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Abstract: Recently, as various types of networks are introduced, a number of TCP congestion control algorithms have 
been adopted. Since the TCP congestion control algorithms affect traffic characteristics in the Internet, it is 
important for network operators to analyse which algorithms are used widely in their backbone networks. In 
such an analysis, a lot of TCP flows need to be handled and so the automatically processing is indispensable. 
Thin paper proposes a machine learning based method for estimating TCP congestion control algorithms. The 
proposed method uses a passively collected packet traces including both data and ACK segments, and 
calculates a time sequence of congestion window size for individual TCP flows contained in the trances. We 
use s recurrent neural network based classifier in the congestion control algorithm estimation. As the results 
of applying the proposed classifier to ten congestion control algorithms, the major three algorithms were 
clearly classified from the packet traces, and ten algorithms could be categorized into several groups which 
have similar characteristics. 

1 INTRODUCTION 

Recently, along with the introduction of various types 
of networks, such as a long-haul high speed network 
and a wireless mobile network, a number of TCP 
congestion control algorithms are designed, 
implemented, and widely spread (Afanasyev et al., 
2010). Since the congestion control was introduced 
(Jacobson, 1988), a few algorithms, such as TCP 
Tahoe (Stevens, 1997), TCP Reno (Stevens, 1997), 
and NewReno (Floyd et al., 2004), have been used 
commonly for some decades. Recently, new 
algorithms have been introduced and deployed. For 
example, HighSpeed TCP (Floyd, 2003), Scalable 
TCP (Kelly, 2003), BIC TCP (Xu et al., 2004), 
CUBIC TCP (Ha et al., 2008), and Hamilton TCP 
(Leith and Shorten, 2004) are designed for high speed 
and long delay networks. TCP Westwood+ (Grieco 
and Mascolo, 2004) is designed for lossy wireless 
links. While those algorithms are based on packet 
losses, TCP Vegas (Brakmo and Perterson, 2004) 
triggers congestion control against an increase of 
round-trip time (RTT). TCP Veno (Fu and Liew, 
2003) combines loss based and delay based 
approaches in such a way that congestion control is 
triggered by packet losses but the delay determines 

how to grow congestion window (cwnd). In 2016, 
Google proposed a new algorithm called TCP BBR 
(Cardwell et al., 2016) to solve problems mentioned 
by conventional algorithms.  

Since TCP traffic is a majority in the Internet 
traffic and the TCP congestion control algorithms 
characterize the behaviors of individual flows, the 
estimation of congestion control algorithms for TCP 
traffic is important for network operators. It can be 
used in various purposes such as the traffic trend 
estimation, the planning of Internet backbone links, 
and the detection of malicious flows violating 
congestion control algorithms.  

The approaches for congestion control algorithm 
estimation are categorized into the passive approach 
and the active approach. The former estimates 
algorithms from packet traces passively collected in 
the middle of network by network operators. In the 
latter approach, a test system communicates with a 
target system with a specially designed test sequence 
in order to identify the algorithm used in the target 
system. Although the active approach is capable to 
identify various congestion control algorithms 
proposed so far, this approach does not fit the 
algorithm estimation of real TCP flows by network 
operators. On the other hand, the passive approaches 
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other than ours cannot estimate recently introduced 
congestion control algorithms.  

Previously, we proposed a passive method for 
estimating congestion control algorithms (Kato et al., 
2014), (Kato et al., 2015). In this proposal, we 
focused on the relationship between the estimated 
congestion window sizes and their increments. The 
relationship is indicated as a graph and the congestion 
control algorithm is estimated based on the shape of 
the graph. Our proposal succeeded to identify eight 
congestion control algorithms implemented in the 
Linux operating system, including recently 
introduced ones.  

However, the identification is performed 
manually by human inspectors, and so it is difficult to 
deal with a large number of TCP flows. This paper 
proposes a new method for estimating congestion 
control algorithms automatically based on the 
machine learning. We estimate cwnd from packet 
traces including both data and ACK segments, adopt 
the recurrent neural network (RNN) as a machine 
learning technique classifier, and show the results of 
applying normalized cwnd time sequence to an RNN 
classifier. We pick up ten congestion control 
algorithms mentioned above and show how those 
algorithms can be estimated automatically.  

The rest of this paper is organized as follows. 
Section 2 gives some background information 
including the conventional studies on the congestion 
control estimation and the machine learning applied 
for the network areas. Section 3 describes the 
proposed method and Section 4 gives the 
performance evaluation results. In the end, Section 5 
concludes this paper.  

2 BACKGROUNDS 

2.1 Studies on TCP Congestion Control 
Algorithm Estimation 

The proposals on the passive approach in the early 
stage (Paxson, 1997), (Kato et al., 1997), (Jaiswel et 
al., 2004) estimate the internal state and variables, 
such as cwnd and ssthresh (slow start threshold), in a 
TCP sender from bidirectional packet traces. They 
emulate the TCP sender’s behavior from the 
estimated state/variables according to the predefined 
TCP state machine. But, they considered only TCP 
Tahoe, Reno and New Reno and did not handle any 
of recently introduced algorithms. (Oshio et al., 2009) 
proposed a method to discriminate one out of two 
different TCP congestion control algorithms 
randomly selected from fourteen algorithms 

implemented in the Linux operating system. This 
method keeps track of changes of cwnd from a packet 
trace and to extract several characteristics, such as the 
ratio of cwnd being incremented by one packet. 
Although this method targets all of the modern 
congestion control algorithms, they assumed that the 
discriminator knows two algorithms contained in the 
packet trace.  

Prior to our previous proposal, the only study 
which can identify the TCP congestion control 
algorithms including those introduced recently was a 
work by (Yang et al., 2011). It is an active approach. 
It makes a web server send 512 data segments under 
the controlled network environment, and observes the 
number of data segments contiguously transmitted. 
From those results, it estimates the window growth 
function and the decrease parameter to determine the 
congestion control algorithm.  

Our previous proposals (Kato et al., 2014), (Kato 
et al., 2015) estimated cwnd in RTT intervals from 
bidirectional packet traces, in the similar way with the 
other methods. Different from other methods, we 
focused on the incrementing situation of estimated 
cwnd values. From the definition of individual 
congestion control algorithms, the graph of cwnd 
increments vs. cwnd has their characteristic forms. 
For example, in the case of TCP Reno, the cwnd 
increment is always one segment. In the case of 
CUBIC TCP, the graph of cwnd increment follows a 
ଶ݀݊ݓܿ√
య

 curve. In this way, we proposed a way to 
discriminate eight congestion control algorithms in 
the Linux operating system.  

2.2 Studies on Application of Machine 
Learning to TCP 

Recently, the machine learning is applied to various 
fields in network technology. Examples are the 
management of self-organizing network (Klaine, 
2017), the intrusion detection (Buczak and Guven, 
2016), and the identification of mobile applications 
from network logs (Nakao and Du, 2018).  

In the field of TCP, there are some studies on 
applying machine learning published. (Edalat et al., 
2016) proposes a method to estimate RTT using the 
fixed-share approach from measured RTT samples. 
(Mirza et al., 2010) estimates the future throughput of 
TCP flow using the support vector regression from 
measured available bandwidth, queueing delay, and 
packet loss rate. (Chung et al., 2017) proposes a 
machine learning based multipath TCP scheduler 
based on the radio strength in wireless LAN level, 
wireless LAN data rate, TCP throughput, and RTT 
with access point, by the random decision forests.  
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These proposals focused on the control aspects of 
TCP. As far as we know, no attempts for the 
congestion control algorithm estimation based on the 
machine learning are not reported.  

3 PROPOSED METHOD 

3.1 Estimation of cwnd Values at RTT 
Intervals 

In the passive approach, packet traces are collected at 
some monitoring point inside a network. So, the time 
associated with a packet is not the exact time when 
the node focused sends/receives the packet. Our 
scheme adopts the following approach to estimate 
cwnd values at RTT intervals using the TCP time 
stamp option.  
 Pick up an ACK segment in a packet trace. Denote 

this ACK segment by ACK1. 
 Search for the data segment whose TSecr (time 

stamp echo reply) is equal to TSval (time stamp 
value) of ACK1. Denote this data segment by 
Data1.  

 Search for the ACK segment which acknowledges 
Data1 for the first time. Denote this ACK segment 
by ACK2. Denote the ACK segment prior to 
ACK2 by ACK1’.  

 Search for the data segment whose TSecr is equal 
to TSval of ACK2. Denote this data segment by 
Data2.  

From this result, we estimate a cwnd value at the 
timing of receiving ACK1 as in (1).  

݀݊ݓܿ ൌ 	 ቔ
௦௘௤	௜௡	஽௔௧௔ଶି௔௖௞	௜௡	஺஼௄ଵᇲ

ெௌௌ
ቕ 

(segments) 
(1)

Here, seq means the sequence number, ack means the 
acknowledgment number of TCP header, and MSS is 
the maximum segment size. ۂܽہ is the truncation of a. 

Figure 1 shows an example of cwnd estimation. In 
this figure, the maximum segment size (MSS) is 1024 
byte. Data segments are indicated by solid lines with 
sequence number: sequence number + MSS. ACK 
segments are indicated by dash lines with 
acknowledgment number. When “ack 1” is picked up, 
data segment “1:1024” is focused on as Data1 above. 
ACK segment “ack 2049” responding the data 
segment corresponds to ACK2. The ACK segment 
before this ACK segment (ACK1’ above) is “ack 1” 
again. Data2 in this case is “2049:3073.” So, the 
estimated cwnd is (2049 – 1)/1024 = 2. Similarly, for 
the following two RTT intervals, the estimated RTT 

values are (5121 – 2049)/1024 = 3 and (10241 –5121) 
/1024= 5. 

 

 

Figure 1: Example of cwnd estimation. 

3.2 Selection and Normalisation of 
Input Data to Classifier 

When a packet is lost and retransmitted, cwnd is 
decreased. In order to focus on the cwnd handling in 
the congestion avoidance phase, we select a time 
sequence of cwnd between packet losses. We look for 
a part of packet trace where the sequence number in 
the TCP header keeps increasing. We call this 
duration without any packet losses non-loss duration. 
We use the time variation of estimated cwnd values 
during one non-loss duration as an input to the 
classifier.  

However, the length of non-loss duration differs 
for each duration, and the range of cwnd values in a 
non-loss duration also differs from one to another. So, 
we select and normalize the time scale and the cwnd 
value scale for one non-loss duration.  

The algorithm for selecting and normalizing input 
to classifier is given in Figure 2. In this algorithm, the 
input E is as time sequence of cwnd values estimated 
from one packet trace. The input InputLength is a 
number of samples in one input to the classifier. In 
this paper, we used 128 as InputLength.  

In the beginning, the time sequence of cwnd is 
divided at packet losses, and the divided sequences 
are stored in a two dimensional array S. Next, the first 
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sequence S[0] is removed, because we focus only on 
the congestion avoidance phase. Then S is reordered 
according to the length of cwnd sequence. Then the 
cwnd values for one sequence S[t] are normalized 
between 0 and 1. The normalization is performed in 
the following way. 

 

Let ݓ௠௔௫ሾݐሿ ൌ max	ሺܵሾݐሿሾݑሿሻ  
for ݑ ൌ 0⋯Lenሺܵሾݐሿሻ െ 1, and  

ሿݐ௠௜௡ሾݓ ൌ min	ሺܵሾݐሿሾݑሿሻ  
for ݑ ൌ 0⋯Lenሺܵሾݐሿሻ െ 1.  

Each cwnd value in S[t] is normalized by  

ܵሾݐሿሾݑሿ ← 	
ௌሾ௧ሿሾ௨ሿି௪೘೔೙ሾ௧ሿ

௪೘ೌೣሾ௧ሿି௪೘೔೙ሾ௧ሿ
. 

After that, the cwnd values are resampled into the 
number of InputLength (128 in this paper). This is 
done by the loop between step 11 and step 15. As a 
result, a cwnd sequence in S[t] is converted to an array 
I[t] with 128 elements. By this algorithm, all of the 
time sequences of cwnd values are the arrays with 128 
elements whose value is between 0 and 1. 

 

 

Figure 2: Selection/normalization algorithm.  

3.3 RNN based Classifier for 
Congestion Control Algorithm 
Estimation 

We used RNN for constructing the classifier, whose 
output layer defines the TCP congestion control 
algorithms. The neural network is widely used for the 
classification, regression, and estimation for various 
data. Especially, RNN is designed for handling 
temporal ordered behaviors, including video/speech 
recognition and handwriting recognition. Since we 
deal with the time sequence of cwnd values, RNN is 
considered to be appropriate for our classifier. 
Among the RNN technologies, we pick up the long 
short-term memory mechanism (Hochreiter and 

Schmidhuber, 1997), which was proposed to handle a 
relatively long time sequence of data. 

Table 1: Hyper parameters of classifier.  

 
 

The input is a normalized time sequence of cwnd 
as described above, with using labels of congestion 
control algorithms represented by one-hot vector. The 
hyper parameters of RNN is defined as shown in 
Table 1. Here, we used relatively large number of 
hidden neurons in order to install strong 
representation capability in the hidden layer. 
Specifically, the number of hidden neuron is 512 
while the input length is 128.  

In the training of the classifier, we use the mini-
batch method, which selects a specified number of 
inputs randomly from the prepared training data. The 
mini-batch size will be determined for individual 
training. The training will be continued until the result 
of the loss function becomes smaller than the learning 
rate.  

4 EXPERIMENT RESULTS 

4.1 Experimental Setup 

Figure 3 shows the experimental configuration for 
collecting time sequence of cwnd values. A data 
sender, a data receiver, and a bridge are connected via 
100 Mbps Ethernet links. In the bridge, 50 msec delay 
for each direction is inserted. As a result, the RTT 
value between the sender and the receiver is 100 msec. 
In order to generate packet losses that will invoke the 
congestion control algorithm, packet losses are 
inserted randomly at the bridge. The average packet 
loss ratio is 0.01%. The data transfer is performed by 
use of iperf3 (iPerf3, 2019), executed in both the 
sender and the receiver. The packet traces are 
collected by use of tcpdump at the sender’s Ethernet 
interface. We use the Python 3 dpkt module (dpkt, 
2019) for the packet trace analysis. We changed the 
congestion control algorithm at the receiver by use of 
the sysctl command provided by the Linux operating 
system. 
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Figure 3: Experiment configuration.  

4.2 Results of cwnd Estimation from 
Packet Traces and Normalization 

We used TCP Reno, HighSpeed TCP, Scalable TCP, 
BIC TCP, CUBIC TCP, Hamilton TCP, TCP 
Westwood+, TCP Vegas, TCP Veno, and TCP BBR, 
at the sender. Figures 4 through 13 are examples of 
time sequence of estimated cwnd values. In those 
example, the data transfer by iperf3 is performed for 
60 sec. The cwnd values are estimated in terms of 

segment according to the method described in 
Subsection 3.1. It can be recognized that the time 
variation of cwnd values present characteristical 
shapes representing individual algorithms, but it may 
be difficult to estimate algorithms manually. So, we 
apply the RNN machine learning method to those 
results.  

As described in Subsection 3.2, a part of cwnd 
sequences in duration when there are no 
retransmissions is handled as a separate input 
sequence. Figures 4 and 8 gives examples of such 
sequences, indicated as Reno 1, Reno 2, CUBIC 1, 
and CUBIC 2. As shown by these examples, the size 
of these sequences differ from each other, both for the 
time scale and the scale of cwnd. Therefore, it is 
necessary for normalize these sequence. Figure 14 
illustrate how these sequences are normalized. 
Different scale of cwnd time sequences are 
transformed into a canonical form with 128 samples 
in the range of 0 through 1. 

 

 

Figure 4: Estimated cwnd for TCP Reno. 

 

Figure 5: Estimated cwnd for HighSpeed TCP. 

 

Figure 6: Estimated cwnd for Scalable TCP. 

 

Figure 7: Estimated cwnd for BIC TCP. 

Sender Receiver
100 Mbps 
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Ethernet
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Figure 8: Estimated cwnd for CUBIC TCP. 

 

Figure 9: Estimated cwnd for Hamilton TCP. 

 

Figure 10: Estimated cwnd for TCP Westwood+. 

 

Figure 11: Estimated cwnd for TCP Vegas. 

 

Figure 12: Estimated cwnd for TCP Veno. 

 

Figure 13: Estimated cwnd for TCP BBR. 

 

Figure 14: Example of normalization. 
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4.3 Results of Congestion Control 
Algorithm Estimation 

4.3.1 Overview of Classifier 

We implemented the classifier for the TCP 
congestion control algorithms by the TensorFlow 
library (TensorFlow, 2019) supported by Google. 
Table 2 shows the environment for machine learning. 
The program language we used for TensorFlow is 
Python 3, and the execution environment is the 
Google Colaboratory tool (Google Colab, 2019). It 
allows to use GPU over the Google cloud platform. 
We prepared 400 test inputs for individual congestion 
control algorithms both as training data and test data. 

Table 2: Environment for machine learning. 

 

 

Figure 15: Overview of experiment. 

Figure 15 shows an overview of our experiment. 
First, we performed ten minute data transfer using 
iperf3 ten times for producing training data and test 
data, respectively. From those packet traces, we 
collected cwnd time sequences for non-loss durations, 
excluding the first ones in individual iperf3 runs. 
After that, we sorted the obtained cwnd time 
sequences according to the number of samples. Those 

steps were done for individual congestion algorithms. 
From those sets of sorted cwnd time sequences, we 
selected top 400 samples for training data and test 
data, for individual algorithms, and performed the 
normalization. These results are shown as two round 
corner rectangles in the top of Figure 15.  

 

Figure 16: Learning curve for three algorithms. 

Then, we executed training and test alternatively 
in each trial. As for the training, we select the mini-
batch size of inputs for individual congestion control 
algorithm. We apply the selected training inputs to the 
classifier and check whether the output of the 
classifier matches the label of input. We collect all the 
results for all training inputs and calculate the 
accuracy for individual congestion control algorithms. 

Then we move to the testing. In the testing, we use 
all of 400 inputs for individual congestion control 
algorithms. We apply all test inputs to the classifier 
and compare the classifier output and the label of 
inputs. From those results, we calculate the accuracy 
for test data.  

We go to next epoch, and perform the training 
phase and the test phase. In the training phase, we 
select another set of training data, and we use all 
inputs in the test data again. We continue this 
experiment until the return value of the loss function 
becomes the learning rate.  

4.3.2 Results for Major Three Congestion 
Control Algorithms 

As the first experiment, we focused on TCP Reno, 
CUBIC TCP, and TCP BBR. The reason we select 
these three algorithms is as follows. TCP Reno has 
been used widely since the congestion control was 
introduced. CUBIC TCP is the default algorithm in 
major operating systems including Windows, mac OS, 

Estimating TCP Congestion Control Algorithms from Passively Collected Packet Traces using Recurrent Neural Network

33



 

and Linux as of writhing this paper. TCP BBR is a 
new version proposed by Google, in order to resolve 
the problems the conventional congestion control 
algorithms suffer from.  

In this experiment, we used the mini-batch size of 
128. Figure 16 shows the learning curve for these 
three algorithms. The horizontal axis of this figure 
shows the epoch, the number of training and test trials. 
The vertical axis shows the accuracy for the training 
process and the test process. The blue line is the 
accuracy for the training process and the red line is 
for the test process. The graphs in Figure 16 show that 
both the training accuracy and the test accuracy are 
converging to 1.0 as the epoch is increasing. This 
means that there is no overtraining in the classifier. 

1 

 

Figure 17: Confusion matrix for three algorithms.  

Figure 17 shows the confusion matrix indicating 
the result throughout this experiment. Each row 
corresponds to the label of true value (Reno, CUBIC, 
and BBR), and each column corresponds to the label 
of predicted value. The results of the prediction are 
indicated by looking at each column. TCP Reno is 
identified at the accuracy of 1.0. CUBIC TCP is 
identified at the accuracy of 0.98, and the ratio of 0.1 
is mis-identified as TCP BBR. TCP BBR is identified 
at the accuracy of 0.98, and mis-identified as CUBIC 
TCP at the ratio of 1.0. These results say that the 
estimation of three congestion control method is well 
performed by the RNN based classifier.  

4.3.3 Results for Ten Congestion Control 
Algorithms 

As the second experiment, we conducted the 
congestion control algorithm estimation for ten 
algorithms listed in Subsection 4.2. In this experiment, 
we used 256 as a mini-batch size. Figure 18 shows the 

learning curve for ten congestion control algorithms. 
Similarly with Figure 16, the horizontal axis is the 
epoch and the vertical axis is the accuracy. The blue 
line in the graph is for the training process and the red 
line is for the test process. Here, for the epoch which 
is 2,200 and later, the accuracy for the training 
process is stable around 0.7, and that for the test 
process is around 0.65.  

 

 

Figure 18: Learning curve for ten algorithms.  

 

Figure 19: Confusion matrix for ten algorithms. 

Figure 19 shows the confusion matrix for this 
experiment. Among ten congestion control 
algorithms, BIC TCP, CUBIC TCP, Hamilton TCP, 
and TCP BBR are uniquely identified. HighSpeed 
TCP and Scalable TCP are predicted confusingly. 
The reason may be that the congestion avoidance 
behaivors of these two algorithms were similar with 
each other in our experiment condition. Considering 
that these two algorithms are early stage aggressive 
algorithms intended for high speed long haul 
networks, this result may be reasonable. 
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Figure 20: Confusion matrix for grouped algorithms. 

As for TCP Reno, Westwood+, TCP Vegas, and 
TCP Veno, those algorithms are based on the additive 
increase multiplicative decrease (AIMD) principle in 
the congestion avoidance phase. Westwood+ differs 
from the TCP Reno in the behavior of cwnd shrinking. 
But in our experiment, only the cwnd increasing 
behavior is focused on. TCP Vegas and TCP Veno 
differ from TCP Reno in the behavior when the RTT 
is increasing due to the congestion. But in our 
experiment, the congestion is invoked by the artificial 
impairment, i.e., inserted packet losses, and so the 
situation when RTT is increasing is not considered. 
Therefore, the result that these four algorithms are 
mis-identified is resulting from the characteristic of 
training data in our experiment.  

Figure 20 shows the confusion matrix in which we 
grouped TCP Reno, Westwood+, TCP Vegas, and 
TCP Veno into one category named AIMD, and 
HighSpeed TCP and Scalable TCP into one category. 
Each category is identified correctly in this result.  

5 CONCLUSIONS 

In this paper, we showed a result of TCP congestion 
control algorithm estimation using a recurrent neural 
network. From packet traces including both data 
segments and ACK segments, we derived a time 
sequence of cwnd values at RTT intervals without 
any packet retransmissions. By ordering the time 
sequences and normalizing in the time dimension and 
the cwnd value dimension, we obtained the input for 
the RNN classifier. As the results of applying the 
proposed classifier for ten congestion control 
algorithms implemented in the Linux operating 
system, the major three algorithms, TCP Reno, 
CUBIC TCP, and BBR, were clearly classified from 

each other, and ten algorithms could be categorized 
into several groups which have similar 
characteristics.  
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