scalar function. For the closed compact 

manifolds which are not diffeomorphism to any 
Euclid space, such as these familiar nonlinear 
manifolds 2 , 3 , SO(3)  and SE(3) , the 

magnitude of the attitude error vector designed in 
(Bullo and Murray, 1999; Bullo and Lewis, 2005) will 
decrease to zero at each isolated critical points. 
Therefore, the conventional design process of the 
asymptotically convergent sliding-mode surface, 
which will let the attitude error vector converge to 
zero, are infeasible. Moreover, the time derivative of 
the attitude error vector is not equal to and even not 
positively related to the velocity error vector. The 
relationship between these two error vectors is often 
ambiguous which is determined by the choice of the 
attitude error scalar function. For SO(3) , the time 

derivative of the attitude error vector can be expressed 
as a three-dimensional intermediate variable matrix 

3 3E   multiples the velocity error vector (Lee, 
2012). However, the eigenvalues of the matrix E  
may be indefinite, which are also determined by the 
choice of the error scalar function. All those 
properties above lead to the failure of the methods 
used in Euclid space. Therefore, The ARSMC has 
never been applied to the attitude control of a rigid 
body modeled on SO(3). 

Following the geometric control approaches of the 
prior arts, a geometric adaptive robust sliding-mode 
controller (GARSMC) on SO(3)  is designed in this 

paper. The geometric asymptotically convergent 
sliding-mode surface is designed firstly, where the 
geometric properties of the error scalar function 
proposed in (Lee, 2012) and its deduced attitude and 
velocity error vectors are applied. Moreover, an 
exponential reaching law is adopted to stabilize the 
closed-loop system. In order to facilitate the 
controller design, the unknown external disturbance 
torque in the body-fixed frame is divided into the 
high-amplitude slow-time-varying part and the low-
amplitude fast-time-varying part. Then, the adaptive 
functions for the uncertain inertial matrix and the 
unknown high-amplitude slow-time-varying 
disturbances are designed, respectively. Moreover, 
the low-amplitude high-frequency disturbances, 
which can not be estimated rapidly by the adaption 
function, can be dealt with by the geometric sliding-
mode control (GSMC) part with small switching term 
amplitudes which can also suppress the undesired 
chattering. 

Compared with the prior ARC in (Fernando et al., 
2011; Sanyal et al., 2009), the proposed adaptive 
controller part has a simpler structure with less 
computation costs. Compared with the prior SMC in 
(Liu et al., 2016), the proposed controller also has a 
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simpler sliding-mode surface and less chattering. 
Besides, the proposed controller can be used to handle 
a more general class of unconstructed and non-
harmonic uncertainties than the prior works 
(Fernando et al., 2011; Lee, 2012; Liu et al., 2016; 
Sanyal et al., 2009). Numerical simulations results 
shows that the proposed controller has a strong anti-
interference ability compared with the PD-based 
controller (Lee, 2012) and ARC, and less chattering 
phenomenon compared with SMC. The topology 
structure of compact manifold precludes the existence 
of a smooth global asymptotic stabilization control 
(Bhat and Bernstein, 2000). However, using 
Lyapunov stability theory, the almost global 
asymptotic stability can be proved for the proposed 
controller. The convergent region of the unique stable 
point covers SO(3) but only excludes a set of zero 
measure critical points. Simulation results illustrate 
the effectiveness of the proposed controller. 

The paper is organized as follows. The attitude 
dynamic model of a rigid body is developed in section 
2. The attitude error scalar function and its deduced 
attitude error dynamics are analyzed in section 3. The 
proposed geometric adaptive robust sliding-mode 
controller is designed in section 4. The numerical 
simulation follows in section 5. Section 6 summarizes 
the results and conclusions of this paper. 

2 MODELING 

The kinematics and dynamics of a rigid body’s 
rotation movement in a three-dimensional Euclidean 
space are considered in this section. The earth-fixed 
coordinate is defined as the inertial reference frame, 
and the body-fixed frame is defined attached to the 
rigid-body’s mass center. The rigid-body attitude 
kinematics and dynamics equations can be described 
as (Bullo and Murray, 1995),  

= 


   

R RΩ

JΩ Ω JΩ u d




 (1)

where 3Ω   is the angular velocity with respect to 
the body-fixed frame. The rotation matrix SO(3)R  

represents the direction cosine matrix (DCM) from 

the body-fixed frame to the inertial reference frame. 

The attitude R  of the nonlinear manifold SO(3)  

satisfies 

  3 3 TSO(3)= | ,det 1  R R R I R  (2)

3 3J   is the inertial matrix. 3u   is the 

control torque. 3d   is the disturbance defined in 
the body-fixed frame. It consists of the high-
amplitude slow-time-varying disturbances 0d  and 

the low-amplitude fast-time-varying disturbances 1d , 

which satisfies 

0 1 d d d  (3)

0d  is mainly caused by the deviation of the mass 

center of the rigid body. 1d  is mainly caused by the 

unknown friction force, such as the air drag for 
quadrotor , and randomly external interferences, such 
as random wind for aircraft. The isomorphism hat 
map   3: so(3)

   denotes a skew-symmetric 

matrix operation which can be defined as  

3 2

3 1

2 1

0

= 0

0



  
   
   

Ω  (4)

where so(3)  is the Lie algebra. The inverse of the 

hat map is denoted by the vee map   3: so(3)
  . 

For any 3, x y  , 3 3A   and SO(3)R , it 

can be proved easily that several properties of the hat 
map and the vee map are satisfied as follows (Lee, 
2012): 

      
   
 

T T T1
2

T

tr tr

= tr

=

 

 

 



      

    

 T

x y x y y x y x

Ax x A A x A A

x A A x A I A x

Rx R Rx

 
(5)

3 ERROR DYNAMICS 

The twice differentiable desired attitude trajectory is 
denoted by   SO(3)d t R . What we need to do is 

designing a control law 3u   to track  d tR , 

considering the existence of the parameters 
uncertainties and external disturbance. The 
kinematics equation of the desired trajectory can be 
written as  

= T
d d d
Ω R R  (6)

where 3
d Ω   is the desired angular velocity with 

respect to the body-fixed frame. 

3.1 Assumptions 

The following conditions are assumed. 
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1. The inertial matrix J  of a rigid body is 
regarded as a constant diagonal matrix, which 
is 

1 2 3diag( )J J JJ  (7)

J  cannot be acquired precisely in advance. 
However J  is bounded with the known bounds as 

0 m M  J J J  (8)

where mJ  and MJ  are two known constant 

diagonal matrix. 
2. The slow-time-varying disturbances 0d  and 

fast-time-varying disturbances 1d  are 

bounded with two known constant array 
3

0 D   and 3
1 D   respectively as  

0 0

1 1


 

d D

d D
 

(9)

3. The desired attitude trajectory is smooth and 
bounded. 

3.2 Attitude Error Dynamics 

The topological structures and geometric properties 
of nonlinear differentiable manifolds are quite 
different from those of the classical mechanics in 
Euclidean space (Boothby, 2003; Bhat and Bernstein, 
2000). Before the controller is designed, the 
geometric attitude tracking error and its compatible 
zero element should be defined firstly. The geometric 
tracking error between  tR  and  d tR  are 

defined as SO(3)T
e d R R R . The zero element of 

eR  is the three-dimensional identity matrix (Bullo 

and Murray, 1999; Maithripala and Berg, 2015). 
For a given attitude tracking command  ,d dR Ω , 

a smooth geodesic attitude error scalar function 
:SO(3) SO(3)    is defined as (Lee, 2012) 

      = , 2 1 tr( )T
d dt t t    R R R R  (10)

It can be proved from (Lee, 2012)that the 
following properties are satisfied for any dR  and 

R : 
i.  , 0d R R . 

ii.  , =0d R R  if and only if =dR R . 

iii. The error scalar function   is symmetric 

with    , = ,d d R R R R . 

The attitude error scalar function   gets its 

unique global minimum 0   at dR R . It 

provides a measurement for the magnitude of the 
tracking error between the two attitudes R  and dR  

to some extent. Except for dR R , the attitude error 

scalar function   has some other critical points, 
which are determined by the topology of SO(3)  and 

corresponds to the global maximum point of function 
 . These isolated critical points are also the local 
equilibrium points of the closed loop system. 
Therefore, it is impossible to find a globally stable 
continuous feedback controller on SO(3)  and only 

the almost global stability can be achieved for the 
closed-loop system (Bhat and Bernstein, 2000). 

Using the properties in (5), the time derivative of 

eR  can be deduced as (Lee, 2012)  

   d

d
T

e e d dt


 R R Ω R R Ω

 
(11)

Furthermore, the time derivative of the error scalar 
function   can be obtained as 

    

   

d
,

d
1

2 1 tr( )

d

T T T
d d d dT

d

t t
t






  


R R

R R R R Ω R R Ω
R R  

(12)

According to the geometric description of the 
attitude and velocity error vectors proposed in (Bullo 
and Murray, 1999) and the properties of the Lie group 
SO(3) in (Maithripala and Berg, 2015), an attitude 
error vector Re  can be defined as the partial 

differential of   with respect to R , which are 
expressed as 

   d

1
,

2 1 tr( )

T T
R d dT

d

 
  
 

e R R R R R R
R R R

 (13)

where Re  is the gradient of the error scalar function 

  at its current attitude point R . To make the 
denominator in (13) non-zero, the attitude error vector 

Re  must be defined in the sublevel set 

  d= SO(3) , 2L  R R R . 

Furthermore, according to the geometric 
description in (Maithripala and Berg, 2015) and using 
the left-invariant properties of Lie group, the velocity 
error vector e  can be defined as 

      , = =T T
d e e d dt t


Ωe R R R R Ω R R Ω  (14)

Then, the time derivative of the error scalar 
function   can be rewritten as the equation in (15), 
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which is similar to the properties and relationships 
between the location and velocity error vectors used 
in three-dimensional Euclid space. 

    d
,

d dt t
t
  R ΩR R e e  (15)

Notice that 3, R Ωe e   do not live on the 

cotangent bundle *SO(3)TR  or the tangent bundle 

SO(3)TR . Because the properties of the Lie group and 

Lie algebra are used here. The precise but 
complicated statement for the attitude and velocity 
error vectors are *SO(3)T R RRe  and 

SO(3)T Ω RRe  respectively (Bullo and Murray, 

1999; Maithripala and Berg, 2015). 
Furthermore, the attitude error dynamics are 

obtained as 

R Ωe Ee  (16)

 1
0+ + + d

   Ωe J Ω JΩ u d d α  (17)

where 3 3E   and 3
d α   are given as 

  T1
tr 2

2 1 tr( )

T T
d dT

d

  


R RE R R I R R e e
R R

 (18)

T T
d d d d d

 α R R Ω Ω R R Ω  (19)

It can be seen that E  is a variable matrix 
related to eR . In order to analysis the algebra 

properties of E , we use the Rodrigues formula here 
as follows (Lee, 2012). For any LQ , there exists 

a vector 3x   with x , such that 

   2

2

sin 1 cos
exp   

   
x x

Q x I x x
x x

(20)

x  is the Rodrigues formula expression of LQ  

and satisfies x .  exp : so 3 SO(3)  is the 

exponential map. The inverse of the exponential map 
can be defined as  log: SO(3) so 3 , which can be 

expressed by 

 T

2sin




  x R R  (21)

where the variable   is given by  

 1
cos tr 1 ,

2
      R  (22)

With (20), the eigenvalues of matrix Q  can be 
calculated as 

1,cos sin , 1,2,3j
Q i j   x x  (23)

Let 
eQ R  and substituting (20) and (23) into 

the formula of matrix E  in (18), we can also get that 
the eigenvalues of matrix E  are (Liu et al., 2016) 

1 1
cos , cos sin

2 2 2 2 2
j

E i
 

  
 

x x x  (24)

Furthermore, the determinant value of the matrix 
E , are  

 
3

1

1
det cos

8 2
j

E
j




 
x

E  (25)

Since x , it can be concluded that matrix 

E  is a positive definite and nonsingular matrix. 

4 CONTROLLER DESIGN 

This section mainly introduces a geometric adaptive 
robust sliding-mode attitude tracking controller on 
SO(3) . The control architecture is shown in Fig 1. 

 
0

s

ˆˆ

ˆ
d R

 

 

Ω JΩ d

J α K Ee

audR
s R e K e

Model compensation for
perfect tracking

Sliding surface

 sgn Ks H s

Sliding-mode feedback control

s

      
00

T

ˆ =

ˆ

d

J d sdiag diag diag    




d T s

J T M s s α K Ee

Adaptive rate with projection mapping

u

0
ˆ ˆ,d J

 ,R Ωˆ=

   



R RΩ

JΩ Ω JΩ u d

The rigid body

su







 

Figure 1: The structure of the proposed control system. 
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The controller mainly consists of two parts. The 
feedforward model compensation part which contains 
the adaption functions for the unknown parameters or 
slow-time-varying disturbance, and the variable 
structure feedback part. Both of them are designed 
based on the geometric sliding-mode surface s . 
Therefore, we need to design a geometric 
asymptotically convergent sliding-mode surface 
firstly. 

4.1 The Design of the Geometric 
Sliding-mode Surface 

As the attitude vector Re  and the velocity vector 

Ωe  belong to the same space 3 , the vector 

operations, such as addition, subtraction and matrix 
multiplication, in Euclidean space can be used in this 
case. Then, the asymptotically convergent sliding-

mode surface       T

1 2 3s t s t s t   s  is 

introduced as 

s R s e K e  (26)

where 3 3sK   is a constant positive definite 

diagonal matrix. The minimum eigenvalue of sK  
should be designed greater than or equal to 1 / 4  and 
the reason will be detailed later in the stability 
analysis. sK  decides the convergence speed of Re  

when the system reach on the sliding-mode surface 
s 0 . Substituting (16) to (26), we can get that 

 R s Re EK e  (27)

Integrating it, we can get that  

 = exp( d ) 0R s Rte EK e  (28)

Since matrix E  is positive definite. After the 
system reach on the sliding-mode surface s 0 , the 
attitude tracking error Re  will converge to its unique 

stable equilibrium 0Re  exponentially. 

4.2 Attitude Tracking Control 

With the control architecture shown in Fig 1, the 
geometric adaptive robust sliding-mode attitude 
tracking control law u  consisting of the 
feedforward compensation part au  and the variable 

structure feedback part su  is shown as 

 
 

0 s
ˆˆ ˆ

sgn

a s

a d

s



 


    
   

u u u

u Ω JΩ d J α K Ee

u Ks H s

 (29)

where 3 3, K H   are two constant positive 

definite diagonal matrix. The function  sgn s  for 

the sliding-mode surfaces are defined as 

 T1 2 3sgn( ) sign( ) sign( ) sign( )s s ss  (30)

where sign( )  is the sign function. 

In (29), au  is designed for a feedforward 

compensation tracking through an online parameters 

adaptive law 
̂J  and 0

̂
d . 

̂J  and 0

̂
d will be 

designed in the next subsection. su  is composed by 

a nominal stabilizing feedback Ks  and a robust 

feedback  sgnH s . 3 3K   is a linear gain to 

determine the reaching law. 3 3H   is a parameter 
to determine the robustness of this system. The 
robustness is stronger with a larger H . However, the 
inherent chattering phenomenon is more heavy with a 
larger H . H  in this controller is designed as 

1H D  (31)

Remark 1: au  contains the estimated values of 0d̂  

and Ĵ . Those model uncertainties and high-
amplitude slow-time-varying disturbances can be 
estimated and compensated by this part. The low-
amplitude high-frequency disturbances, which can 
not be estimated rapidly by the adaption functions, 
can be resolved by the variable structure part with a 
small switching term amplitude. The amplitude is 
determined by the upper bounds of the low-amplitude 
disturbance 1D . Therefore, the undesired chattering 

can be suppressed efficiently. 

4.3 Adaptive Law Design with 
Projection Mapping and Rate 
Limits 

In the feedforward compensation part au , the 

diagonal matrix Ĵ  represents the estimated value of 

the rigid body’s inertial matrix. 0d̂  represents the 

estimated value of the slow-time-varying disturbance. 
The update laws of those two parameters are designed 
as 

00
ˆ = d


d T s  (32)

      Tˆ diag diag diagJ d s    J T M s s α K Ee  (33)
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where 3 3M   is given as 

2 3 2 3

1 3 1 3

1 2 1 2

0

0

0

    
    
   

M  (34)

M  satisfies the following equation 

 diag Ω JΩ M J  (35)

0

3 3
J d

,T T   are two positive symmetric matrixes 

to accelerate or decelerate the adaption speed of Ĵ  

and 0d̂ . 

In practice, J  and 0d  are usually bounded. To 

avoid the oversize or undersize of the estimated 

values Ĵ  and . 0d̂ , a widely used projection map 

(Yao and Jiang, 2010; Yao et al., 2002) is used to keep 
the parameter estimates within a known bound, which 
is 

 
  T

ˆ

T
ˆ ˆ ˆ T

ˆT
ˆ ˆ

ˆ, int or 0

Proj
ˆ( ) , and 0I





  


 
  



θ

θ θ θ
θ

θ θ

ζ θ Ω n ζ

ζ n n
θ Ω n ζ

n n

(36)

where mθ   is the unknown parameter. θ̂  

denotes the estimate value of θ . mζ   is an 
adaptive law for θ . m  is the dimension of θ . 

Ω  is the boundary of the unknown parameter θ , 

and  i nt Ω  denotes the interior of this known 

boundary. 
θ̂
n  represents the outward unit normal 

vector at ˆ
θ Ω . 

In order to limit the adaptive rate for the control 
process, a saturation function with a pre-set value 

M θ   is defined as 

 
,

sat
,M M

M

M





  


 



θ θ

ζ

ζ ζ
ζ

ζ ζ
 (37)

The upper bound of the adaptive rate for J  and 

0d  are represented as M
J  and 

0

M
d , respectively. 

Assuming that the uncertain estimate parameter 

θ̂  is updated using the projection mapping and the 
saturation function defined above in (36) and (37), the 
designed adaptive law can be modified as 

    ˆ
ˆ ˆ=sat Proj 0 int

M
 


，

θ θ
θ θ Ω  (38)

where   is the adaptive law proposed in (32) and 

(33). According to (Yao and Tomizuka, 1996), the 
following properties for the function in (38) can be 
obtained as: 

i. The estimation values of J  and 0d  are 

always within the known bounded set 
int Ω Ω . Thus from assumption 1, 

ˆ
m M  0 J J J  and 0 0

ˆ d D  can be 

always satisfied. 
ii. The adaptive rate is uniformly bounded by 

ˆ, Mt  θ θ . 

iii.     ˆ
ˆ Proj 0,    

θ
θ θ τ τ τ . 

4.4 Stability Analysis 

The inertial matrix estimation error J  and slow-
time-varying disturbance estimation error 0

d  are 

defined as 

0 0 0
ˆ=

ˆ

 


 




d d d

J J J
 (39)

Theorem 1: With the control law (29), the adaption 
functions (32) and (33), the equilibrium point 

   , ,R  e e 0 0  of the tracking errors is almost 

global asymptotically stable, whose attraction region 
is given as (40) and (41). Moreover, the two 
estimation error J  and 0

d  are bounded. 

    0 , 0 2d R R  (40)

       

      
0 min

-1

-1
0 0

1 1
0 0 0 0

2 2
1

+ 0 0 2 0
2

J

d K 

  

  

 

 

s Js J T J

d T d

 
(41)

where 
minK  is the minimal eigenvalue of matrix K . 

Proof: A positive semi-definite Lyapunov function 
candidate is constructed as follows 

0

-1 -11
0 02

1 1
+

2 2J dV       s Js J T J d T d  (42)

where JT , 
0dT  are defined in (32) and (33), 

respectively. Compared with the dynamic 
characteristics of system, the time derivative of the 
slow-time-varying disturbance is small and close to 
zero. Then, differentiating the Lyapunov function gets 
that 

0

-1 -1
0 0

ˆˆ +J dV        Js s J T J d T d  (43)

where the linear product “  ” for the vectors and the 
square matrixes are defined as (44), respectively. 
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 T 3 3 3 3

T 3 1 3 1

tr , ,

, ,

 

 

    


   

A B A B A B

a b a b a b

 
 

 (44)

The time derivative of the sliding-mode surface 
s  is obtained as 

 1
1 0 d s


       s J Ω JΩ u d d α K Ee  (45)

Substituting (35), (44), (45) into (43), with the 
control law in (29) we can get 

  

      
0

0

1
1 0

-1 -1
0 0

-1 -1
0 0 1 0

ˆˆ+

= sgn diag +

ˆˆ+

d s

J d

d s

J d

V 




        

  

    

    



 

 

  

Js J Ω JΩ u d d α K Ee

J T J d T d

s Ks H s M J J α K Ee

J T J d T d d d

 
(46)

Taking account of the adaptive law in (32-33) into 
(46), it holds 

  1

1

= sgn

 +

V    

     

 s Ks H s d

s Ks H s d s
 (47)

H  is designed in (31) with 1H D . 1d  is 

assumed to be bounded by 1D  with 1  d H 0  as 

shown in (9). Therefore the following inequality 
always holds 

0V     s Ks  (48)

If and only if =0s , =0V . With the Barbalat 

lemma, we can get 0s  with t  . Moreover, 

when 0s  is satisfied, the attitude tracking error 

Re  will converge to its unique stable equilibrium 

0Re  exponentially. 

To make the denominator in (13) non-zero, the 

given condition     , dt tR R  should always lies in 

the sublevel set L . Therefore, (40) is proven. In 
order to prove (41), a new Lyapunov function is 
defined as 

 
min2 ,K dV V    R R  (49)

With the equations of (15) and (48), the time 
derivative of 2V  is formulated as 

2

2 2

2 2

4

0

s s

s

V     

           
   

    
 




R Ω

R Ω R Ω

R R

s Ks e Ke

K I K I
e e K e e

Ι
e K e

 
(50)

sK  is designed in (26). whose minimum eigenvalue 

is not smaller than 1 4 . Equation (50) implies that 

2V  is non-increasing. Then, using (41), it holds that 

     
min min2 2, 0 2K d KV t V    R R  (51)

Therefore,  , 2d R R  can be always hold. 

Then, (41) is proven. 
The attraction region described by (40) and (41) 

almost covers SO(3)  except a set of zero measure 

critical points where     0 , 0d R R  get its 

maximum value     0 , 0 2d R R . However, 

when the value of     0 , 0d R R  is closed to 2 

and the norms of  0J  and  0 0d  are also large, 

the region of  0Ωe  calculated in (41) is small. 

However, we can adjust the controller parameters K , 

JT  and 
0dT  to enlarge the selection region of 

 0Ωe  such that (41) always holds. 

As 0V   always hold, the Lyapunov function is 

bounded, which can prove that the estimate error J  
and 0

d  are bounded. However the estimate error 

may not converge to zero. From (32) and (33), it can 

be gotten that if 0s , 0
ˆ d 0  and ˆ J 0 . 

Therefore 0d̂ , Ĵ  will not change at this time. 

Therefore, 0
d , J  may not converge to zero. 

However the convergences of   and Re  will not 

be influenced. 

5 SIMULATION 

In this section, the comparative simulations are 
carried out for the designed GARSMC, ARC, SMC, 
and the augmented PD controller designed in (Lee, 
2012). A quadrotor UAV is used as an example. 

The initial attitude is fixed as  0 R I . The 

desired attitude trajectory  d tR  is described using 

3-2-1 Euler angles which is 
       exp exp expd x y zt     R b b b . 

xb , yb , zb  are three axes of the rigid body. The 

Euler angles  ,  ,   represent roll, pitch and 
yaw angles, respectively, which are given as shown in 
Tab.1. 

The information for the uncertain inertial matrix 
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and the external disturbances is setting as shown in 
Tab.2. The parameters used in the control law and the 
adaption function are given as shown in Tab.3. 

Simulation results are presented in Figs 2-6. 

Table 1: The desired Euler angles. 

Euler angles Values 

Roll  rad     = sin 2 +0.65t t    

Pitch  rad   = +0.02t t   

Yaw  rad     = sin 3 0.65  t t    

Table 3: Controller parameters. 

Parameters Values 

Controller 
parameters 

 
 

diag 20 20 20

diag 0.25 0.25 0.25

s 



K

K
 

Amplification 
coefficient for the 
adaption function 

 
 

0
diag 3 3 3

diag 1 1 1

d

J





T

T
 

Maximal adaptive 
law 

0
=5

=0.1

M
d

M
J








 

 
In Fig 2, the responses of the proposed GARSMC 

are compared with those in ARC, SMC and geometric 
PD controller. It has been shown that the tracking errors 
  and Re  of the geometric PD controller do not 

converge to zero with the influences of disturbances 
and parameter uncertainties. However, these 
characteristics are significantly improved by using the 
GARSMC. It also can be seen that the proposed 

GARSMC has higher control accuracy than ARC. 
SMC has the same accuracy as the GARSMC. 
However, Fig 3 shows that there exists a heavy 
chattering in SMC. Even though, the saturation 
function is used to eliminate the undesired chattering. 
Therefore, the proposed GARSMC can achieve a high 
accuracy with a strong robustness, and it can also 
eliminate the chattering phenomenon efficiently. 

Fig 4 shows the history of the estimate values of 
the fixed disturbances 0d  and the inertial matrix J  

under the GARSMC. It can be observed that the 
inertial matrix and fixed disturbance will not 
converge to their true value. However, it can be shown 
in Fig 2 that the system stability and control precision 
are not influenced. 

Fig 5 shows the information of the sliding-mode 
surface. It can be seen from Fig 5.(b) that the system 
will converge to the sliding-mode surface s 0  
firstly at 0.22t s , and then converge to its stable 
point Re 0 , Ωe 0  along the sliding-mode 

surface s 0 . Fig 5.(b) shows that the inherent 
chattering phenomenon under the GARSMC is 
suppressed significantly compared with SMC. 

In order to illustrate the almost global 
convergence of the closed-loop system controlled by 
the GARSMC, the orientation maneuvers of 
spacecraft's body axes 2b  is depicted in Fig 6. The 

direction of rotation is marked with two red arrows. It 
can be seen that the closed-loop system controlled by 
the GARSMC can achieve the large-angle maneuver 
(greater than / 2  rad) without singularity and 
unwinding. 

Table 2: Information for inertial matrix and disturbances. 

 
Inertial matrix 

 2kg m  

Fixed disturbances 

 N m  

Time-varying disturbances 

 N m  

Real values diag(0.009 0.009 0.017) J  0

0.8

= 0.8

0.5

 
 
 
  

d  

 
 

 
1

0.25sin 0.5

= 0.2sin 2 0.5

0.15sin

t

t

t


 
   
  

d  

Initial 
estimated 

values 
   ˆ 0 diag 0.015 0.015 0.025  J   0

0
ˆ 0 = 0

0

 
 
 
  

d  -- 

Bounds 
 
 

diag 0.005 0.005 0.010

diag 0.02 0.02 0.03

m

M





J

J
 0

1

= 1  

1

 
 
 
  

D  1

0.3

= 0.3

0.3

 
 
 
  

D  
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(a) Attitude error scalar function   (rad) 

 
(b) Attitude error vector Re  (rad) 

Figure 2: Attitude tracking. 

 

Figure 3: The control input (Nm). 

	
(a) Estimated	fixed	disturbances	 0d̂ 	 (Nm)	

 
(b) Estimated inertial matrix Ĵ  (kg m2) 

Figure 4: Estimate values of the parameters. 

	
(a) Phase portrait 

	
(b) Sliding-mode variables s  (rad) 

Figure 5: Sliding-mode surface. 

 

Figure 6: Orientation maneuver of 2b . 
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6 CONCLUSIONS 

This paper addresses the rigid-body attitude control 
modeled on the manifold SO(3) . This modeling 

scheme can avoid the singularities and ambiguities 
appearing in Euler angles and quaternion, respectively. 
The definitions and the algebra properties of the 
attitude error scalar function, attitude and velocity 
error vector on SO(3)  are introduced firstly. Then, 

a geometric asymptotical convergent sliding mode 
surface is designed based on these properties. 
Furthermore, a geometric adaptive robust sliding-
mode attitude tracking controller system is developed 
to track the desired attitude command, considering the 
external interferences and model uncertainty. The 
values of the unknown inertial matrix and slow-time-
varying disturbance are estimated online by the 
adaption functions. The fast-time-varying disturbance 
is dealt with by the variable structure part. 
Comparative simulation results demonstrate the high 
precision, strong robustness and little chattering of the 
proposed controller. 
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